Perturbation and Projection
Methods for Solving DSGE Models

Discussion of projections taken from Christiano-Fisher, ‘Algorithms for Solving Dynamic Models with Occasionally
Binding Constraints’, 2000, Journal of Economic Dynamics and Control.

Discussion of perturbations primarily taken from Judd’s textbook. Also:

Wouter J. den Haan and Joris de Wind, ‘How well-behaved are higher-order perturbation solutions?’ DNB working
paper number 240, December 2009.

For pruning, see Kim, Jinill, Sunghyun Kim, Ernst Schaumburg, and Christopher A. Sims, 2008, “Calculating and
using second-order accurate solutions of discrete time dynamic equilibrium models,” Journal of Economic
Dynamics and Control, 32(11), 3397-3414. Also, Lombardo, 2011, ‘On approximating DSGE models by series
expansions,” European Central Bank.



Outline

A Toy Example to lllustrate the basic ideas.
— Functional form characterization of model solution.
— Projections and Perturbations.

e Neoclassical model.
— Projection methods
— Perturbation methods

e Stochastic Simulations and Impulse Responses
— Focus on perturbation solutions of order two.
— The need for pruning.



Simple Example

Suppose that x is some exogenous variable
and that the following equation implicitly
defines y:

h(x,y) =0, forallx e X
Let the solution be defined by the ‘policy rule

g.
y = g(x)

‘Error function’
satisfying /

R(x;g) = h(x,g(x)) =0
forall x e X

4
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The Need to Approximate

* Finding the policy rule, g, is a big problem
outside special cases

— ‘Infinite number of unknowns (i.e., one value of g
for each possible x) in an infinite number of
equations (i.e., one equation for each possible x).’

e Two approaches:

— projection and perturbation



Projection

Find a parametric function, g(x;v), where 7 is a
vector of parameters chosen so that it imitates
the property of the exact solution, i.e., R(x;g) =0
for all x € x, as well as possible.

Choose values for 7 so that

R(x;7) = h(x,8(x;7))
is close to zero for x € X .
The method is defined by the meaning of ‘close

to zero’ and by the parametric function, g(x;7),
that is used.



Projection, continued

e Spectral and finite element approximations

— Spectral functions: functions, (x;7), in which
each parameter in 7 influences g(x;y) forall x e X

example: _ _
" Y1
g(ry) = D yiHix), y = |
i=0
Yn

H;(x) = x' ~ordinary polynominal (not computationaly efficient)
Hi(x) = Ti(p(x)),
T:(z) : [-1,1] » [-1,1], i” order Chebyshev polynomial

@ L X - [_111]
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Projection, continued

— Finite element approximations: functions, £(x;7)
in which each parameter in ¥ influences g(x;7)
over only a subinterval of x € X

glx;y) ?’=[ Y1 Y2 Y3 Y4 V5 Ve V7 ]
V4

\
Y2 N

o




Projection, continued
e ‘Close to zero’: two methods

e Collocation, for n values of x: x1,x2,...,x, € X
choose n elements of 7 = [ Y1 ¥ ] so that

RGxiiy) = h(xi, 8Gei;v)) =0,i=1,...,n

— how you choose the grid of x.'s matters...



Example of Importance of Grid Points

e Hereis an example, taken from a related problem, the problem
of interpolation.

— You get to evaluate a function on a set of grid points that you
select, and you must guess the shape of the function
between the grid points.

This is called the
‘Runge phenomenon)/,
discovered by Carl

Sflk) = 1 +1k2 , k € [-5,5] Runge in 1901.

e Consider the ‘Runge’ function,

 Next slide shows what happens when you select 11 equally-
spaced grid points and interpolate by fitting a 10t order
polynomial.

— As you increase the number of grid points on a fixed/interval
grid, oscillations in tails grow more and more violent.
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Example of Importance of Grid Points

e Hereis an example, taken from a related problem, the problem
of interpolation.

— You get to evaluate a function on a set of grid points that you
select, and you must guess the shape of the function
between the grid points.

e Consider the ‘Runge’ function,

fik) = 1+1k2 ke [-5,5]

 Next slide shows what happens when you select 11 equally-
spaced grid points and interpolate by fitting a 10t order
polynomial.

— As you increase the number of grid points on a fixed interval
grid, oscillations in tails grow more and more violent.

e Chebyshev approximation theorem: distribute more points in
the tails (by selecting zeros of Chebyshev polynomial) and get
convergence in sup norm.
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Projection, continued
e ‘Close to zero’: two methods

e Collocation, for n values of x: x1,x2,...,x, € X
choose n elements of 7 = [ Y1 o ¥ ] so that

RGxiiy) = h(xi, 8Gei;v)) =0,i=1,...,n

— how you choose the grid of x.'s matters...

 Weighted Residual, for m>n values of
X X1.X2,....x, € X choosethen 'S

ZWJZh(X],gA(X],’)/)) — O’ I = 1,...,1’1
j=1



Perturbation

* Projection uses the ‘global’ behavior of the functional
equation to approximate solution.

— Problem: requires finding zeros of non-linear equations.
Iterative methods for doing this are a pain.

— Advantage: can easily adapt to situations the policy rule is not
continuous or simply non-differentiable (e.g., occasionally
binding zero lower bound on interest rate).

e Perturbation method uses Taylor series expansion
(computed using implicit function theorem) to approximate
model solution.

— Advantage: can implement procedure using non-iterative
methods.

— Possible disadvantages:

* Global properties of Taylor series expansion not necessarily very good.

e Does not work when there are important non-differentiabilities (e.g.,
occasionally binding zero lower bound on interest rate).



Taylor Series Expansion

e Let f: R~ R be k+1 differentiable on the open
interval and continuous on the closed interval
between a and x.

— Then, f(x) = Pp(x) + Ry (x)

— where
Taylor series expansion about x = a :

Pi(x) = fla) +/®(@)(x - a) + 5/ P(a)x — a)* +.. .+ (@) (x - )

remainder:

Ri(x) = (kjl)!f(k”)(g)(x —a)***, for some ¢ between x and «a

— Question: is the Taylor series expansion a good
approximation for f?



Taylor Series Expansion

* [t’s not as good as you might have thought.

 The next slide exhibits the accuracy of the
Taylor series approximation to the Runge

function.

— In a small neighborhood of the point where the
approximation is computed (i.e., 0), higher order
Taylor series approximations are increasingly

accurate.

— QOutside that small neighborhood, the quality of
the approximation deteriorates with higher order
approximations.



Taylor Series Expansions about O of Runge Function
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Taylor Series Expansion

e Another example: the log function
— |t is often used in economics.

— Surprisingly, Taylor series expansion does not provide
a great global approximation.

* Approximate log(x) by its k" order Taylor series
approximation at the point, x=a:

k
log(x) = log(a) + Zﬂj(—l)l‘“ L(xX74)

— This expression diverges as N—>oo for

x such that |[£=4| > 1
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Taylor Series Expansion

* |n general, cannot expect Taylor series
expansion to converge to actual function,
globally.

— There are some exceptions, e.g., Taylor’s series
expansion of f(x) = e*,cos(x),sin(x) about x=0
converges to f(x) even for x far from 0.

— Problem: in general it is difficult to say for what
values of x the Taylor series expansion gives a
good approximation.



Taylor Versus Weierstrass

 Problems with Taylor series expansion does not represent a
problem with polynomials per se as approximating
functions.

 Weierstrass approximation theorem: for every continuous
function, f(x), defined on [a,b], and for every € > 0, there
exists a finite-ordered polynomial, p(x), on [a,b] such that

lf(x) —px)| < &, for all x € [a,b]

e Weierstrass — polynomials may approximate well, even if
sometimes the Taylor series expansion is not very good.

— Our analysis of the Runge function illustrates the point: The
Taylor series expansion of the Runge function diverges over a
large portion of the domain, while the sequence of polynomials
associated with the zeros of the Chebyshev polynomials
converges to the Runge function in the sup norm.



Ok, we're done with the digression on the
Taylor series expansion.

e Now, back to the discussion of the
perturbation method.

— It approximates a solution using the Taylor series
expansion.



Perturbation Method

e Suppose there is a point, x* € X, where we
know the value taken on by the function, g,
that we wish to approximate:

g(x*) = g*, some x*

e Use the implicit function theorem to
approximate g in a neighborhood of x*

* Note:
R(x;g) =0forallx e X

—

RO (x; g) = %R(x;g) — Oforallj, all x € X.



Perturbation, cnt’d

e Differentiate R with respect to xand evaluate
the result at x*:

ROG) = L g()lerr = et ,g7) + hae g)g () = 0

hl(X*ig*)
hZ(X*’g*)

> g (") = -
Do it again!

2
ROG) = “Loh(r, g0l = hus,8) + 2hia (', g)g ()

hao(x*,2*)[g' (x*)]° + ha(x*,g*)g" (x*).

— Solve this linearly for g" (x*).



Perturbation, cnt’d

* Preceding calculations deliver (assuming
enough differentiability, appropriate
invertibility, a high tolerance for painful

notation!), recursively:
g'(x*),g"(x*),...,g"(x*)

 Then, have the following Taylor’s series
approximation:

g(x) = g(x)
gx) =g"+g'(x") x (x —x*)

+ 5" () x (x—=x) 4+ (67) x (x - x7)"



Perturbation, cnt’d

e Check....
e Study the graph of

R(x; )

—over X € X to verify that it is everywhere close
to zero (or, at least in the region of interest).



Example: a Circle

e Function:

h(x,y) = (X2 +y?) -4 = 0.

 For each x except x=-2, 2, there are two distinct y
that solve h(x,y)=0:

Y =01(X) = +44-X*, Yy = ga(X) = -4 - X*.

 The perturbation method does not require that
the function g that solves h(x,g(x))=0 be unique.

— When you specify the value of the function, g, at the
point of the expansion, you select the function whose
Taylor series expansion is delivered by the
perturbation method.



Example of Implicit Function Theorem

/ hl(X*’g*) X*
X*) = — = — h- had better not be zero!




Outline

A Toy Example to lllustrate the basic ideas.

— Functional form characterization of model solution.

— Projections and Perturbations. \

* Neoclassical model. DOne I

— Projection methods
— Perturbation methods

e Stochastic Simulations and Impulse Responses
— Focus on perturbation solutions of order two.
— The need for pruning.



Neoclassical Growth Model

e Objective:
& |
Eo D Buen), ule) = “—
=0

e Constraints:
C; + exp(qu.]_) Sﬂk;,at), [ = 0,1,2,....

a; = pa, 1+ &, e~Ee; =0, Eg? =V,

ks a;) = exp(ak,)exp(a;) + (1 —06)exp(k;)



Why Log Capital?

 Might hope to get an accurate solution.

e Consider the specialcase, a =y =1

— In this case, we know the solution is given by:
K1 = Paexp(a;)K?, K, = exp(k;)

— So, in terms of log capital, the solution is exactly

linear:
qu_]_ = |Og([3a) + a; + Otkt

— Solution methods often work with polynomials
(the perturbation method always does!) , so in
case, ¢ = ¥ = 1, you would get exactly the right
answer.



Efficiency Condition

Eu' (],‘(kt, a) —AeXp(kHl ))

Cir1 period ++1 marginal product of capital
— ,Bul<f(kt+l, pa; + th+1) — exp(kt+2)> fK(kt+1, pa; + th+1) ] = 0.

k:, a; ~given numbers
* Here, g1 ~random variable
time ¢ choice variable, k.1

e Parameter, o , indexes a set of models, with
the model of interest corresponding to

o=1



Solution
e A policy rule,

ki1 = gk, ay4,0).
e With the property:

R(k; a,,0,2) = Et{u’<],‘(kt,at) — eXIS[g(kt,at,G)j)
. \

kirl a1 B kirl Al ]
_ﬂu, g(kt,at;a),bat+68t+£ _exp g g(khat,a),bat"'agﬁi;g

kt+l Al
XfK(é(kt,at,G),bat + th+£>} = 0,

e forall a; k;, 0.



Projection Methods

e Let
g(khah 61 7)

— be a function with finite parameters (could be either
spectral or finite element, as before).

 Choose parameters,y, to make

R(kl"ahg;g)

— as close to zero as possible, over a range of values of
the state.

— use weighted residuals or Collocation.



Occasionally Binding Constraints

e Suppose we include a non-negativity constraint on
investment.

— Lagrangian approach. Add a multiplier, A,, to the set of
functions to be computed, and add the (‘complementary

slackness’) equation: o , _
Non-negatlwty constraint on investment
>o/

>0 >

4 \

T {expglhnan o)) — (L—8)explh)] =0

e Conceptually straightforward to apply preceding
solution method. For details, see Christiano-Fisher,
‘Algorithms for Solving Dynamic Models with
Occasionally Binding Constraints’, 2000, Journal of
Economic Dynamics and Control.

— This paper describes a wide range of strategies, including

those based on parameterizing the expectation function,
that may be easier, when constraints occasionally bind.



Perturbation

 Conventional application of the perturbation approach, as in the toy
example, requires knowing the value taken on by the policy rule at a point.

e The overwhelming majority of models used in macro do have this
property.

— In these models, can compute non-stochastic steady state without any
knowledge of the policy rule, g.

— Non-stochastic steady state is k*such that

a=0 (nonstochastic steady state in no uncertainty case) o=0 (no uncertainty)
f_/R f_/R

k* :g k*, O ’ O

1

=100y | 75 |

— and




Perturbation

* Error function:

R(k: a:,0,2) = Et{u’<}(kt,at) - eX[S[g(kt,at,G)j>

Cr+1

— Pu’ }‘(g(kt, a:,0),pa; +o&n1) —explg(glks, a:,0), pas + o€441, G)j

XfK(g(khat,G);Pat + Ggl‘+1)} — O’

— for all values of &;,a;,o.

e So, all order derivatives of R with respect to its
arguments are zero (assuming they exist!).



Four (Easy to Show) Results About
Perturbations

* Taylor series expansion of policy rule:

linear component of policy rule

g(ks,a;,0) =~ i+ gi(ky— k) + gqa, + goa\

second and higher order terms

A\

N\

N

+5 [gu (ke — k)2 + Gua? + 9560%] + gra(ks — K)a; + gio (ki — K)o + Gusa,o +...

N

- g5 = 0: to a first order approximation, ‘certainty equivalence’

— All terms found by solving linear equations, except coefficient on past
endogenous variable,&k% ,which requires solving for eigenvalues

— To second order approximation: slope terms certainty equivalent —

ko — aoc — 0

— Quadratic, higher order terms computed recursively.



First Order Perturbation

 Working out the following derivatives and
evaluating at &k = k*,a;, =0 =0

Rk(kt,at;G;g) — Ra(kt,aha;g) — RG(khahG;g) — O

‘problematic term’ Source of certainty equivalence

° |mp|ie53 \ In linear approximation

Ri = u"(fi — e2gr) — Pu'frrgr — Pu" (figr — €322 )k =

R, = U”(fa —e8g,) — ﬂu/[kaga + fkap] — ”(fkga +fap — €8[gkga + gupl)fk = 0

Ry, = —[u'e® + Bu" (fi — efgi)fx]gs = 0

Absence of arguments in these functions reflects they are evaluated in &k, = k*,a, =0 =10



Technical notes for next slide

u" (fi — e2gi) — Pu'frrg — Pu" (fige — e2gi )k = 0
 Jxn

8k~ (frgr — e5gi)fk = 0
/ka

16—t -
%f K
b ottt L Jerat =0
Folre g Jorai-o

e Simplify this further using:

]gk +esgifx =

Bfx ~steady state equation
fx = aK*texp(a) + (1-96), K = exp(k)
=aexp[(a—Dk+a]+(1-9)
fi = aexplak+a] + (1 —8)exp(k) = fxe?
fxe = ala—1)exp[(a —1)k+ a]
fxx = ala —1)K*?exp(a) = a(a - 1)exp[(a — 2)k + a] = free™®

e to obtain polynomial on next slide.



First Order, cont’d

Rewriting R, = 0 term:

%_[1+ % T Zl//J;flf]gk‘Fgl%:O
1

There are two solutions, 0 < gx <1, g > =

— Theory (see Stokey-Lucas) tells us to pick the smaller
one.

— In general, could be more than one eigenvalue less
than unity: multiple solutions.

Conditional on solution to €+ £« solved for
linearly using R, = 0 equation.

These results all generalize to multidimensional
case




Numerical Example

e Parameters taken from Prescott (1986):

B =0.99 y =2(20), «a = 0.36, § = 0.02, p = 0.95, V., = 0.01°

e Second order perturbation:

3.88 0.98 (0.996) 0.06 (0.07) 0
5 * — N * —— —
g(kya,1,6,0) = k* + g (ki —k*)+ "go a;+ g ©
0.014 (0.00017) 0.067 (0.079) 0.000024 (0.00068) 1
+ ?[ 8k (ki —k*)" 4+ "Zua ary + 8oo o |
~0.035 (-0.028) 0 0

+ Qi (ki —k*)a; + g (ki —k*)o+ g4 a;o



Comparing 15t and 2" Order
Approximation

* |n practice, 1t order approximation is often used.
Want to know if results change much, going from
15t to 2"d order.

— They appear to change very little in our example.

 Following is a graph that compares the policy
rules implied by the first and second order
perturbation.

 The graph itself corresponds to the baseline
parameterization, and results are reported in
parentheses for risk aversion equal to 20.



‘If initial capital is 20 percent away from steady state, then capital
choice differs by 0.03 (0.035) percent between the two approximations.’

‘If shock is 6 standard deviations away from its mean, then capital
choice differs by 0.14 (0.18) percent between the two approximations’

/

0.04] 7
0.18}, A

0- 035*W* O 16 [ *\\ * B
0.03| | 014, | ]

o
o
N
al

0.1
0.02

o
o
[y
a1
o
o
oo

o
o
>

0.01

100%( ki, (an order) - k+1 (1St order) )

o
o
=

100%( k,,, (2" order) - k+1 (1* order) )

0.005

o
o
R

0 | | | O | |
-20 -10 0 10 20 -20 -10 0 10 20
100%(k, - K ), percent deviation of initial capital from steady state ~ 100*a, percent deviation of initial shock from steady state

Number in parentheses at top correspondto 7 = 20.



Outline |
~ Done!

A Toy Example to lllustrate the basic ideas.
— Functional form characterization of model solution.
— Projections and Perturbations.

* Neoclassical model.

— Projection methods
— Perturbation methods // N eXt

e Stochastic Simulations and Impulse Responses
— Focus on perturbation solutions of order two.
— The need for pruning.



Next

e Stochastic simulations
— Mapping from shocks and initial conditions to data.
— 2" order approximation and simulation.
— Pruning: a way to do 2"9 order approximation.
— Naive simulation versus pruning.
— Spurious steady state.
— Extended example of simulation and pruning.

* |Impulse response functions
— Conditional impulse response function (IRF).
— Unconditional IRF.



Simulations

e Artificial data simulated from a model can be
used to compute second moments and other
model statistics.

— These can be compared with analog statistics
computed in the data to evaluate model fit.

 Simulated model data can be compared with
actual data, to evaluate model fit.

e The computation of impulse responses, when the
solution is nonlinear, requires simulations.



Shock and initial conditions Si Mmu | atio N data
\ /

* Mapping from k; a:,0, €41 tok,,,:

kt+2 — g(g(kt;at;g),/)at + th-l—l’G)

e Mapping from £k, a:,0, €11,642 tok,,;:

ki A2
+ Ayl N

r N\

kt-|-3 — g g g(kl‘1at16)1bat + th+£16 1p2at + p53t+1 + O&2,0

 Similarly obtain mapping from k,,a;,0,&6.1,...,€n;
to y,.ihy forj=1,2,....



2" order Taylor expansion and simulation

 We do not have the exact policy rule, g, and so
must do some sort of approximation in
computing the simulations.

e Consider the 2"d order expansion of the
mapping from k¢, a:, €:1,0 to ku2 :
g(g(kt;at;g),,aat T th+116)

— After some (painful!) algebra (y, = k, —k* ):

V2 = 22V, + (2k8a + CapP)as + uOE 1
+ %[(gkkgl% + gkgkk)ytz + (gkgg + 2gkagap +gkgaa +gaap2)a12 +gaa028t2+1 +g06(gk + 1)62]
+ gkl gik€a + Cra(p + 1) yiar + 1a0OC1V €141 + Ol€ka€a + LaaPlAtE1 + uEr10



Technical note to previous slide

e Taylor series expansion of g(g(k:,a:,0),pa: +0c&41,0)
about ki =k*,a, = €41 =0=0

— First order terms:
ki . gi(glki,ar,0), pa; +0€n1,0)gik (ki ar,0) = g,%
a, . gi(glks,a;,0),pa; +0€41,0)gq(ks,a,0) + g4(g(ks,as,0), pa; + 0€441,06)p = 218a + Lap
1 - ga(glksyas,0), pa; +0€41,0)0 = 2,0

o gi(glk: a:,0),pa; +0€p1,0)gs(ks,as,0) + g5(g(ks,as,0), pas + 6€441,06) = 2186 + 25 = 0
 Second order terms

kZ @ gugs + Sk

a; ' gkga + gkagaP + gk€aa + Lak€aP + LaaP®

gz2+1 : gaaa2

0% | gu&% + Sko&o + koo + Cok&o + Coo = koo + oo
kia, : gik8a8k + CkaPLk + &k&ka

k€1 © EkaO&ik
ko : guk&o&k *+ Cko&k + &k&ko = 0

ai€i+1 - kaO0Za + LaaOP
a0 . gik&a8o + &k&ao + Cko&8a + ak&o P + &acp = 0

E410 © ak800 + 8uo0 + &ua = &



Pruning: a way to do 2" order approximation

* Second order approximation, mapping to k., ;
from ki a:,0, €141,€12 is even more algebra-
intensive. Mapping to k,,, k,,s, ... worse still.

 Turns out there is a simple way to compute
these mappings, called pruning:

Brute force substitution

— First, draw Et+1,E1+2, €143+« verifies that pruning delivers
. _ second order approximation
— Then, solve linear system: on previous slide.
Viejl = CkViej + aQrvjy Arj = PArij-t + Ersjy J 71,2,3,...
— Finally,

1 ~2 2 ~
yt+j+1 — gkij + gaaHj + ?[gkkqu—j T gaaalq_j + gacr:l T gkayt+jat+j

IKim, Kim, Schaumburg and Sims, 2008.



Pruning: a way to do 2" order approximation

* Second order approximation, mapping to k., ;
from ki a:,0, €141,€12 is even more algebra-
intensive. Mapping to k,,, k,,s, ... worse still.

 Turns out there is a simple way to compute
these mappings, called pruning:

Note that if y,,; were used here,

— First, draw Et+1,E1+2, €143+« then higher order powers than
. _ two would appear, and would
_ Then; solve lmear SyStem . not be second order expression.

)~/t+j+1 = gk,f/tJrj + 8alrijy, Arj = PArij-1 ¥ Erjy ] = 1,2,3,...

— Finally,

1 ~2 2 ~
yt+j+1 — gkij + gaaHj + ?[gkkqu—j T gaaalq_j + gacr:l T gkayt+jat+j

IKim, Kim, Schaumburg and Sims, 2008.



Pruning: a way to do 2" order approximation

* Second order approximation, mapping to k., ;
from ki a:,0, €141,€12 is even more algebra-
intensive. Mapping to k,,, k,,s, ... worse still.

 Turns out there is a simple way to compute
these mappings, called pruningyvsing J: instead of y,

to remove higher order terms,

— First, draw Erily E142, €143+ . you are in effect doing what a
gardener who removes (prunes)

— Then, solve linear system: diseased or unwanted parts of
plants.

)~/t+j+1 = gk,f/tJrj 1 Zultvj, Atyj = PApj-1 A Ettjy ] = 1,2,3,...

— Finally,

1 ~2 2 ~
yt+j+1 — gkij + gaaHj + ?[gkkqu—j T gaaalq_j + gacr:l T gkayt+jat+j

IKim, Kim, Schaumburg and Sims, 2008.



Pruning: a way to do 2" order approximation

* Second order approximation, mapping to k., ;
from ki a:,0, €141,€12 is even more algebra-
intensive. Mapping to k,,, k,,s, ... worse still.

 Turns out there is a simple way to compute
these mappings, called pruning By using Y« instead of e,

To remove higher order terms,

— First, draw Erily E142, €143+ . you guarantee stability of
simulated paths.

— Then, solve linear system:

)~/t+j+1 = gk,f/tJrj + 2alrij, Arj = PArj-1+* Enjy ] = 1,2,3,...

— Finally,

1 ~2 2 ~
yt+j+1 — gkij + gaaHj + ?[gkkqu—j T gaaalq_j + gacr:l T gkayt+jat+j



Naive simulation versus pruning

e Naive simulation (no pruning):
Viri+l = iVtvj T Laltj + %[gkkytzﬁ' + gaaalaj + gGG] + ka) t+jA s+ s

i=1,23,....
e Two problems

— #1: Implied mapping from k;,a:,0,&1,-..,Emjt0
Vejer fOr j=1,2,... contains terms of higher order than 2
and so is not a second order approximation. Those
higher order terms do not correspond to the ones in
the higher order Taylor series expansion (which makes
use of derivatives of g of higher order than 2) and so
they do not confer the desirable (local) accuracy
properties of a Taylor series.



Naive simulation versus pruning

* Naive simulation (no pruning):
Viri+l = iVtvj T Laltj + %[gkkyij + gaaaﬁj + gca] + ka) t+jA s+ s
j=123,....
e Two problems
— H2:
 The second order approximation to the policy
rule has a second (definitely spurious, in the
case of the neoclassical growth model) steady
state.
e Spurious steady state marks a transition into

explosive dynamics, profoundly different from
actual g, in the case of the neoclassical model.



Spurious Steady State

e Setting a,=0 and ignoring g, (it’s small anyway),
the 2" order approximation to the policy rule is:

Vel = kYt T %gkky?
* This has two steady states: y,=0 and

_2(1-g) _ 2(1-0.98) _

4 g~ o042
e This corresponds to the following value of the
Ca p|ta| StOCkI This is very large, probably not worth worrying
about in neoclassical model, but the analog object
— f— k¥ = Iog(K/K*) in medium-sized New Keynesian models is closer
Y to actual steady state.

because g.c ignored

\
K =exp(y+k*) Tr exp(2.86 + 3.9) = 790. 3 (after rounding)



The Spurious Steady State in 2" Order
Approximation of Neoclassical Model

Because of scale problem, it is hard to see the
policy rule when graphed in the ‘natural way/,
k.,; against k, .

Instead, will graph:

— k,,, - k,against k,—k*  (recall, k, = log(K, )).
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y: = ki —k*, k; ~log, capital stock

B g,,~>0. Precautionary motive.

i a, = 2 X ‘/Var(at), capital = 886

Second order approximation of policy rule

This is slightly higher than
non-stochastic ss because a; = 4 x [Var(a,), capital = 996

a; = 0, actual capital = 790

Impact of a, )
reversed at high k.
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Stylized Representation of 2"? Order
Approximation of Policy Rule, a=0

left of the first positive steady s

In neoclassical model, second st
to right that (perhaps) we don’t

_ The shape of the policy rule to the

tate

corresponds to what we know qualitatively.

eady state seems far enough
have to worry about it.

This (spurious) steady state marks a transition to

unstable dynamics. Simulations would explode if
capital stock got large enough. Convexity implies you
e>‘<plode really fast if you get into this region
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Next

e Stochastic simulations

— Naive simulation vers
— Spurious steady state.
— Extended example of simulation and pruning.

~ Next
* |Impulse response functions -

— Conditional impulse response function (IRF).
— Unconditional IRF.

pruning.



Extended Example of Simulation and
Pruning

* Simplified version of 2" order approximation
to neoclassical model solution:

yi=pye1+ay’,+&, p=0.8, a=0.5 Es? =0, c =0.10

y t+1

45 degree line

Er = 20 /5///

| |
0 0.2

Vi

| After a few

big positive
shocks, this
process will
explode.
Explosion big
because of
convexity.



Simulations, std dev = /10

solid line: y; = py.1 + ay?, + &

x —line: y, = pyr1 + &
\ \ \ \ \ \ \ \

50 100 150 200 250 300 350 400

Vi

Two lines virtually the same for small shocks.

450



Simulations, std dev=o0

y t+1

C“ulf
|_|
—
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+ +
7T
NN
|
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£ £
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o
V)

By period 71, this explodes to MATLAB’s Inf and remains there.

-0.5

250 300 350 400 450 500

Vi

Two lines wildly different for large shocks......

100 150 200

50

.naive simulations explode!



Pruning

 Procedure for simulating artificial data, using second
order Taylor series expansion of simulated data as a
function of the shocks and initial conditions:.

* First, draw a sequence, ¢, ¢5,.... &7

* Next, solve for »1,V2,...,¥7 inthe linear component
of the process:

Vi = pyr1 + &
* The (‘pruned’) solution to the 2" order difference
equationis yi,y2,...,yrin

Vi = pye1+ayiy + &

Note that the y,’s cannot explode.

IFor pruning with higher order perturbations, see Lombardo (2011).



Simulations, std dev = /10

e ‘ N |
0.02— y 41 ‘ é‘“l] I | ‘l‘u i _
*‘ ‘ ] y | " l =
0.011 ] , | i ’Il / ‘ ’ , ‘ i
% ol T T
Ve © / I ‘ i U ’ ‘ 1 l ’ l’
-0.01 ] 1 I ‘ ‘ l A l ‘“ . l | " 1
i ik ’ ’v I ! '
-0.02 ﬁ ‘l’ l | Ly ' ’
T
ou- solid line: y, = py,1 +apfy + & (‘pruned) |t ] .
x—line: , = ppr1 + & ~ The two lines roughly coincide.
pai | | | | | | | 7]

Vi



y t+1
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Simulations, std dev =0

solid line: y,
x —line: y, = pyr1 + ¢
\ \

—

T
N

T k‘b

= pyr1 +ay?, + g (‘pruned)

| The two lines now differ a lot.
| | | | | | |
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Next
done

e Stochastic simulations =
— Mapping from shocks and initial conditi o data.
— 2" order approximation and pruning.

— Naive simulation of 2" order
pruning.

— Spurious steady state.
— Extended example.. done

proximation, versus

* Impulse response functions
— Conditional impulse response function (IRF).
— Unconditional IRF.



Impulse Response Function

e (Conditional) impulse response function:
— Impact of a shock on expectation of future variables.

Elys#ilQ1,shock, # 0] — E[y«;|€Q2-1,Shock, = 0], j = 0,1,2,...

— Impulse responses are useful for building intuition
about the economic properties of a model.

— When you condition on initial information, can
compare responses in recessions versus booms.

— Can also used for model estimation, if you have the
empirical analogs from VAR analysis.



Impulse Response Function, cnt’d

e Example: o
f_M
Vi =pPYir1 TE&;
e Obviously:  mar= Pyt \
E[)/t|Qt—1,8t + 0] - E[yt|Qt—1,8t = 0] = ¢
e Also
Verl = PYVe T 1
= PZJ/t—l + €11 + PE;
e So that:

E[)/t+1|Qz—1,8t] = ,02)/1—1 + P&y, E[)/t+1|Qt—1,€t = O] = Pz)/t—l
- E[yt+1|Qt—1,<9t] —E[ymlﬂt—l,sz = O] = PE&;

* [n general:
E[y¢+j|§2¢—1,8t * O] —E[)/t+j|Qt—1,8t = 0] = [ﬂgt



Impulse Responses, cnt’d

Easy in the linear system!

— Impulse responses not even a function of Q.4

Different story in our 2" order approximation,
especially because of the spurious steady
state..

/ Same form as our 2"? order approximation

Example:
Vi = pyet+ayiy + &

Obviously: . Easy...
pyi1t+ay? j+e, py1+ay? /

E[VAQt—l;gtj — 2?[)/t|Qt—1,<9t = O]: Et




IRF, cont’d

 One-period-out IRF

— Note: ' )2

4 N

Vit = p [pye1 + 0‘)’?—1 +&] +a [pyr1 + aytz—l + gt]z +E11

Ele11|Q 1,60

— Then,
2 2 \2 , .2 2 N
Elym|Qea,e0 # 0] = plpyer + ayiy + & + a[(pyt—l +ay )" +&f +2(pye + ayt_l)sf] + 0
E[yulQia,6 = 0] = plpye1 + ayzy] + alpye1 + aytz—l)z

— So,
E[yum|Qi1,&] — Eyen|Qe1, & = 0] = pe, + agf + 2a(pyr1 + ay?y e

— Ouch! Much more complicated...is a function of
elements of €21



IRF’s, cnt’d
 Too hard to compute IRF’s by analytic
formulas, when equations are not linear.

Vi = Pyi1+ayi, + &
e \What we need:

— Fix a value for Q.1 =pyr1 + ay?,

— Compute: our example

ElyuilQQea, €], j = 1,2,3,..., T, for agiven value of ¢, > 0
E[yl‘-l—j|Qt—118t = O],] = 1,2,3,...,T.

— Subtract:
ED/H-]"QZ—].’EZ:I _ED/t+j|Qt—1lgt — 0]1] — 112131---1T



IRF’s, cnt’d

e Computational strategy

— From a random number generator, draw:

1 @) (1)
8t+1’ 8t+2’ """ yEnr

— Using the stochastic equation, py+~1 + ay?, and the given &
compute (by prunmg)

1) 1)
yt+l’yt+2’ e VT

— Repeat this, over and over again, R (big) times, to obtain

(1) (1)
yt+l’yt+2’ e VT

(R) (R)
yt+1’yt+2""’yt+T

— Finally,

E[)/l‘-i-let—l,gl‘ — % Zy5_21j — 1121-'-1T

R
=1



IRF’s, cnt’d

e Toget E[ys|Qr1,6,=0],;=123,...,T, just
repeat the preceding calculations, except set
Er = 0

 To do the previous calculations, need R and T.
— Dynare will do these calculations.
— In the stoch_simul command,

* Ris set by including the argument, replic=R.
e Tis set by including irf=T.



Next
done

e Stochastic simulations =
— Mapping from shocks and initial conditi o data.
— 2" order approximation and pruning.

— Naive simulation of 2" order
pruning.

— Spurious steady state.
— Extended example.. done

proximation, versus

* Impulse response functions
— Conditional impulse response function (IRF).” done
— Unconditional IRF.



A Different Type of Impulse Response Function

 The previous concept of an impulse response
function required specifying the information
set, Q.1 .

— How to specify this is not often discussed...in part
because with linear solutions it is irrelevant.

— With nonlinear solutions, €2-1 makes a
difference.

— How to choose , ; ?
— One possibility: nonstochastic steady state.
— Another possibility: stochastic mean.



Unconditional Impulse Response
Functions



Unconditional IRF

e Note that
E[yt+j|Qt—1,3t] - E[Yt+j|Qt—1,3t — 0]1 J — 112131 LA 1T

—is a function of Q. (i.e., itis a random variable)

— Evaluate the mean of this random variable as
follows:

e Suppose there is date 0, date t and date T, where T>t
and t is itself large.

 Draw R sets of shocks (no need to draw €t)
1) (@) 1) 1) @A) (1)
€0 1€1 1o &1 € 2r e y ST

(R) .(R) (R) .(R) .(R) (R)
€0 1€1 1 &1 €1 €2k yE4T



Unconditional IRF
e Usingg; # 0, &, = Otogether with

1 @ 1 QO @D (1)
€0 181 a1 Er 11800t 14T

(R) .(R) R) (R) .(R) (R)
€0 181 v s € 108182y y 14T

e Compute two sets (by pruning)

(1 @D @ @ Q) @A) (1)
Yo V1 a-e VeV 5 Vun Va2 Vur

(R) (R R) (B (R) _(R) (R)
Yo V1o Ve Vuir Ve Var

e The period t+j IRF is computed by averaging across

I=1,...,R, for given t+j, j=0,1,...,T. Then, subtract, as
before.

 In Dynare, tis set with drop=t parameter in
stoch_simul command.



Conclusion

For modest US-sized fluctuations and for aggregate quantities, it may be
reasonable to work with first order perturbations.

— This assumption deserves much further testing.
— Can do this by studying the error function.
— Also, try fancier approximations and see if it changes your results.

One alternative to first order perturbations is higher order perturbations.

— These must be handled with care, as they are characterized by spurious steady
states, which may be the transition point to unstable dynamics.

— Must do some sort of pruning to compute IRF’s, or just to simulate data.

An alternative is to apply projection methods.
— Perhaps these have less problems with spurious steady states.
— Computation of solutions is more cumbersome in this case.

First order perturbation: linearize (or, log-linearize) equilibrium conditions
around non-stochastic steady state and solve the resulting system.

— This approach assumes ‘certainty equivalence’. Ok, as a first order
approximation.



List of endogenous variables determined at t

Solution by Linearization
* (log) Linearized Equilibrium Conditions:

E/oozm1 + a1z, + a2z 1 + Posy1 + P1s:] =0

e Posit Linear Solution:
St%t = 0.
zi = Aziq + Bsy Exogenous shocks

e To satisfy equil conditions, A and B must:

oA’ +a1A+al =0, F=(Bo+aoB)P+[B1+ (aod+0a1)B] =0

e |f there is exactly one A with eigenvalues less
than unity in absolute value, that’s the solution.
Otherwise, multiple solutions.

 Conditional on A, solve linear system for B.





