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Abstract

They are not well-behaved. The main problem is that one cannot control the

radius of convergence when using perturbation techniques. Just outside the radius of

convergence, higher-order approximations can easily behave extremely badly, and even

within the radius of convergence one can expect higher- but �nite-order perturbation

solutions to display problematic oscillations. In contrast, with projection methods

one can control the radius of convergence. Pruning, the solution proposed to deal

with explosive behavior of higher-order perturbation solutions, is shown to be highly

distortionary. A simple alternative based on short samples and rejection sampling is

proposed and shown to be much less distortive.
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1 Introduction

Perturbation solution techniques have become a very popular choice to solve dynamic sto-

chastic general equilibrium (DSGE) models. Reasons are the ease with which they can

deal with a higher dimensional state space and the development of user friendly software

like Dynare and Dynare++ to solve higher-order approximations. This paper highlights

some serious shortcomings of higher-order perturbation solutions and questions the ap-

propriateness of these techniques for models in which non-linearities are important. More

speci�cally, this paper makes the following four contributions.

First, we summarize some important results on the radius of convergence of Taylor

series expansions. In particular, we are interested in the question in what interval around

the perturbation point the Taylor series expansion converges towards the underlying func-

tion as the approximation order goes to in�nity. We point out that even simple functions

like ln(x) or
p
x have quite a limited radius of convergence and show that just outside

the radius of convergence the higher-order Taylor series approximations behave extremely

badly. This is obviously not a new result, but given the precipitous increase in the use of

this technique it is useful to highlight its limitations with some simple examples.

Second, we show that not only outside, but also within the radius of convergence one

is likely to encounter wild oscillations in the numerical solutions for �nite-order approxi-

mations and convergence towards the truth can be far from monotone. Such oscillations

are a feature of all polynomial approximations. The problem with perturbation solutions

is particularly troublesome, however, because one cannot control where the oscillations

occur; they could be far away from the steady state or close to it. This is an important

di¤erence with power series expansions obtained with projection methods with which it is

much easier to keep the osciallations outside a certain domain, namely by expanding the

grid.

The osciallations of higher-order perturbation solutions can easily lead to explosive

time paths. The third contribution of this paper is to document that the pruning pro-

cedure, recently proposed by Kim, Kim, Schaumburg, and Sims (2008), creates large

systematic distortions and the implied policy rule is not even a function of the model�s
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state variables.

The fourth contribution of this paper is to consider a very simple alternative that con-

sists of reporting model statistics on the bases of many short samples and using rejection

sampling to discard problematic samples. We discuss how initial values can be generated

and propose a criterion to discard problematic Monte Carlo samples.

2 Polynomial approximations

In this section, we outline the two main procedures to construct polynomial approxima-

tions. It is assumed that one can either calculate the derivatives at one particular point

or one can evaluate the function value at a set of nodes.

Polynomial approximations of the function h(x) can be written as

pN (x; ) =

NX
n=0

n(x� �x)n; (1)

where �x and the vector  are the coe¢ cients. One possibility would be to use the Taylor

series approximation

pN ,pert(x) (2)

=

h(�x) +
@h(x)

@x

����
x=�x

(x� �x) + 1

2!

@2h(x)

@x2

����
x=�x

(x� �x)2 + � � �+ 1

N !

@Nh(x)

@xN

����
x=�x

(x� �x)N :

The main alternative is to use a projection procedure, which requires a grid with J nodes,

x1; � � � ; xJ , where J � N . If one can evaluate the function values at the grid points, then

the coe¢ cients of the approximating polynomial can be found by solving the following

minimization problem:

 = argmin
~

JX
j=1

w(xj) (h(xj)� pN (xj ; ~))2 : (3)

If the weights, w(xj), are equal for all xj , then this is the same as non-linear least squares.
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3 Problems with Taylor series expansions

In Section 3.1, we document that functions commonly used in economics have a limited

radius of convergence and that one can expect wild behavior of higher-order approxima-

tions outside the radius of convergence. In Section, 3.2, we show how these problems can

be dealt with when projection methods are used to solve for the polynomial approxima-

tions. In Section 3.3, we show that higher but �nite order Taylor series expansion can

easily lead to problematic behavior within the radius of convergence and make clear that

a higher-order approximation could easily be a lot less accurate.

3.1 Simple functions and limited radius of convergence for Taylor series.

Two simple functions that cannot be approximated arbitrarily well with a Taylor series

expansion on a relatively small interval around the approximation point are ln(x) and
p
x.

The N th-order Taylor series approximation of ln(x) around �x is equal to

ln(�x) +
~x

�x
� 1

2!

�
~x

�x

�2
+
2!

3!

�
~x

�x

�3
� 3!
4!

�
~x

�x

�4
+ � � �+ (�1)N�1 (N � 1)!

N !

�
~x

�x

�N
= (4)

ln(�x) +
~x

�x
� 1
2

�
~x

�x

�2
+
1

3

�
~x

�x

�3
� 1
4

�
~x

�x

�4
+ � � �+ (�1)N�1 1

N

�
~x

�x

�N
where ~x is equal to x � �x. This Taylor series expansion does not converge to ln(x) if N

goes to in�nity for ~x=�x > 1. In fact, the approximation errors diverge to1 when ~x=�x > 1,

i.e., when x > 2�x. Interestingly, the Taylor series expansion does converge to ln(x) for

all values of x such that 0 < x < �x even though the function value goes to �1 as x

goes to 0.1 The problems occur when x > 2�x for which the behavior of ln(x) seems quite

unproblematic. It may in practice, thus, hard to know where problems will occur. The

divergence of the Taylor series expansion of ln(x) is documented in the top panel of Figure

1.A that plots the N th-order Taylor series expansions of ln(x) for 1 � x � 2:5 using �x = 1
1The N th -order Taylor series expansion evaluated at x equal to 0, i.e., when ~x=�x is equal to �1, is �nite

but converges to �1 as N goes to 1.
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and N equal to 1, 2, 5, and 25.2

If one uses a �rst-order approximation, then one obtains a well-behaved approximation,

e.g., monotonically increasing like ln(x) itself, but the approximation is quite bad. If the

order of the approximation increases, then the approximation nicely converges to ln(x) for

x < 2; using the 5th-order approximation the errors are still noticable for values of x close

to 2, but the 25th-order approximation provides a close �t for all values of x in this range.

The cost of using higher-order approximations is that the approximations are highly

problematic for x > 2. For example, if one uses a second-order, then one looses monotonic-

ity; the approximation is decreasing when x > 2. The �gure documents that the 5th and

25th-order Taylor series approximation is even more problematic when x > 2. When using

a 25th-order approximation the approximation basically explodes for values of x just above

2.

In this particular case, there is an easy way to increase the radius of convergence; one

can simply increase �x. The bottom panel of Figure 1.A is the analogue of the top panel,

but uses �x = 1:5 instead of �x = 1. The �gure documents that all Taylor series expansions

are well behaved when x < 2:5. The drawback of this adjustent is that the approximation

errors increase for lower values of x. In particular, the approximation error of the 2nd

(5th)-order Taylor series expansion at x = 1 is equal to 0.0166 (0.0003), which� if ln(x) is

meant to represent percentage deviations� would imply a 1.66% (0.03%) error. Using �x

equal to 1:5 instead of 1, obviously also increases the approximation errors for values of x

less than 1, part of the domain not plotted in the �gure. In particular, the approximation

error of the 2nd (5th)-order Taylor series expansion at x = 0:9 is equal to 3.08% (0.1%)

when �x = 1:5, but is only 0.36% (0.000018%) when �x = 1. Thus, even for the 5th-order

approximation serious errors are observed not too far away from the original point of

interest, if �x is equal to 1:5 instead of 1.

Judd (1998) provides a more general discussion. He points out that if a function h(x)

has a singularity at x� that the radius of convergence cannot be larger than k�x� x�k.3 This
2The �gures for ln(x) are more illuminating if the domain is restricted to values above 1; recall that

the approximations do converge for values of x less than 1.
3See Theorem 6.1.2. A function h(x) has a singularity at x� if h(x) is analytic on the domain of h
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means that one should be careful using Taylor series approximations when the function has

singularities. As pointed out by Judd (1998), this may be di¢ cult in economic applications;

for example, regularity conditions such as the Inada conditions often imply a singularity.

An important degree of freedom one has with any solution procedure and, thus, also when

using perturbation techniques, is that one can take transformations of variables, which

may expand the radius of convergence and in some cases even eliminate the singularity.4

3.2 Di¤erence between Taylor series and projection approximation

The top panel of Figure 1.B plots ln(x) and the 1st, 2nd, 5th, and 25th-order projection

approximation when the Chebyshev nodes used to �nd the approximation are chosen in

the interval [0; 2], the radius of convergence for the Taylor series expansion when �x = 1.

The �gure documents that when x > 2, i.e., when x is outside the grid, that higher-order

approximations obtained with projections are also problematic.5

The analogue of an increase in �x for a Taylor series expansion would be an enlargement

of the grid. The bottom panel of Figure 1.B plots the results when the nodes are chosen

in the interval [0; 3]. Again, this pushes the explosive behavior to larger values of x and

clearly eliminates the problem for values of x considered here. For lower-order approxi-

mations, widening the grid for the projections approximation deteriorates accuracy more

than increasing �x for the Taylor series approximation. In particular, note that the �t of

the 1st and 2nd-order approximation is terrible, especially around values of x equal to 1,

i.e., around the orginal point of interest.

There is one enormous di¤erence, however, between a Taylor series expansion and

except for x�.
4The analytical solution to the Brock-Mirman version of the standard growth model has a singularity

when the capital stock is equal to zero and one can expect this to carry over to other versions of the

standard growth model. To deal with this singularity, one could solve for ~c(~k�1) = log(c(k�1)) and

~k(~k�1) = log(k(k�1)) from (for example) exp(c) + exp(k) = exp(�k�1) + (1� �) exp(k�1) and exp(�c) =

� exp(�c+1)(� exp((�� 1)k + 1� �) instead of solving for c(k�1) and k(k�1) from c+ k = k��1 + k�1 and

c�1 = �c�1+1(�k
��1 + 1� �).

5Note that the 2nd -order projections approximation reaches a peak at 1.8227 and is, thus, not even

monotonically increasing within the grid.
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a projection approximation. In this particular, example, it turned out to be possible to

adjust �x and increase the radius of convergence for the Taylor series expansion. In practice,

however, it either may not be possible or not easy to determine how to adjust �x. With

a projection method one can always widen the grid. Moreover, with projection methods,

one has more options, for example, one could change the weights of the nodes, increase

the number of nodes, or relocate them.

3.3 Local problems with �nite-order polynomial approximations

In Section 3.1, we discussed the radius of convergence of Taylor series approximations

and the type of behavior one can encounter outside the radius of convergence. The main

lesson learned is that when �x is �xed, the radius of convergence is �xed as well and, thus,

cannot be controlled by the researcher. Adjusting �x may help in terms of changing the

radius of convergence, but even if one knows how to adjust �x to accomplish this, one

faces a deterioration of the approximation around the old perturbation point. Projection

methods allow for more �exibility and one can, for example, always adjust the location of

the grid points.

In this section, we discuss the problems one can encounter with Taylor series approxi-

mations in intervals that are within the radius of convergence. In particular, we analyze

whether polynomial approximations preserve properties like (i) monotonicity, (ii) having

a unique �xed point, and (iii) convergence towards the �xed point, that is,

lim
t!1

xt = x
� 8x0 if xt+1 = h(xt) for t � 0:

In the remainder of this section, we focus on the question whether these three properties are

easily satis�ed for polynomial approximations within the radius of convergence. Section

3.3.1 focuses on the shape of the approximating function and Section 3.3.2 focuses on the

convergence towards the �xed point.
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3.3.1 Shape of approximation polynomial

Preserving properties like monotonicity is certainly not guaranteed if one uses polynomi-

als.6 For example, any N th-order polynomial pN (x) will not be monotonically increasing

for an even value of N . This would not be problematic, if the values of x for which

the derivative has the wrong sign are far enough away from the area of interest. The

problem with Taylor series expansions is that one cannot control in which part of the do-

main the approximating function does not preserve monotonicity. Consider the function

h : R+0 ! R+0 de�ned as

h(x) = 0:5x� + 0:5x; (5)

which is monotonically increasing and has a unique positive �xed point at x = 1. The

top and bottom panel of Figure 2.A plot h(x) together with the second-order Taylor

series approximation around x equal to 1 for � equal to 5 and 11, respectively. The

second-order approximation is clearly not monotone in the domain of the function and

@p2(x)=@x is negative for values that are only 30% (11%) below the steady state when �

is equal to 5 (11). To obtain monotonicity in a larger interval one could take a Taylor

series approximation around a di¤erent point. For example, if one takes a Taylor series

expansion at x equal to 0.5081 (0.6316) instead of 1 for � equal to 5 (11), then one �nds

that the second-order Taylor expansion is just monotonically increasing for all values of

x in R+0 , i.e., the domain of the function. But then the error at the original focal point,

�x = 1, is equal to 24.2% (41.7%).

Since the function h(x) speci�ed in Equation (5) is a polynomial, one can obtain an

exact �t by choosing a high-enough approximation order. But the order of the approxi-

mating polynomial has to be quite high. The bottom panel of Figure 2.A also plots the

10th-order Taylor series approximation of h(x) when � is equal to 11, i.e., when h(x) is an

11th-order polynomial. Even when the order of the approximating Taylor series approxi-

mation is so close to the order of the approximated polynomial, then the monotonicity is

lost in an interval relatively close to the perturbation point.

All second-order polynomial approximations are non-monotonic. Thus, second-order

6The same is true for convexity.

7



approximations obtained with projection methods will, just like the 2nd-order Taylor series

approximations plotted in Figure 2.A, be non-monotonic. The di¤erence between Tay-

lor series expansions and power series approximations obtained with projection methods,

however, is that one has more control about the shape of the polynomial with projection

methods.7 Figure 2.B plots h(x) for � equal to 5 together with some second-order ap-

proximations obtained with projections. The second-order approximations are obtained by

OLS using a relatively low, i.e., three, number and a relatively high, i.e., eleven, number of

Chebyshev nodes on the interval [0; 1:5]. While the second-order approximation obtained

with only 3 nodes is not monotonic over the domain of the function, the second-order

approximation obtained with 11 nodes is. Thus, with projection methods it is fairly easy

to �nd a 2nd-order approximation that is and monotonically increasing over this interval

and much more accurate then the 2nd-order Taylor series expansion around x = 1.

3.3.2 Explosive behavior

If the approximating function does not preserve key properties of the true function, then it

is obviously also not clear whether it will preserve the poperty that iterating on the function

will generate a sequence that converges to the �xed point. An advantage of Taylor series

approximations is that the true �xed point is always a �xed point of the approximating

functions as long as the Taylor series approximation is around the true �xed point. This

does not mean, however, that you will always converge towards it. In fact, the Taylor

series approximation may have additional �xed points, even if the approximated function

has a unique �xed point.

Consider the function

h(x) = �0 + x+ �1e
��2x: (6)

The value of �0 is chosen such that x = 1 is a �xed point and the value of �1 is chosen

to ensure that the function is always increasing for x � 0. Figure 3 plots the function and

the second-order approximation when �0 = �0:3495, �1 = 0:95, and �2 = 1. The graph
7For example, if one would locate all grid points close to the boundaries, then the higher-order terms

get little weight and one basically guarantees monotonicity.
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shows that the second-order approximation has a �xed point at x = 1, but also a second

�xed point, x��, at x = 3. If the Blanchard-Kahn conditions are satis�ed and there is,

thus, a locally unique �xed point, then all second-order perturbation approximations will

have an additional �xed point.

Moreover, if x0 > 3, then the function values would diverge. But x�� is quite a bit

higher than the true �xed point and as long as the initial value of x is not that high, then

the generated sequence still converges towards the true �xed point. It is easy to show,

however, that the additional �xed point of the second-order Taylor series approximation

is equal to

x�� = 1 +
2

�2
;

which means that as �2 increases the additional �xed point gets closer to the original �xed

point.

But no matter the value of �2, one can always ensure convergence by making sure that

the initial value of x is not too high. If we add a stochastic shock to the analysis, it may

not be always possible to avoid explosive behavior. For example, suppose that the true

policy function is given by

h(x; �) = �0:9 + � + x+ 0:9e�x; (7)

where � is a stochastic variable. Its mean is set equal to 0:9(1�e�1) so that the steady state

value of x is still equal to 1. Its support is assumed to be the interval [0; �] with � < 0:9,

which ensures that the support of x is also a compact set. Since the function is linear in

the stochastic variable, uncertainty does not a¤ect the perturbation approximations.

The second-order approximation of h(x; �) is equal to

p2(x; �) = 1 + � � 0:9(1� e�1) + 0:6689(x� 1) + 0:149(x� 1)2;

which� for low enough values of �� has a stable �xed point equal to the true �xed point

and for a value of x above the stable �xed point also an unstable �xed point. When

� > �� = 0:9� 0:45e�1;
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then the function has no �xed points. The value of �� is 29% above the steady state value.

In models with idiosyncratic shocks, this would not be an unreasonable high realization.8

Suppose that for some time � is above �� and there is, thus, no �xed point and, thus, no

upper bound on x. The value of x would then start to increase. It is possible that by

the time � has reduced to a value at which there is again a �xed point for x, the value

of x has become so high that it is to the right of the second unstable �xed point and the

values of x would continue to explode even though � has returned to values at which the

second-order approximation has a unique locally stable �xed point.

In the next section, we use a DSGE model to document, however, that this quite easily

does happen, that is, the simulated series often explode.

4 Approximate solutions to DSGE models

Finding approximations to the policy functions that solve DSGE models is more di¢ cult

than the approximation problem discussed in Section 2, because policy functions are only

implicitly de�ned. That is, one cannot directly evaluate the function h(�) at a set of grid

points nor calculate its derivatives directly.

A standard DSGE problem can be written as follows:

E [f(k�1; �; �+1; h(k�1; �; �);�jk�1; �] = 0 8k�1; �; (8)

where f(�) is a known function, k�1 a vector of endogenous state variables determined

in the last period and known at the beginning of the current period, � is a vector of

structural parameters, and h(k; �; �) is the unknown policy function, that depends on the

state variables and the structural parameters �. The exogenous random state variable, �,

has a known law of motion.9

8Suppose the log of the random variable follows an AR(1), the innovation variation is equal to 0.015,

and the autoregressive coe¢ cient is equal to 0.95. These are values that are sensible for aggregate random

variables. The standard deviation is 4.8% and even if we would consider a four standard deviation shock,

then we are still far away from the 29%. But for idiosyncratic random variables, the variance of the random

variables can easily be a multiple of those appropriate for aggregate random variables.
9To simplify the notation, we assume that h(�) and � are scalars, but the analysis does not depend on
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For the standard growth model, we would have the following two equations:

E

24 � 1
�k��1+(1��)k�1�h(k�1;�)

+� ��+1h(k�1;�)��1+1��
�+1h(k�1;�)�+(1��)h(k�1;�)�h(h(k�1;�);�+1)

������ k�1; �
35 = 0, and (9)

ln (�+1) = � ln(�) + "+1 "+1 � N(0; �2"): (10)

In the remainder of this section we discuss the two types of procedures with which one

can obtain polynomial approximations of the unknown policy functions.

4.1 Projection methods

For a given approximation, p(k�1; �; ); and a procedure to numerically calculate the

conditional expectation, one can calculate for each element of the state space the Euler

equation error de�ned as

u(k�1; �) = E

24 � 1
�k��1+(1��)k�1�p(k�1;�;)

+� ��+1p(k�1;�;)��1+1��
�+1p(k�1;�;)�+(1��)p(k�1;�;)�p(p(k�1;�;);�+1;)

������ k; �
35 (11)

Projection methods solve for the coe¢ cients  by constructing a grid for k�1 and �

and then minimizing some loss function over the Euler equation errors on the grid.

The theory on the convergence of approximations obtained with projection methods

is well established if one can evaluate a function h(x) at a set of grid points. In this

case, polynomial approximations converge uniformly under weak conditions if one uses

Chebyshev nodes.10 When solving for the policy function of a DSGE model, however, the

function h(x) is only implicitly de�ned and one cannot directly evaluate h(x) for given

values of the state variables. Even for simple iterative procedures, however, convergence

to the true policy function has been established in the literature for several models.11

this assumption.
10See Judd (1992) and Section 6.7 in Judd (1998).
11Examples are Coleman (1991), Marcet and Marshall (1994), and Rendahl (2006). Rendahl (2006)

use splines to interpolate, but the convergence result also holds for polynomial approximations, since

polynomial interpolation leads to uniform convergence as long as Chebyshev nodes are used.
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4.2 Perturbation methods

The perturbation procedure introduces a scalar variable, �, that controls the amount

of uncertainty.12 This method �nds the coe¢ cients of the approximating polynomials,

pN (k�1; �; �; ), by sequential di¤erentiation of Equation (9) and evaluation of the ex-

presssions at � = 0 and the steady state values of k�1 and �. There are two parts to the

question whether pN (k�1; �; �; ) converges to the true solution h(k�1; �; �).

1. The �rst question is whether this procedure backs out the correct derivatives of

h(k�1; �; �) evaluated at the steady state. The implicit function theorem can be

used to show that the true derivatives of h(k�1; �; �) can indeed be obtained by

sequential di¤erentiation of Equation (9).13

2. The second question is whether the function h(k�1; �; �) can be approximated arbi-

trarily well with its Taylor series approximation in a large enough interval to make

the approximation meaningful. This is a question that has received very little at-

tention. Section 3, however, documented that the radius of convergence of a Taylor

series approximation can be small even for a simple well-behaved functions and that

even within the radius of convergence higher- but �nite-order approximations can

be problematic.

5 A DSGE example

In Section 3, we used simple examples to highlight the problems one may encounter when

using Taylor series approximations. In this section, we show that one can easily encounter

these problems in a simple DSGE model. We use the model of Deaton (1991) in which

agents face idiosyncratic income shocks and use one-period bonds to smooth consumption.
12 In the problem speci�ed in Equation (9), there is only one source of uncertainty and � is equal to �".

To simplify the notation, we suppress the other structural parameters as an argument of pN (�).
13See Section 13.1 in Judd (1998). Since the stochastic variable in Equation (9) has continuous support,

it does not �t exactly into the conditions of the standard implicit function theorem used in Judd (1998); see

Jin and Judd (2002) for a discussion on perturbation solutions when random processes do have continuous

support.
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To be able to use polynomial approximations, we replace the borrowing constraint used

in Deaton (1991) with a penalty function.14

5.1 Model

The agent�s maximization problem is given by

max
fct;atg1t=1

1X
t=1

�t�1
c1��t � 1
1� � � P (at) (12)

s.t.

ct +
at
1 + r

= at�1 + �t;

�t = �� + "t and "t � N(0; �2);

a0 given.

Here ct is the agent�s consumption level, at the amount of assets chosen in period t, and �t

the random and exogenous income level. The penalty function, P (at), is a function that

is decreasing in at and, thus, makes choosing low asset holdings costly.

Penalty function. Deaton (1991) uses a non-negativity constraint on a to restrict bor-

rowing, which would correspond to the following penalty function:

P (a) =

8<: 1 if a < 0

0 if a � 0
(13)

We use the following penalty function:

P (a) =
�1
�0
exp(��0a)� �2a: (14)

One reason behind choosing this particular functional form is that it does not have a single

singularity and it, thus, avoids the problems with a limited radius of convergence discussed

14See den Haan and de Wind (2009) for a further discussion on using penalty functions instead of

inequality constraints in this type of model.
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in Section 3.1.15,16 In fact, if any non-polynomial function should be unproblematic for

perturbation solutions, then it should be the exponential.

Parameter values. The parameter values used are chosen to ensure that the inequality

constraint has a non-trivial impact in the original model.17 In particular, each period the

inequality constraint is binding for 28% of all agents. When solving the model with the

penalty function, we use the same parameter values, but replace the inequality constraint

with the penalty function given in Equation (14). We consider two values for the curvature

parameter, �0, namely 10 and 20. As �0 increases the penalty function gets closer to the

penalty function implied by the inequality constraint, but the non-linearity will make the

model more di¢ cult to solve. We choose the other two parameter values, �1 and �2,

such that both the mean and the standard deviation of at in the model with the penalty

function are identical to the values found in the model with the inequality constraint.18

In den Haan and de Wind (2009), we discuss in detail how the properties of the model

with a smooth penalty functions di¤er from the properties of the model with an inequality

constraint, both when an extremely accurate solution is used to solve the model and when

perturbation approximations are used. Here we interpret the two models (with a low and

a high value of �0) simply as two non-linear models without non-di¤erentiabilities that are

close to an important model considered in the literature and discuss the di¢ culties one

may run into when solving this model with perturbation solutions.

15Obviously, using a penalty with an unlimited radius of convergence does not imply that the same

holds for the policy function, but if one starts with a penalty function that has itself a limited radius of

convergence, then this is unlikely to be helpful in reducing the radius of convergence for the policy function.
16Kim, Kollmann, and Kim (2009) and Preston and Roca (2006) also solve a model with a penalty

function with perturbation methods, but their penalty functions do have a singularity.
17They are as follows: � = 0:9, r = 0:03, � = 3, �� = 1:5, and � = 0:15.
18 In �nding these parameter values, we use an extremely accurate solution procedure to solve both models

and we are con�dent that the outcome is not a¤ected by approximation errors. Section A documents the

accuracy of our projections solution.
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5.2 First-order conditions and policy functions

The �rst-order conditions of the agent�s maximization problem are given by

c��t
1 + r

+
@P (at)

@at
= �Et

�
c��t+1

�
(15)

and the budget constraint.19 Since we assume that the agent�s income, �t, is i.i.d., and the

interest rate is constant, there is only one state variable, namely cash-on-hand, xt, which

is equal to at�1 + �t. The objective, thus, is to �nd policy functions, a(xt) and c(xt) that

satisfy the �rst-order condition and the budget constraint.

Perturbation solution. Since asset holdings can be negative, we obtain a perturbation

solution in the level of a. The solution for consumption is obtained directly from the budget

constraint. Given that there is no analytical solution to this model, there is no guarantee

that there is no singularity in the policy functions c(xt) and a(xt), but we think that there

is none. For example, the policy functions are unproblematic when xt is equal to zero or

negative. The agent would consume a positive amount and increase his debt level. This

in contrast with the standard growth model in which consumption and savings would be

zero when the capital stock is equal to zero and these functions would not be well de�ned

for negative values of the capital stock.

5.3 Approximations of the policy function

Figures 4.A and 4.B plot the perturbation solutions (1st through 5th order) together with

a very accurate projections solution for �0 equal to 10 and 20, respectively.
20 The �gure

documents that the solutions are close to each other around the steady state, but that

they are very di¤erent at points in the state space that are further away. To evaluate

the relevance of the points in the state space where the di¤erences occur, we plot in the

bottom panel of each �gure the histogram of the state variable according to the accurate

19By letting the penalty be a utility penalty, the budget constraint is identical to the budget constraint

of the model with an inequality constraint.
20 In Section A we document the accuracy of our "accurate" projections solution and the lack of accuracy

for the perturbation solutions.
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projections solution as observed in a sample of 9,000 observations. One should keep in

mind, however, that the distribution generated by the perturbation solutions could very

well be di¤erent than the one plotted in the �gure, which is generated with the accurate

projections solution. For example, small deviations of a numerical solution in the tail can

push the simulated series into an area where the inaccuracies of the numerical solution

are larger. In fact, for some perturbation solutions the simulated data explode and the

implied support would, thus, be unbounded.

The maximum value of the state variable, x, observed in our long simulation generated

with a very accurate solution is equal to 2:35 (2:36) when �0 is equal to 10 (20) and the

corresponding minimum value is equal to 1:01 (1:02). By plotting the functions for values

of x between 1 and 2:5, we go slightly beyond these extremums.

Figure 4.A documents that the higher-order perturbation solutions are indistinguish-

able from the accurate solution in a large part of the relevant state space. Di¤erence widen

away from the steady state and interestingly, the 2nd and 4th-order approximation remain

closer to the accurate solution than the 3rd and 5th-order approximation.

The higher-order approximations solutions considered have much stronger non-linearities

than the accurate solution. In fact, the highest-order perturbation approximation consid-

ered, i.e., the 5th-order seems most problematic. It starts deviating from the accurate

solution when x takes on a value that is around the 98th percentile and the policy function

that has been gradually increasing up to this point, then starts decreasing rapidly.

Finally, note that the 2nd and 3rd-order approximation are a bit more convex than the

accurate solution, but nicely preserve its shape. In contrast, the 4th and the 5th-order

approximation are not monotonically increasing and do not preserve the property of con-

vexity satis�ed by the accurate solution. Nevertheless, the 2nd and 3th-order perturbation

solutions turn out to be a lot more problematic when the approximations are used to

generate simulated data.
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5.4 Location of oscillations and uncertainty

As the amount of uncertainty increases, the simulated series are more likely to enter the

area with the problematic oscillations when the numerical solution is not adjusted for

the higher level of uncertainty. Higher-order perturbation solutions are� in contrast to

the �rst-order solution� a¤ected by the amount of uncertainty. So the question arises,

whether an increase in uncertainty pushes the problematic oscillations of the approximat-

ing functions further away from the steady state. Figure 5 plot the 5th-order polynomial

when �" is equal to 0 and 0.3. According to the perturbation solution, the main e¤ect

of an increase in �" on the solution is an upward shift. Although the osciallations still

occur at the same place the problems are actually more severe for two reasons. First, since

the standard deviation has increased, the solution is more likely to reach the problematic

area. One would want the osciallations to occur further away from the steady state to

compensate for this, but this does not happen. Second, the upward shift implies that the

average state variable moves away from the steady state making it also more likely that

the problematic region is reached.

5.5 Underlying non-linearity

Figures 6.A and 6.B plot the Taylor series approximation of the penalty term, that is, the

derivative of the penalty function, which shows up in the �rst-order condition. To make

the graphs comparable with Figures 4.A and 4.B that plot the policy function, we plot the

penalty term as a function of the state variable, x, not as a function of the chosen level of

a. That is, for a given value of x, we use the accurate projections solution to calculate the

asset choice, a, and then evaluate the Taylor series expansion of @P (a)=@a at this choice.

The lower panel plots again the histogram of the state variable.

The graph makes clear that the penalty term is not approximated well with Taylor

series approximations of 5th or lower order, even though, it does not have a singularity

and can be approximated globally with a Taylor series expansion.

In our simple model it is very clear which part of the model contains the non-linearities

and if one is limited to solve the model with perturbations, then one could consider alter-
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native penalty functions that are easier to approximate.21 In practice, the non-linearities

of a DSGE policy function are likely to be generated by a combination of factors. Nev-

ertheless, it may be a worthwhile exercise to ask oneself whether the components of the

model, such as the utility function, adjustment costs speci�cation, production function,

are approximated well with a low-order Taylor series expansion if one uses perturbation

analysis to obtain a numerical solution.

5.6 Approximations and model properties

Table 1 reports key properties of the model when data are generated with the di¤erent nu-

merical solutions. Besides the �ve perturbation solutions we also consider a very accurate

projection solution.22

When �0 is equal to 10, then the model properties as generated by higher-order per-

turbation solutions are quite close to those generated by the accurate projections solution.

The largest di¤erences are obtained for the behavior in the tail. For example, the max-

imum value of a observed in our sample of 9,000 observations is 0:66, 0:59, and 0:54 for

the 3rd, 4th, and 5th-order perturbation solution and for the accurate projections solution

we found this value to be equal to 0:59.

Explosive 2nd and 3rd-order solution. When �0 is equal to 20, then the data sim-

ulated with the 2nd and 3rd-order perturbation solution exploded; consequently no sum-

mary statistics are reported for these numerical solutions. According to Figure 4.B, the

2nd and 3rd-order perturbation solutions are closer to the accurate solution than the 4th

and 5th-order perturbation solution in several aspects, in particular, they preserve the

monotonicity and convexity of the approximated function. The problem with the 2nd and

3rd-order perturbation solution is that they are steeper than the true solution and as the

21 In particular, den Haan and de Wind (2009) discuss the advantages of directly specifying a polynomial

for the penalty term of the same order as the perturbation order used.
22All numerical solutions are for the model with the smooth penalty function. See den Haan and de Wind

(2009) for a discussion on whether models with a not-too-nonlinear penalty function are very di¤erent from

the model with a non-negativity constraint for a.

18



numerical approximation becomes steeper, it runs the risk of getting into the explosive

region.

Non-explosive but strange looking 4th and 5th-order solution. Although, the

data generated with the 4th and 5th-order perturbation solution did not explode, these

numerical approximations are far from satisfactory. Several important statistics generated

with these two numerical solutions are quite di¤erent from the accurate solution. For

example, the standard deviation of a is equal to 0:097 according to the accurate solution,

but equal to 0:111 and 0:087 according to the 4th and 5th-order perturbation solution,

respectively. Moreover, the statistics generated by the 5th-order perturbation solution

are not always closer to those generated with the accurate solution than the statistics

generated by the 4th-order perturbation solution. For example, the correlation between the

change in consumption and the change in assets is equal to 0:895 according to the accurate

solution, but equal to 0:852 and 0:811 according to the 4th and 5th-order perturbation

solution, respectively. This is consistent with Figure 4.B that documents that the 5th-

order perturbation solution is less accurate than the 4th-order solution for many relevant

values of x.

CDFs according to the di¤erent solutions. Figure 7 plots (part of) the CDFs ac-

cording to the di¤erent numerical solutions. The outcome is again that there are substan-

tial di¤erences between the di¤erent numerical solutions.23 The di¤erence between the

CDF of the accurate approximation and the CDF according to the 4th-order perturbation

solution is mainly quantitatively, but they have a similar shape. The shape of the CDF

according to the 5th-order solution, however, is very di¤erent. It has a very unusual shape

in that it does not converge gradually towards 100%, but approaches 100% quickly. This

means that in the distribution of a there is substantial mass close to the maximum value.

This explains why the observed maximum value in our sample of simulated data accord-

ing to the 5th-order approximation is much lower than the maximum value according to

23We only report the results for �0 = 20, because for �0 = 10, the CDFs are quite close to each other.
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the 4th-order perturbation or the accurate projections procedure.24 This odd distribu-

tion generated by the 5th-order perturbation solution is due to the policy function being

humpshaped as documented in Figure 4.B.

6 Avoiding explosive behavior

In this section, we discuss two procedures to deal with the explosive behavior that one can

easily encounter if one uses higher-order perturbation solutions. The �rst is the pruning

procedure proposed by Kim, Kim, Schaumburg, and Sims (2008). We �nd this procedure

quite problematic and instead propose a procedure that is based on using multiple short

samples.

6.1 Pruning

Section 6.1.1 describes the pruning procedure, Sections 6.1.2 and 6.1.3 document that

the pruning procedure distorts the underlying numerical solution quite a bit, and 6.1.4

compares the model properties when the pruning procedure is and when it is not used to

modify the numerical solution.

For the results in this section, it does not make much di¤erence whether a numerical

solution is accurate or not. The focus of this section is not whether a particular solution

is correct but what e¤ects pruning has.

6.1.1 Pruning procedure

Kim, Kim, Schaumburg, and Sims (2008) describe a procedure that guarantees that the

data simulated with a higher-order perturbation solution is stationary. In this section,

we describe the procedure and its problems. The N th-order perturbation solution can be

24The maximum according to the 5th -order solution is 0.30, whereas the maximum according to the 4th -

order perturbation solution and the accurate projections solution are equal to 0:58 and 0:64, respectively.
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written as

pN ,pert(at�1; �t)� �aN (16)

=

N;k (at�1 � �aN ) + N;�
�
�t � ��

�
+ ~pN ,pert(at�1 � �aN ; �t � ��);

where at�1 is the endogenous state variable, �t is the exogenous random variable, �aN

is the stochastic steady state and ~pN ,pert(�at�1 � �aN ; �t � ��) is the non-linear part of the

perturbation solution.25 For our DSGE example, with i.i.d. income shocks, one only needs

one state variable, at�1 + �t, but it may be useful to describe the procedure for the more

general case.

The pruning procedure consists of the following steps.

1. Simulate a�t using

a�t � �aN = N;k
�
a�t�1 � �aN

�
+ N;�

�
�t � ��

�
: (17)

Kim, Kim, Schaumburg, and Sims (2008) actually propose to simulate a�t using

a�t � �a1 = 1;k
�
a�t�1 � �a1

�
+ 1;�

�
�t � ��

�
; (18)

that is, the �rst-order perturbation solution. The advantage of using Equation (17)

to generate a�t is that it is closer to the numerical solution of interest speci�ed in

Equation (16). For example, the steady state value of a according to Equation (16)

is equal to the steady state value according to Equation (17), but not to the value

according to Equation (18). The important feature of a�t is that it is stationary

whenever the Blanchard-Kahn conditions are satis�ed.26

25The stochastic steady state is the value of a that satis�es pN ,p ert(a; ��) = a. For N = 1, the stochastic

steady state is equal to the non-stochastic steady state. The stochastic steady state of �t is equal to the

non-stochastic steady state, namely ��, because its law of motion is linear. There is no constant term in

Equation (16), since the variables are expressed relative to the stochastic steady state.
26 It is possible, but unlikely, that the slope coe¢ cients of (18) guarantee stationarity, but the coe¢ cients

of (17), that are a¤ected by the amount of uncertainty in the problem, do not. In this case one could

simply use a�t � �aN = 1;k (at�1 � �aN ) + 1;�
�
�t � ��

�
, which in our opinion is still better than using (18).
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2. Simulate aprune,t using

aprune,t � �aN (19)

= N;k (aprune,t�1 � �aN ) + N;�
�
�t � ��

�
+ ~pN ,pert(a

�
t�1 � �aN ; �t � ��):

Since a�t and �t are stationary so is ~pN ,pert(a
�
t�1 � �aN ; �t � ��). Consequently, aprune,t

is stationary.

In the remainder of this section, we document that this procedure is quite distortive.

6.1.2 Pruning and the speed of convergence function

In describing the following example, we let at refer to the data simulated by the 2nd-order

perturbation solution, aprune,t refer to the 2nd-order perturbation solution when pruning

is used, and a�t to the (modi�ed) �rst-order solution given in Equation (17).

Understanding what pruning does is often not very easy, since one has to understand

the dynamics of an auxilliary state variable that is moving separately from the actual state

variable but still a¤ects it. Key in understanding the distortion introduced by pruning is

the shape of the underlying function, here the 2nd-order perturbation solution, and the

(modi�ed) �rst-order approximation. Figure 8 plots these two numerical solutions.27 For

values of the state variable below the steady state, the second-order approximation lies

above the �rst-order approximation, which means that convergence towards the steady

state goes faster if the second-order approximation is used. The opposite is true when a�1

is above its steady state value.

Figure 9 plots the convergence paths when a1 = aprune;1 = a�1, that is, when at the

beginning of period 2, the inputs are the same for all three policy rules. In the top panel,

the initial value of a is equal to 0:5 and in the bottom panel it is equal to �0:5. In addition

to the convergence paths according to the �rst and the second-order approximation the

�gure also plots the convergence path when pruning is used. To understand the results,

27The policy function in our model is a function of cash-on-hand, x = a�1 + �. In drawing this graph,

however, income is set equal to its unconditional mean and we plot the policy function as a function of

beginning-of-period asset holdings, a�1.
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it is important to remember that the pruning solution has two inputs, namely aprune;t�1

and a�t�1.

First consider the case when the initial value of a�1 is equal to �0:5, which is illustrated

in the bottom panel. Although the pruning policy rule is a mix of the �rst and the second-

order approximation, convergence is actually fastest when pruning is used. The reason is

the following. For t = 2, the pruning solution and the choice according to the second-order

solution are identical, that is, a2 = aprune,2, because both of the inputs used in the pruned

2nd-order policy rule are identical to the input of the not-pruned 2nd-order policy rule.

The choice according to the �rst-order solution is� as was point out above� below the

choice of the second-order solution, that is, a�2 < a2. For t = 3, the choice generated by

the not-distorted second-order perturbation solution is based only on a2. In contrast, for

the pruning solution the linear part is also based on aprune,2 = a2, but the non-linear part

is based on a�2. Given that a
�
2 < a2, the non-linear part of the pruning solution is based

on a value for a that is further away from the steady state. Given the convexitiy in the

policy function this implies a larger adjustment.

Next, consider the case when the initial value of a�1 is equal to 0:5. For initial values

above the steady state, the 1st-order solution converges faster to the steady state, which

means that the non-linear part of the pruned 2nd-order solution converges quickly as well.

This exercise illustrates that pruning distorts the solution, but the qualitative results

are not that di¤erent. The following exercise reveals better the extend to which the pruning

solution distorts the underlying policy function.

6.1.3 The implied policy "function" of the pruning procedure

The pruned numerical solution generates time paths for faprune;tgTt=1 and fxprune;tgTt=1,

where xprune;t = aprune;t�1 + �t. Given that there is only one state variable in our model,

we can evaluate what according to the simulated data the pruning policy rule for at looks

like as a function of the state variable xt.28

28 In contrast, the underlying policy rule is� as is clear from Equation 18� a function of two state

variables, namely xprune;t = aprune;t�1 + �t and x�t�1 = a
�
t�1 + �t.
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Figures 10.A and 10.B plot these implied policy "functions". The �gures also plots

the results when the actual, i.e., not distorted, perturbation solution is used. The striking

observation is that the approximations based on the pruning procedure are no longer

functions. That is, when the pruning procedure is used, di¤erent choices are generated for

identical state variables.

Figure 10.A plots the results for the 2nd and 3rd-order perturbation solution. We can

make the following observations. First, the pruned policy rule is not a function. Second,

for low values of x the pruned policy rule predicts values that are systematically above

the underlying policy function and for high values of x the bias has the opposite sign.

The bias is especially sever for high values of x. This is not surprising given that for the

high values of x the underlying policy function is too steep and the solution runs the risk

of explosion. So although, there should be some bias in this part of the state space, the

picture makes clear that pruning also distorts the policy function for low values of x.

Figure 10.B plots the results for the 4th and 5th-order perturbation solution. We

�nd again that for low values of the state variable the pruned choices turn out to be

systematically above the not-distorted second-order solution and for high values they are

systematically below the not-distorted second-order solution. The bottom panel for the

5th-order perturbation solution makes clear that pruning does not eliminate the erroneous

oscillation in the underlying 5th-order perturbation solution. But pruning is also not

intended to do so, since the fact that the policy function starts to decrease for larger

values of the state variable does not induce explosive behavior; in fact, it only makes the

function more stable.

The following example, documented in Figure 11, makes clear why the pruned approx-

imation is not a function. It also shows that, although the distortion is stronger if one is

further away from the steady state, the pruned policy rule is not a function close to the

state either, unless, of course, the underlying approximation is linear.

Figure 11 plots a generated time path according to the 1st, 2nd, and pruned 2nd-order

perturbation solution. All procedures start using the same level of savings in the beginning

of period 2, thus, a1 = aprune,1 = a�1 and we set this initial value equal to 0:4. This is point
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"A" in the graph. The initial value is above the steady state, so if �2 would be equal to its

steady state value, then the asset holdings would decrease towards the steady state value.

We set �2 equal to its steady state value and we choose �3 so that the pruned solution in

period three, i.e., point "B" in the graph, is equal to the initial value, that is,

aprune,3 = aprune,1: (20)

Given that we are above the steady state, this means that �3 has to be above �� to make

a increase back up again. In period 4, we set �4 equal to ��, as it was in period 1. Thus,

by construction we have

xprune,4 = aprune,3 + �� = xprune,2 = aprune,1 + ��: (21)

Thus, the only state variable in the model, x, is the same in periods 2 and 4 according to

the data generated with the pruned solution. But note that

aprune,4 < aprune,2, (22)

that is, di¤erent choices are made in these two periods, even though the state variable is

identical. The intuition is the following. In period 2, the pruned choice of the second-order

policy rule and the choice that is not pruned are identical. The reason is that in period

2, the linear as well as the non-linear part of the pruned decision is based on the same

value, that is, xprune,2 = x�2. In period 4, the linear part of the pruned choice is based

on xprune,4 = aprune;3 + ��, corresponding to point "B" in the graph, which has the same

value xprune,2. The non-linear part of the pruned choice, however, is based on x�4 = a
�
3+

��.

This corresponds to point "C" in the graph and lies below point "B". Consequently,

the pruned choice in period 4 lies below the pruned choice in period 2, even though the

beginning-of-period values of cash-on-hand are identical in both periods.

6.1.4 Pruning and model properties

The previous subsection documented that pruning distorts the approximating policy func-

tions. Consequently, model properties based on the pruning procedure will be di¤erent

too. If the numerical solution without pruning explodes, then one cannot measure the
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impact of pruning on the numerical solution, but for the other cases one can. Table 2 is

the equivalent of Table 1 for the case when the pruning procedure is applied. We also

apply the procedure to the accurate solution.29

Figures 4.A and 4.B document that for a wide range of values the di¤erent numerical

solutions are quite similar to each other, but that when they di¤er they di¤er a lot. If

pruning would avoid the simulated series to take on values in the tail, then one could

expect that after pruning the numerical solutions are closer to each other. This is true in

the sense that with pruning none of the series explode. But comparing the generated model

properties then we �nd after pruning a similar disparity as before pruning. For example,

the pruned 5th-order perturbation solution has a ridiculously low maximum value, just

like the not-pruned perturbation solution, due to the erroneous hump in this perturbation

solution.

The top panel of Figure 12 plots (part of) the CDFs for the data generated with the

di¤erent pruned solutions. A comparison between �gure 7 and 12 makes again clear that

pruning does a¤ect the numerical solution quite a bit. For example, the CDF of the 4th-

order numerical solution lies substantially below the CDF of the pruned 4th-order solution,

even though the 4th-order solution is not even explosive.

Considering the pruned accurate solution is most instructive to understand the dis-

tortive e¤ects of pruning. Our accurate solution is a very well-behaved policy rule and we

never encountered explosive behavior no matter how long the sample. Moreover, as docu-

mented in the appendix this numerical solution is extremely accurate and one can expect

the true model properties to be very close to the ones generated with this numerical solu-

tion, at least, if pruning is not used. In terms of the implied policy function, the pruned

accurate policy function generates a systematic bias similar to the ones documented in

Figure 10.A for the second-order perturbation solution.

A comparison of Tables 1 and 2 documents that pruning results in very di¤erent model

properties. For example, whereas the mean level of asset holdings is equal to 0:0849 when

29The non-linear part is de�ned as the accurate solution less the standard �rst-order perturbation solu-

tion.
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pruning is not used (�0 = 20), this drops to 0:0752 when pruning is used. Similarly, the

standard deviation drops from 0:0973 to 0:0844. Given that the not-pruned numerical

solution is shown to be accurate, the pruned solution is not and given the magnitude of

the di¤erences it is very inaccurate. Even when �0 is equal to 10 and the non-linearities

are substantially smaller, we �nd that the model properties are a¤ected a lot by pruning.

6.2 Averaging short samples

Section 6.2.2 describes an alternative procedure that avoids the problems of pruning and

Section 6.2.3 discusses the results when this alternative procedure is used for the Deaton

model. But we start with a short discussion on how to report model properties.

6.2.1 Background

There are two common ways used in the literature to report model statistics. The �rst is

to report unconditional moments, typically approximated with the sample moments of a

very long sample of simulated data. The second is to report the average of the statistic

across Monte Carlo replications, where in each replication a sample with typical length

is used, say 160 observations for a quarterly model. The classic Kydland and Prescott

(1982) paper uses the second procedure. The second procedure not only provides a value

for the statistic of interest, but also accounts for small sample bias and provides a measure

of the variation across Monte Carlo replications. For example, it may be possible that the

statistic measured with actual data is not that close to the average across Monte Carlo

replications, but is still well within the range of generated values.

For �rst-order moments the results of the two procedure are identical except for some

remaining sampling noise. For higher-order moments the results are typically not identical,

even if one uses an extremely long sample in the �rst procedure and zillions of Monte Carlo

replications. For example, if

xt = 0:9xt�1 + "t, "t � N(0; 1); (23)
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then the unconditional variance of xt is equal to

E
h
(xt � E [xt])2

i
= E

�
x2t
�
= 5:26; (24)

whereas the mean across Monte Carlo replications of the sample variance

PT
t=1

�
xt �

�PT
t=1 xt

�
=T
�2

T

is equal to

E

264
PT
t=1

�
xt �

�PT
t=1 xt

�
=T
�2

T

375 = E �x2t �� E
24 PT

t=1 xt
T

!235 < E �x2t � : (25)

The second procedure produces a smaller variance, because in each of the short samples

the mean of xt is adjusted.

Researchers may have a preference for one of the two procedures, but both are valid

and sensible ways to produce model statistics. We argue that with a little bit of care the

second procedure can be used to diminish the problems of explosive behavior.

6.2.2 Short-sample procedure

There are two reasons why calculating statistics with the small sample procedure is helpful

in avoiding distorting the underlying function. Then the Monte Carlo replication does not

have to be rejected and no distortion takes place. First, because the samples are shorter,

the simulation may not reach the problematic area. Second, eliminating some Monte Carlo

replications should not distort the results very much as long as the fraction of discarded

samples is not too high. If one does end up discarding many samples, then one either

has a very bad numerical approximation (most likely case) or one really does have a very

non-linear underlying policy function. In both cases one should very seriously consider

using an alternative to perturabtion procedures.

Care should be given in how to design the short-sample procedure. In Monte Carlo

studies, the initial conditions of the short sample cannot be the steady state, because

this could bias the results in non-linear models. Typically a long sample is used to obtain
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randomized initial conditions. But if one �rst has to run a long sample, then the simulated

series may still explode taking away the advantage of the short-sample procedure. Also,

one would need a criterion to decide whether a particular Monte Carlo replication has to

be discarded. In the remainder of this section, we explain how we propose to deal with

both issues.

Procedure to draw initial observation. Our Monte Carlo procedure uses initial

values that are distributed according to the ergodic distribution of the observations used

in the small samples, i.e., the one that is based on a rejection criterion. This procedure

starts with an intial value, for example, the stochastic steady state. It then simulates T

observations where T is the length of the Monte Carlo sample. If this sample is not rejected

according to the rejection criterion discussed below then one uses the last observation as

the initial observation for the next Monte Carlo replication. If the sample is rejected, then

one draws a new sample. This procedure needs a number of Monte Carlo replications

to reach the ergodic distribution. We used 500 Monte Carlo replications to initialize the

procedure and then use the next 1,000 Monte Carlo replications to actually calculate

statistics. The results reported in the tables are based on this procedure.30

Selection criterion. Before simulating any short sample, �rst generate one very long

sample of the state variables and calculate the mean, �a, and the variance, �
2
a, using the

1st-order perturbation solution. Recall that with the �rst-order solution the simulated

series are by construction stationary.

The rejection procedure consists of the following step. Given the data of a Monte Carlo

replication calculate

�̂2a;T =

PT
t=1 (xt � �a)

2

T
: (26)

Note that �̂2a;T is calculated using �a the mean of a observed in a very long simulation

generated with the �rst-order solution and is not calculated with the sample mean of at

in the short sample. This makes it much more straightforward to compare �̂2a;T with �
2
a.

30An alternative would be to draw the initial conditions from a long simulation generated with a �rst-

order solution.

29



In fact, we have31

E
�
�̂2a;T

�
= �2a: (27)

The idea is to discard a short-sample if �̂2a;T is "too large" relative to �
2
a. In particular, a

Monte Carlo replication is discarded if

�̂2a;T > �
2�2a:

The short-sample procedure makes sense if (i) the value of � is not too high and (ii) the

fraction of discarded samples is low, say less than 5%. Note that the standard deviation

of a according to the accurate solution is only 39% above the value according to the �rst-

order solution when �0 = 20. One should keep in mind that this is found for a very long

sample. The sample length of our Monte Carlo replications is equal to 160 so a doubling

of the standard deviation may not be impossible even if the order of the approximation

is not increased. Nevertheless we start with � = 2 and consider 3 as an alternative value.

We would be hesitant to go to a much higher value, because if the numerical solution is

that non-linear one seriously should ask oneself whether perturbation is the right solution

procedure.32

The advantage of this procedure, is that the not rejected samples are not distortive at

all, whereas the pruning procedure always modi�es the simulated data even when it does

not explode. Of course, our procedure could be distortive if one ends up rejecting many

samples, but in our opinion one should keep � fairly low and only use the results when

the rejection rate is low. Note that there are two reasons why a MC sample is rejected: (i)

the results are a¤ected by the type of erroneous oscillations highlighted in this paper that

are not part of the true policy rule and one should discard or (ii) the results are a¤ected

by sharp non-linearities that are part of the true solution and one should not throw out.

If the rejection rate is high because of the second reason then one should increase �, but

we still want to argue that one should be careful in doing so.

31The reason we use the variance and not the standard deviation is that this equality would not hold

for the standard deviation.
32 It is also insightful to know why the sample variance is so high. Is it because the series are truly

exploding or just occasionally taking on values far away from the mean.
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Suppose that (i) in the short-sample procedure one �nds a high rejection rate and

(ii) one has a numerical solution that leads to explosive solutions when used in a long

simulation and one believes this should not be part of the true solution. Note that it

makes sense to increase � if the numerical solution is such that it is actually quite accurate,

but just happens to lead to explosive behavior when it is not accurate. But given that

it is much more likely that the explosive behavior is due to erroneous oscillations in the

numerical solution, we think that one should not consider values of � that are too high.

6.2.3 Short-sample procedure and model properties

Table 3 reports the results when � is equal to 2. This means that a Monte Carlo replication

is rejected if the variance is 4 (22) times as high as the variance of the �rst-order solution.

When �0 is equal to 10 then none of the 1,000 Monte Carlo replications is rejected. This

is, of course, the ideal case. One can simply report the results being sure that there is no

distortion to the policy rule at all. When �0 is equal to 20, however, then a substantial

number of replications is rejected. There are three possibilities: (i) because the sample is

short the variance can easily be higher than in the long sample even though we calculate

both using the same mean, (ii) the true policy function generates much more volatility than

the �rst-order solution, or (iii) the numerical solutions are so bad that one even runs into

wild behavior in short samples. Since we have an accurate solution as the stand in for the

truth we know that the true policy function does indeed generate occasionally a variance

in the short sample that is more than four times as high as the variance of the linear

solution. Note that 7.8% of the solutions of the accurate solution are rejected. Below we

discuss the distortion introduced by these rejections that for the accurate solution should

not have occured.

As discussed above a value of � equal to 2 may be conservative for the sample length

considered here. As documented in Table 4, when � is equal to 3 then all rejection rates are

low except those for the 3rd-order perturbation solution. Instead of raising � or thinking

of another way to deal with the wild behavior, it seems better not completely ignore a

perturbation solution that requires such a high value of �. The chance is much higher
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that the explosive behavior is due to erroneous oscillations then that one has an almost

accurate solution that just occasionally leads to explosive behavior.

Does this procedure distort the outcomes. First consider the outcomes for our accurate

projection solution, referred to as "truth" in the tables. When we compare the statistics

based on one long sample with those based on short samples and � = 3, then there are

some di¤erences. But these are not due to distortions, because when � is equal to 3, then

not a single Monte Carlo replication is rejected. These di¤erences are due to the fact that

the average of higher-order small sample statistics is not equal to the unconditional value

of this statistic. The bottom panel of Figure 12 plots the CDFs of the short-sample data

generated with the di¤erent numerical solution for the case when �0 is equal to 20 and the

value of � is set equal to 3. A comparison with Figure 7 makes clear that there is little

distortion, except of course, that now the results for the 2nd and 3rd-order approximation

do not explode and can be reported.

To understand whether this procedure is distortive one should compare the results

when � is equal to 2 and some Monte Carlo samples are rejected with the results when �

is equal to 3 when there are no rejections. In this case, we know that one would be overly

conservative if one would use � equal to 2 instead of 3. But how much is the mistake one

makes by discarding 7.8% of the samples. The mean drops from 0:0851 to 0:0835 a drop of

almost 2%. Clearly a non-trivial error but minuscule relative to the distortions observed

when the pruning solution is used. For the other statistics the di¤erences are even smaller

so even with � is equal to 2 one would have obtained a quite accurate set of statistics.

Now consider the 4th-order perturbation solution for which the number of rejections

drops from 43:3% to 0:1% if � increases from 2 to 3. Obviously, if the number of rejections

drops by so much, then there is a good chance that the value of � used was too low. But

note that even in this case the impact on the reported statistics is relatively minor. The

mean value of a is 8:3% lower when � is equal to 2, but the other statistics are quite

similar.
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7 Concluding comments

This paper has highlighted the problems one can expect when using perturbation solu-

tions, both when the state variables are outside and when they are inside the radius of

convergence. Although these problems are not systematically discussed in the literature,

many researchers have faced the consequences in terms of explosive behavior of simulated

series.

It is extremely unlikely that numerical solutions that generate explosive solutions would

pass a serious accuracy test and one wonders why researchers had enough con�dence

in their numerical solution to use it to simulate data. But it is a sad sign of modern

economics that accuracy tests are out of fashion and numerous results based on numerical

approximations have been published without a proper discussion on the accuracy of the

numerical solution.

Of course, it is possible that a solution is accurate in most of the state space and

that the consequences of the inaccuracies are such that� even though they are unlikely

to happen often� have far reaching consequences, for example, because the numerical

solution would then start generating a diverging path of values.

In those cases, it is worth considering a modi�cation of the numerical solution that

avoids these problems, but we want to stress that it does not make sense to use such a

modi�cation unless one has convinced oneself that the problematic explosive behavior is

due to unlikely events and the solution is accurate for most values of the state variables.

The paper has shown that the modi�cation proposed in the literature is highly dis-

tortive and introduces a systematic bias even when the policy function does not have to

be modi�ed to guarantee stability. As an alternative, we propose to use a small-sample

procedure. This procedure is much less distortive, because it only is implemented when

the simulated series do behave wildly.
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A Accuracy

Table 5 reports the Euler equation errors calculated on a grid with 15,001 equidistant

nodes on [1; 2:5] and using 30 Gaussian quadrature nodes to calculate the conditional

expectation. The errors of our accurate projections procedure are very small, which is the

main purpose of this exercise. The errors for the perturbation solutions are quite bad, but

this do not add any new information above the direct comparison of the policy functions,

given the accuracy of the projections solution.
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Figure 1.A: ln(x) and its Taylor series approximation around �x
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Notes: The graphs plot ln(x) and its Taylor series expansion at the indicated order. The value of
�x is equal to 1 in the top panel and equal to 2 in the bottom panel.



Figure 1.B: ln(x) and projections polynomial approximations; nodes in [0; U ]
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Figure 2.A: x� + x and its Taylor series approximations around x = 1
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Notes: The graphs plot x� + x for � equal to 5 and 11 and the Taylor series expansions
at the indicated order.



Figure 2.B: x5 + x and 2nd-order projections polynomial approximations
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Figure 3: �0 + x+ �1 exp(��2x) and its 2nd-order Taylor series approximation
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Notes: The values of �0, �1, and �2 are equal to �0:3495, 0:95, and 1.
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Figure 4.A: Perturbation solutions; � = 10
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Notes: The top panel reports the perturbation solutions and the bottom panel reports the his-
togram of the state variable obtained using a sample of 9,000 observations generated with a very
accurate solution.



Figure 4.B: Perturbation solutions; � = 20
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togram of the state variable obtained using a sample of 9,000 observations generated with a very
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Figure 5: Perturbation solutions for di¤erent levels of uncertainty; � = 20
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Figure 6.A: Taylor series approximation of @P (a)=@a; � = 10
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Notes: To make this graph comparable with Figure 4.A, we plot @P (a)=@a evaluated at a = h(x),
where h(x) is a very accurately solved policy rule. Since the same h(x) is used for all perturbation
solutions and, as indicated in Figure 4.A, h(x) is a simple monotone increasing function, the
graph still highlights the ability of using Taylor series expansions to approximate the penalty term.
The bottom panel reports the histogram of the state variable obtained using a sample of 9,000
observations generated with a very accurate solution.



Figure 6.B: Taylor series approximation of @P (a)=@a; � = 20
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Notes: To make this graph comparable with Figure 4.B, we plot @P (a)=@a evaluated at a = h(x),
where h(x) is a very accurately solved policy rule. Since the same h(x) is used for all perturbation
solutions and, as indicated in Figure 4.B, h(x) is a simple monotone increasing function, the
graph still highlights the ability of using Taylor series expansions to approximate the penalty term.
The bottom panel reports the histogram of the state variable obtained using a sample of 9,000
observations generated with a very accurate solution.



Figure 7: CDF of assset holdings for di¤erent numerical solutions; � = 20
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Notes: The CDFs are obtained using a simulation of 9,000 observations. For � = 20, the
data simulated with the not-pruned 2nd and 3rd-order policy functions exploded and the
CDF could not be calculated.
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Figure 8: 1st and 2nd-order policy function as a function of at�1; � = 20
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Notes: This graph plots the two Taylor series approximation as a function of beginning-of-period
savings, at�1, instead of cash-on-hand, x, setting income equal to it�s steady state value
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Figure 9: Convergence towards steady state starting at x = 0:5 and x = �0:5
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Figure 10.A: Implied policy "function" when pruning is used; � = 20

Notes: This graph plots the asset holdings chosen with the pruning procedure as a function of
the observed state variable. It also plots the value corresponding to the perturbation solution
underlying the pruning procedure.



Figure 10.B: Implied policy "function" when pruning is used; � = 20

Notes: This graph plots the asset holdings chosen with the pruning procedure as a function of
the observed state variable. It also plots the value corresponding to the perturbation solution
underlying the pruning procedure.



Figure 11: Explaining why the pruning policy rule is not a function
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Notes: This graph plots for � = 20 the time path for the chosen level of a according to the 1st ,
2nd , and pruned 2nd -order perturbation solution. � is equal to its steady state value for t = 2 and
at decreases towards its steady state value. For t = 3, the value of � is such that for the pruned
2nd -order solution the state variable in period 4, a3 is equal to the state variable in period 2, a1.
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Figure 12: CDF of assset holdings for di¤erent numerical solutions; � = 20
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Table 1: model properties - obtained using one long sample

"Truth" Pertubation
1st 2nd 3rd 4th 5th

�0 = 10
�a 0:0849 0:0472 0:0841 0:0868 0:0864 0:0857
�a 0:0973 0:0860 0:0934 0:1003 0:0985 0:0969
amin �0:1491 �0:2180 �0:1289 �0:1461 �0:1539 �0:1475
amax 0:5900 0:4074 0:6000 0:6561 0:5921 0:5431
� (at+1; yt) 0:8319 0:8677 0:8396 0:8202 0:8283 0:8336
� (ct; yt) 0:8373 0:8677 0:8470 0:8302 0:8342 0:8380
� (ct; at+1) 0:9778 1:0000 0:9731 0:9681 0:9766 0:9798
� (�at+1;�yt) 0:8994 0:9190 0:9031 0:8940 0:8977 0:9002
� (�ct;�yt) 0:8944 0:9190 0:8984 0:8877 0:8923 0:8953
� (�ct;�at+1) 0:9675 1:0000 0:9616 0:9551 0:9658 0:9698
�0 = 20
�a 0:0849 0:0295 � � 0:0965 0:0826
�a 0:0973 0:0698 � � 0:1112 0:0869
amin �0:0941 �0:1844 � � �0:1288 �0:4951
amax 0:6352 0:3202 � � 0:5796 0:3038
� (at+1; yt) 0:8127 0:9067 � � 0:7676 0:8353
� (ct; yt) 0:8358 0:9067 � � 0:8031 0:8476
� (ct; at+1) 0:9281 1:0000 � � 0:8985 0:8951
� (�at+1;�yt) 0:8873 0:9406 � � 0:8673 0:8846
� (�ct;�yt) 0:8759 0:9406 � � 0:8456 0:8579
� (�ct;�at+1) 0:8950 1:0000 � � 0:8518 0:8109

Notes: These tables report summary statistics based on a sample of 9,000 observations.
With "truth" we mean the policy rule obtained with a very accurate projections solution.
�a is the mean of a, �a is the standard deviation, and �(xt; yt) is the correlation between
xt and yt.



Table 2: model properties - obtained using pruning and one long sample

"Truth" Pertubation
1st 2nd 3rd 4th 5th

�0 = 10
�a 0:0820 0:0472 0:0836 0:0858 0:0858 0:0854
�a 0:0926 0:0860 0:0910 0:0970 0:0962 0:0950
amin �0:1407 �0:2180 �0:1230 �0:1373 �0:1476 �0:1393
amax 0:5632 0:4074 0:5827 0:6308 0:5821 0:5439
� (at+1; yt) 0:8484 0:8677 0:8502 0:8351 0:8382 0:8414
� (ct; yt) 0:8451 0:8677 0:8491 0:8330 0:8362 0:8397
� (ct; at+1) 0:9801 1:0000 0:9748 0:9725 0:9781 0:9797
� (�at+1;�yt) 0:9064 0:9190 0:9073 0:8995 0:9015 0:9034
� (�ct;�yt) 0:8968 0:9190 0:8977 0:8870 0:8915 0:8944
� (�ct;�at+1) 0:9687 1:0000 0:9625 0:9577 0:9665 0:9665
�0 = 20
�a 0:0752 0:0295 0:0796 0:0890 0:0901 0:0848
�a 0:0844 0:0698 0:0821 0:1036 0:0991 0:0838
amin �0:0883 �0:1844 �0:0426 �0:0973 �0:1266 �0:1465
amax 0:5630 0:3202 0:6465 0:8863 0:6205 0:3500
� (at+1; yt) 0:8607 0:9067 0:8478 0:8002 0:8182 0:8489
� (ct; yt) 0:8546 0:9067 0:8588 0:7906 0:8143 0:8559
� (ct; at+1) 0:9366 1:0000 0:8947 0:8681 0:9138 0:9097
� (�at+1;�yt) 0:9058 0:9406 0:8966 0:8698 0:8845 0:8987
� (�ct;�yt) 0:8813 0:9406 0:8752 0:8054 0:8458 0:8755
� (�ct;�at+1) 0:8966 1:0000 0:8468 0:7801 0:8604 0:8622

Notes: These tables report summary statistics based on a sample of 9,000 observations.
With "truth" we mean the policy rule obtained with a very accurate projections solution.
�a is the mean of a, �a is the standard deviation, and �(xt; yt) is the correlation between
xt and yt.



Table 3: model properties - obtained using short samples - � = 2

"Truth" Pertubation
1st 2nd 3rd 4th 5th

�0 = 10
�a 0.0851 0.0473 0.0843 0.0870 0.0866 0.0859

(0.0141) (0.0116) (0.0133) (0.0149) (0.0144) (0.0140)
�a 0.0963 0.0852 0.0925 0.0991 0.0975 0.0960

(0.0092) (0.0060) (0.0093) (0.0109) (0.0095) (0.0088)
amin -0.1066 -0.1580 -0.0944 -0.1056 -0.1081 -0.1055

(0.0209) (0.0294) (0.0175) (0.0201) (0.0222) (0.0207)
amax 0.4064 0.2939 0.4029 0.4319 0.4127 0.3987

(0.0738) (0.0464) (0.0789) (0.0909) (0.0737) (0.0627)
� (at+1; yt) 0.8350 0.8686 0.8433 0.8254 0.8317 0.8363

(0.0121) (0.0022) (0.0139) (0.0181) (0.0127) (0.0103)
� (ct; yt) 0.8373 0.8686 0.8468 0.8299 0.8343 0.8383

(0.0099) (0.0022) (0.0109) (0.0134) (0.0103) (0.0088)
� (ct; at+1) 0.9802 1.0000 0.9762 0.9721 0.9792 0.9819

(0.0040) (0.0000) (0.0064) (0.0096) (0.0041) (0.0027)
� (�at+1;�yt) 0.9009 0.9197 0.9047 0.8958 0.8992 0.9016

(0.0113) (0.0070) (0.0117) (0.0136) (0.0116) (0.0106)
� (�ct;�yt) 0.8941 0.9197 0.8978 0.8869 0.8920 0.8953

(0.0110) (0.0070) (0.0118) (0.0144) (0.0114) (0.0102)
� (�ct;�at+1) 0.9692 1.0000 0.9634 0.9572 0.9675 0.9715

(0.0067) (0.0000) (0.0101) (0.0143) (0.0068) (0.0051)
Rejection 0% - 0% 0% 0% 0%
�0 = 20
�a 0.0835 0.0297 0.0814 0.0853 0.0888 0.0827

(0.0125) (0.0086) (0.0118) (0.0107) (0.0121) (0.0119)
�a 0.0949 0.0693 0.0892 0.1034 0.1024 0.0867

(0.0101) (0.0046) (0.0123) (0.0105) (0.0099) (0.0062)
amin -0.0706 -0.1368 -0.0401 -0.0742 -0.0836 -0.0639

(0.0121) (0.0231) (0.0033) (0.0117) (0.0213) (0.0527)
amax 0.4250 0.2325 0.4427 0.4893 0.4601 0.3003

(0.0785) (0.0380) (0.1028) (0.0887) (0.0691) (0.0063)
� (at+1; yt) 0.8216 0.9073 0.8181 0.7630 0.7886 0.8345

(0.0194) (0.0015) (0.0357) (0.0383) (0.0234) (0.0423)
� (ct; yt) 0.8365 0.9073 0.8492 0.7969 0.8093 0.8508

(0.0150) (0.0015) (0.0209) (0.0221) (0.0188) (0.0190)
� (ct; at+1) 0.9351 1.0000 0.8931 0.8617 0.9085 0.9052

(0.0094) (0.0000) (0.0284) (0.0367) (0.0112) (0.1120)
� (�at+1;�yt) 0.8909 0.9411 0.8857 0.8602 0.8756 0.8853

(0.0143) (0.0051) (0.0202) (0.0208) (0.0161) (0.0538)
� (�ct;�yt) 0.8764 0.9411 0.8737 0.8301 0.8508 0.8728

(0.0150) (0.0051) (0.0227) (0.0251) (0.0200) (0.0412)
� (�ct;�at+1) 0.9008 1.0000 0.8482 0.8022 0.8632 0.8446

(0.0163) (0.0000) (0.0361) (0.0410) (0.0218) (0.1634)
Rejection 7.8% - 9.9% 94.8% 43.3% 1.0%

Notes: Standard deviation across MC replications in parentheses. � is the parameter of
the rejection criterion. For further information see notes of Table 1.



Table 4: model properties -obtained using short samples - � = 3

"Truth" Pertubation
1st 2nd 3rd 4th 5th

�0 = 10
�a 0.0851 0.0473 0.0843 0.0870 0.0866 0.0859

(0.0141) (0.0116) (0.0133) (0.0149) (0.0144) (0.0140)
�a 0.0963 0.0852 0.0925 0.0991 0.0975 0.0960

(0.0092) (0.0060) (0.0093) (0.0109) (0.0095) (0.0088)
amin -0.1066 -0.1580 -0.0944 -0.1056 -0.1081 -0.1055

(0.0209) (0.0294) (0.0175) (0.0201) (0.0222) (0.0207)
amax 0.4064 0.2939 0.4029 0.4319 0.4127 0.3987

(0.0738) (0.0464) (0.0789) (0.0909) (0.0737) (0.0627)
� (at+1; yt) 0.8350 0.8686 0.8433 0.8254 0.8317 0.8363

(0.0121) (0.0022) (0.0139) (0.0181) (0.0127) (0.0103)
� (ct; yt) 0.8373 0.8686 0.8468 0.8299 0.8343 0.8383

(0.0099) (0.0022) (0.0109) (0.0134) (0.0103) (0.0088)
� (ct; at+1) 0.9802 1.0000 0.9762 0.9721 0.9792 0.9819

(0.0040) (0.0000) (0.0064) (0.0096) (0.0041) (0.0027)
� (�at+1;�yt) 0.9009 0.9197 0.9047 0.8958 0.8992 0.9016

(0.0113) (0.0070) (0.0117) (0.0136) (0.0116) (0.0106)
� (�ct;�yt) 0.8941 0.9197 0.8978 0.8869 0.8920 0.8953

(0.0110) (0.0070) (0.0118) (0.0144) (0.0114) (0.0102)
� (�ct;�at+1) 0.9692 1.0000 0.9634 0.9572 0.9675 0.9715

(0.0067) (0.0000) (0.0101) (0.0143) (0.0068) (0.0051)
Rejection 0% - 0% 0% 0% 0%
�0 = 20
�a 0.0851 0.0297 0.0834 0.0957 0.0968 0.0827

(0.0144) (0.0086) (0.0141) (0.0191) (0.0179) (0.0119)
�a 0.0962 0.0693 0.0920 0.1155 0.1093 0.0868

(0.0116) (0.0046) (0.0163) (0.0219) (0.0146) (0.0068)
amin -0.0705 -0.1368 -0.0401 -0.0756 -0.0823 -0.0649

(0.0120) (0.0231) (0.0033) (0.0131) (0.0216) (0.0616)
amax 0.4323 0.2325 0.4598 0.5558 0.4828 0.3011

(0.0849) (0.0380) (0.1251) (0.1451) (0.0720) (0.0258)
� (at+1; yt) 0.8196 0.9073 0.8111 0.7235 0.7777 0.8339

(0.0210) (0.0015) (0.0459) (0.0764) (0.0275) (0.0462)
� (ct; yt) 0.8351 0.9073 0.8462 0.7757 0.8023 0.8503

(0.0162) (0.0015) (0.0244) (0.0401) (0.0219) (0.0252)
� (ct; at+1) 0.9348 1.0000 0.8881 0.8180 0.9069 0.9036

(0.0096) (0.0000) (0.0361) (0.0858) (0.0110) (0.1233)
� (�at+1;�yt) 0.8899 0.9411 0.8827 0.8488 0.8700 0.8845

(0.0151) (0.0051) (0.0243) (0.0324) (0.0183) (0.0595)
� (�ct;�yt) 0.8753 0.9411 0.8709 0.8083 0.8449 0.8721

(0.0159) (0.0051) (0.0261) (0.0447) (0.0227) (0.0459)
� (�ct;�at+1) 0.8999 1.0000 0.8429 0.7669 0.8570 0.8429

(0.0169) (0.0000) (0.0429) (0.0761) (0.0245) (0.1725)
Rejection 0% - 0.6% 81% 0.1% 0.9%

Notes: Standard deviation across MC replications in parentheses. � is the parameter of
the rejection criterion. For further information see notes of Table 1.



Table 5: Accuracy test - Euler equation errors

"Truth" Pertubation
1st 2nd 3rd 4th 5th

�0 = 10
Maximum error 5:11E � 6 0:1614 0:0521 0:0403 0:0188 0:0832
Average error 1:64E � 6 0:0456 0:0090 0:0079 0:0027 0:0084
�0 = 20
Maximum error 1:40E � 5 0:6250 0:2273 1 0:4068 1
Average error 4:21E � 6 0:1113 0:0335 1 0:0354 1
Notes: This table reports the Euler equation errors expressed as consumption equivalents
using a grid of 15,000 equidistant nodes on [1; 2:5]. If a procedure predicted consumption
to be negative when calculating the conditional expectation and the marginal utility, thus
could not be calcuatled, then we report this with 1 nodes distributed
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