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Solving Dynamic General Equilibrium Models Using
Log Linear Approximation
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Log-linearization strategy

• Example #1: A Simple RBC Model.
– Define a Model ‘Solution’
– Motivate the Need to Somehow Approximate Model Solutions
– Describe Basic Idea Behind Log Linear Approximations
– Some Strange Examples to be Prepared For

‘Blanchard-Kahn conditions not satisfied’
• Example #2: Bringing in uncertainty.
• Example #3: Stochastic RBC Model with Hours Worked (Matrix Generaliza-

tion of Previous Results)
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Example #1: Nonstochastic RBC Model

Maximize{ct,Kt+1}

∞X
t=0

βt C
1−σ
t

1− σ
,

subject to:

Ct +Kt+1 − (1− δ)Kt = Kα
t , K0 given

First order condition:

C−σt − βC−σt+1

£
αKα−1

t+1 + (1− δ)
¤
,

or, after substituting out resource constraint:

v(Kt,Kt+1,Kt+2) = 0, t = 0, 1, ...., with K0 given.
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Example #1: Nonstochastic RBC Model ...

• ‘Solution’: a function, Kt+1 = g(Kt), such that

v(Kt, g(Kt), g[g(Kt)]) = 0, for all Kt.

• Problem:

This is an Infinite Number of Equations
(one for each possible Kt)
in an Infinite Number of Unknowns
(a value for g for each possible Kt)

• With Only a Few Rare Exceptions this is Very Hard to Solve Exactly
– Easy cases:
∗ If σ = 1, δ = 1⇒ g(Kt) = αβKα

t .
∗ If v is linear in Kt, Kt+1, Kt+1.

– Standard Approach: Approximate v by a Log Linear Function.
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Approximation Method Based on Linearization

• Three Steps
– Compute the Steady State
– Do a Log Linear Expansion About Steady State
– Solve the Resulting Log Linearized System

• Step 1: Compute Steady State -
– Steady State Value of K, K∗ -

C−σ − βC−σ
£
αKα−1 + (1− δ)

¤
= 0,

⇒ αKα−1 + (1− δ) =
1

β

⇒ K∗ =

"
α

1
β − (1− δ)

# 1
1−α

.

– K∗ satisfies:
v(K∗, K∗,K∗) = 0.
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Approximation Method Based on Linearization ...

• Step 2:
– Replace v by First Order Taylor Series Expansion About Steady State:

v1(Kt −K∗) + v2(Kt+1 −K∗) + v3(Kt+2 −K∗) = 0,

– Here,

v1 =
dvu(Kt,Kt+1,Kt+2)

dKt
, at Kt = Kt+1 = Kt+2 = K∗.

– Conventionally, do Log-Linear Approximation:

(v1K) K̂t + (v2K) K̂t+1 + (v3K) K̂t+2 = 0,

K̂t ≡
Kt −K∗

K∗
.

– Write this as:
α2K̂t + α1K̂t+1 + α0K̂t+2 = 0,

α2 = v1K, α1 = v2K, α0 = v3K
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Approximation Method Based on Linearization ...

• Step 3: Solve
– Posit the Following Policy Rule:

K̂t+1 = AK̂t,

Where A is to be Determined.
– Compute A :

α2K̂t + α1AK̂t + α0A
2K̂t = 0,

or
α2 + α1A+ α0A

2 = 0.

– A is the Eigenvalue of Polynomial
• In General: Two Eigenvalues.

– Can Show: In RBC Example, One Eigenvalue is Explosive. The Other Not.
– There Exist Theorems (see Stokey-Lucas, chap. 6) That Say You Should

Ignore the Explosive A.
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Some Strange Examples to be Prepared For

• Other Examples Are Possible:
– Both Eigenvalues Explosive
– Both Eigenvalues Non-Explosive
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Example #2: RBC Model With Uncertainty

• Model

Maximize E0
∞X
t=0

βt C
1−σ
t

1− σ
,

subject to

Ct +Kt+1 − (1− δ)Kt = Kα
t εt,

where εt is a stochastic process with Eεt = ε, say. Let

ε̂t =
εt − ε

ε
,

and suppose
ε̂t = ρε̂t−1 + et, et˜N(0, σ

2
e).

• First Order Condition:
Et

©
C−σt − βC−σt+1

£
αKα−1

t+1 εt+1 + 1− δ
¤ª
= 0.

51



Example #2: RBC Model With Uncertainty ...

• First Order Condition:
Etv(Kt+2,Kt+1,Kt, εt+1, εt) = 0,

where
v(Kt+2,Kt+1,Kt, εt+1, εt)

= (Kα
t εt + (1− δ)Kt −Kt+1)

−σ

−β (Kα
t+1εt+1 + (1− δ)Kt+1 −Kt+2)

−σ

×
£
αKα−1

t+1 εt+1 + 1− δ
¤
.

• Solution: a g(Kt, εt), Such That

Etv (g(g(Kt, εt), εt+1), g(Kt, εt),Kt, εt+1, εt) = 0,

For All Kt, εt.

• Hard to Find g, Except in Special Cases
– One Special Case: v is Log Linear.
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Example #2: RBC Model With Uncertainty ...

• Log Linearization Strategy:

– Step 1: Compute Steady State of Kt when εt is Replaced by Eεt

– Step2: Replace v By its Taylor Series Expansion About Steady State.

– Step 3: Solve Resulting Log Linearized System.

• Logic: If Actual Stochastic System Remains in a Neighborhood of Steady
State, Log Linear Approximation Good
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Example #2: RBC Model With Uncertainty ...

• Step 1: Steady State:

K∗ =

"
αε

1
β − (1− δ)

# 1
1−α

.

• Step 2: Log Linearize -

v(Kt+2,Kt+1,Kt, εt+1, εt)

' v1 (Kt+2 −K∗) + v2 (Kt+1 −K∗) + v3 (Kt −K∗)

+v3 (εt+1 − ε) + v4 (εt − ε)

= v1K
∗
µ
Kt+2 −K∗

K∗

¶
+ v2K

∗
µ
Kt+1 −K∗

K∗

¶
+ v3K

∗
µ
Kt −K∗

K∗

¶
+v3ε

µ
εt+1 − ε

ε

¶
+ v4ε

µ
εt − ε

ε

¶
= α0K̂t+2 + α1K̂t+1 + α2K̂t + β0ε̂t+1 + β1ε̂t.
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Example #2: RBC Model With Uncertainty ...

• Step 3: Solve Log Linearized System
– Posit:

K̂t+1 = AK̂t +Bε̂t.

– Pin Down A and B By Condition that log-linearized Euler Equation Must
Be Satisfied.
∗ Note:

K̂t+2 = AK̂t+1 +Bε̂t+1
= A2K̂t +ABε̂t +Bρε̂t +Bet+1.

∗ Substitute Posited Policy Rule into Log Linearized Euler Equation:

Et

h
α0K̂t+2 + α1K̂t+1 + α2K̂t + β0ε̂t+1 + β1ε̂t

i
= 0,

so must have:
Et{α0

h
A2K̂t +ABε̂t +Bρε̂t +Bet+1

i
+α1

h
AK̂t +Bε̂t

i
+ α2K̂t + β0ρε̂t + β0et+1 + β1ε̂t} = 0

57



Example #2: RBC Model With Uncertainty ...

∗ Then,
Et

h
α0K̂t+2 + α1K̂t+1 + α2K̂t + β0ε̂t+1 + β1ε̂t

i
= Et{α0

h
A2K̂t +ABε̂t +Bρε̂t +Bet+1

i
+α1

h
AK̂t +Bε̂t

i
+ α2K̂t + β0ρε̂t + β0et+1 + β1ε̂t}

= α(A)K̂t + F ε̂t
= 0

where
α(A) = α0A

2 + α1A + α2,

F = α0AB + α0Bρ + α1B + β0ρ + β1

∗ Find A and B that Satisfy:

α(A) = 0, F = 0.
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Example #3 RBC Model With Hours Worked and
Uncertainty

• Maximize

Et

∞X
t=0

βtU(Ct,Nt)

subject to

Ct +Kt+1 − (1− δ)Kt = f(Kt,Nt, εt)

and
Eεt = ε,

ε̂t = ρε̂t−1 + et, et˜N(0, σ
2
e)

ε̂t =
εt − ε

ε
.
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Example #3 RBC Model With Hours Worked and Uncertainty ...

• First Order Conditions:
EtvK(Kt+2, Nt+1,Kt+1, Nt,Kt, εt+1, εt) = 0

and
vN(Kt+1, Nt,Kt, εt) = 0.

where
vK(Kt+2, Nt+1,Kt+1, Nt,Kt, εt+1, εt)

= Uc (f(Kt,Nt, εt) + (1− δ)Kt −Kt+1, Nt)

−βUc (f(Kt+1, Nt+1, εt+1) + (1− δ)Kt+1 −Kt+2, Nt+1)

× [fK(Kt+1, Nt+1, εt+1) + 1− δ]

and,
vN(Kt+1, Nt,Kt, εt)

= UN (f(Kt,Nt, εt) + (1− δ)Kt −Kt+1, Nt)

+Uc (f(Kt,Nt, εt) + (1− δ)Kt −Kt+1, Nt)

×fN(Kt,Nt, εt).

• Steady state K∗ and N∗ such that Equilibrium Conditions Hold with εt ≡ ε.
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Example #3 RBC Model With Hours Worked and Uncertainty ...

• Log-Linearize the Equilibrium Conditions:

vK(Kt+2, Nt+1,Kt+1, Nt,Kt, εt+1, εt)

= vK,1K
∗K̂t+2 + vK,2N

∗N̂t+1 + vK,3K
∗K̂t+1 + vK,4N

∗N̂t + vK,5K
∗K̂t

+vK,6εε̂t+1 + vK,7εε̂t

vK,j ˜ Derivative of vK with respect to jth argument, evaluated in steady state.

vN(Kt+1, Nt,Kt, εt)

= vN,1K
∗K̂t+1 + vN,2N

∗N̂t + vN,3K
∗K̂t + vN,4εε̂t+1

vN,j ˜ Derivative of vN with respect to jth argument, evaluated in steady state.
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Example #3 RBC Model With Hours Worked and Uncertainty ...

• Representation Log-linearized Equilibrium Conditions
– Let

zt =

µ
K̂t+1

N̂t

¶
, st = ε̂t, �t = et.

– Then, the linearized Euler equation is:

Et [α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st] = 0,

st = Pst−1 + �t, �t ∼ N(0, σ2e), P = ρ.

– Here,

α0 =

∙
vK,1K

∗ vK,2N
∗

0 0

¸
, α1 =

∙
vK,3K

∗ vK,4N
∗

vN,1K
∗ vN,2N

∗

¸
,

α2 =

∙
vK,5K

∗ 0
vN,3K

∗ 0

¸
,

β0 =

µ
vK,6ε
0

¶
, β1 =

µ
vK,7ε
vN,4ε

¶
.

• Previous is a Canonical Representation That Essentially All Log Linearized
Models Can be Fit Into (See Christiano (2002).)
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Example #3 RBC Model With Hours Worked and Uncertainty ...

• Again, Look for Solution

zt = Azt−1 +Bst,

where A and B are pinned down by log-linearized Equilibrium Conditions.
• Now, A is Matrix Eigenvalue of Matrix Polynomial:

α(A) = α0A
2 + α1A+ α2I = 0.

• Also, B Satisfies Same System of Log Linear Equations as Before:

F = (β0 + α0B)P + [β1 + (α0A+ α1)B] = 0.

• Go for the 2 Free Elements of B Using 2 Equations Given by

F =

∙
0
0

¸
.
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Example #3 RBC Model With Hours Worked and Uncertainty ...

• Finding the Matrix Eigenvalue of the Polynomial Equation,

α(A) = 0,

and Determining if A is Unique is a Solved Problem.
• See Anderson, Gary S. and George Moore, 1985, ‘A Linear Algebraic

Procedure for Solving Linear Perfect Foresight Models,’ Economic Letters, 17,
247-52 or Articles in Computational Economics, October, 2002. See also, the
program, DYNARE.
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Example #3 RBC Model With Hours Worked and Uncertainty ...

• Solving for B
– Given A, Solve for B Using Following (Log Linear) System of Equations:

F = (β0 + α0B)P + [β1 + (α0A + α1)B] = 0

– To See this, Use

vec(A1A2A3) = (A03 ⊗A1) vec(A2),

to Convert F = 0 Into

vec(F 0) = d + qδ = 0, δ = vec(B0).

– Find B By First Solving:

δ = −q−1d.
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