
Solving and Analyzing a Model with Two Lucas Trees

This note explores an analysis of an economy with two Lucas trees, which is studied in

Cochrane, Longsta§ and Santa-Clara (‘Two Trees’, The Review of Financial Studies, vol. 21

no. 1, 2008) (CLS) and Ian Martin, ‘The Lucas Orchard,’ Econometrica, January 2013 (see

especially Figure 3).

Consider an economy with two trees, tree number 1 and tree number 2. Corresponding

to these two trees there are the following two dividend processes,

D1t, D2t.

The time series representations are:

D1,t+1

D1,t

= "1,t+1,
D2,t+1

D2,t

= "2,t+1,

where the two shocks are iid over time and independent of each other. We suppose that

consumption is given by:

Ct = D1,t + (1 )D2,t.

The price of tree 1 is p2,t

p2,t = E


Ct
Ct+1


[D2,t+1 + p2,t+1] ,

or, in terms of price dividend ratio, P2,t  p2,t/D2,t :

P2,t = E


Ct
Ct+1


[1 + P2,t+1] "2,t+1.
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Also,

Ct+1
Ct

=
D1,t+1 + (1 )D2,t+1

D1,t + (1 )D2,t

=
"1,t+1D1,t + (1 ) "2,t+1D2,t

D1,t + (1 )D2,t

=
D1,t

D1,t + (1 )D2,t

"1,t+1 +
(1 )D2,t

D1,t + (1 )D2,t

"2,t+1

= xt"1,t+1 + (1 xt) "2,t+1.

It is convenient to derive an expression for xt+1 :

xt+1 =
D1,t+1

D1,t+1 + (1 )D2,t+1

=
D1,t+1

D1,t

D1,t

D1,t + (1 )D2,t

D1,t + (1 )D2,t

D1,t+1 + (1 )D2,t+1

=
"1,t+1xt

xt"1,t+1 + (1 xt) "2,t+1
.

It is interesting to think about what the ergodic distribution of xt is. Surprisingly, perhaps,

the distribution of xt is not a function of .

We posit that the solution is a function, P2 (x), that satisfies the following fixed point:

P2 (x) = E [x"
0
1 + (1 x) "

0
2]

[1 + P2 (x

0)] "02.

Suppose

"1  1, "2  1 2 (, 0,) .
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Let the 9 states be given by the 9 by 1 vector, s :

s =

0

BBBBBBBBBBBBBBBBBBBBBBBB@
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m,m

m, h
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h,m

h, h
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Let 1 and 2 denote the Markov transition matrices for "1 and "2, respectively. The iid

assumption implies that the rows of 1 are all equal. Similarly for the rows of 2. Let 

denote the Markov transition matrix for s :

 = 1  22

66664

111 2 121 2 131 2

211 2 221 2 231 2

311 2 321 2 331 2

3

77775

Using this notation our functional equation can be written:

P2 (x) 
NX

j=1

ij [x"1 (j) + (1 x) "2 (j)]
 [1 + P2 (x

0 (j))] "2 (j) = 0,

for all 0  x  1, where

x0 (j) =
"01 (j) x

x"01 (j) + (1 x) "02 (j)

We now construct a Chebyshev polynomial approximation to P1 and P2. The domain
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of these functions is [0, 1] , but the domain of the Chebyshev polynomial is [1, 1] . Thus, we

require a mapping,

' : [0, 1]! [1, 1] ,

and the following serves our purposes:

' (x) = 2x 1.

We approximate P1 and P2 with M  1th ordered Chebyshev polynomials, with basis func-

tions, Ti (' (x)) , for i = 0, 1, ...,M  1. In particular, let

T (x) = [T0(' (x)), T1(' (x)), ..., TM1(' (x))]
0.

Let a and b denote two M  1 vectors of parameters. Then, one strategy for approximating

the solutions is:

P̂1 (x; a) = a
0T (x) , P̂2 (x; b) = b

0T (x) .

The M zeros of the M th order Chebyshev polynomial, TM , are

rj = cos


(j  0.5)

M


, j = 1, . . . ,M,

and let

(1) xj = '
1(rj) =

rj + 1

2
, j = 1, ...,M.

The calculations reported below are based on a finite element approach to approximating

the equilibrium price-dividend functions. We fixed a set of grid points for x and then the

parameters, a and b, represent the values of the functions, P̂1 and P̂2, at the grid points.

The functions were made continuous by spline interpolation using the MATLAB function,

interp1.†
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Define the error functions, E1 and E2 :

E1 (x; a) = P̂1 (x; a) 
NX

j=1

ij [x"1 (j) + (1 x) "2 (j)]

h
1 + P̂1 (x

0 (j) ; a)
i
"1 (j)

E2 (x; b) = P̂2 (x; b) 
NX

j=1

ij [x"1 (j) + (1 x) "2 (j)]

h
1 + P̂2 (x

0 (j) ; b)
i
"2 (j) .

Given the grid points for x and the parameters of the parametric functions, a collocation

approach solves 2M unknowns and 2M equations.

Given approximate solutions for the pricing functions, returns are given by:

R̂1 (x, j; a) =

h
1 + P̂1 (x

0 (j) ; a)
i
"1 (j)

P̂1 (x; a)

R̂2 (x, j; a) =

h
1 + P̂2 (x

0 (j) ; a)
i
"2 (j)

P̂2 (x; a)
.

Define the mean returns (conditional on the state, x) as follows:

M1 (x; a) =
NX

j=1

ijR̂1 (x, j; a)

M2 (x; b) =
NX

j=1

ijR̂2 (x, j; b) ,

where the value of i can be anything between 1 and N because of the independence assump-
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tion. Finally,

Cov (x) =
NX

j=1

i,j

h
R̂1 (x, j; a)M1 (x; a)

i h
R̂2 (x, j; a)M2 (x; a)

i

V1 (x) =
NX

j=1

i,j

h
R̂1 (x, j; a)M1 (x; a)

i2

V2 (x) =

NX

j=1

i,j

h
R̂2 (x, j; b)M2 (x; b)

i2

 (x) =
Cov (x)p
V1 (x)V2 (x)

.

We studied two parameterizations of the model. In each case,

 = 1/1.05,  = 1.

The parameter, , plays no role in the analysis. Also,

1 = 2 =

2

66664
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77775
.

In Figure 1, results are reported for the case,  = 0.1. Figures 2 and 3 report results for

the case,  = 0.3. In each case, the policy functions were solved by the spline-based finite

element method described above. Relatively few grid points, 22, were required to obtain a

reasonable solution in the small  case. Obviously, the error functions, E1 and E2, are essen-

tially zero on the grid of values used to compute the equilibrium price-dividend functions.

By a ‘reasonable solution’ we mean a couple of approximate price-dividend functions that

drive the error functions close to zero between the grid points used in the construction of the

functions. For this, we constructed a very fine grid of 999 equally spaced values of x on the

unit interval. Figure 1 displays the graph of the error functions over this very fine grid. Note
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that the errors are quite small, on the order of 107. One metric of ‘small’ compares the size

of the errors with the size of the price-dividend ratio itself. The latter is in the neighborhood

of 20, so the errors relative to that are extremely small.

Figure 1 shows that the price dividend ratios vary by only a small amount, between the

values of 20 and 21. Because of this small amount of variation, it is not surprising that the

correlation between the two rates of return are essentially zero for all x (see the Figure).

From the expressions for the rates of return on the two trees given above, we see that if the

two pricing functions are literally constant over all x, then the correlation, conditional on x,

is zero because of the independence of "1 and "2.

The findings in Figure 1 contrast sharply with the results reported by CSL and Martin.

Those papers consider (among other things) two-tree models that are cast in continuous time

where innovations are Normal. In those papers, the price-dividend function for a particular

tree rises sharply towards infinity when the share in total consumption of the dividends

from that tree approaches zero (see, for example, CLS’s equation (22) and their Figure 1).

With this sharp variation in the price-dividend ratio, it is perhaps then not surprising that

substantial correlation between the returns on the two trees is found by CLS and Martin.

The second computational experiment, based on  = 0.3 was more challenging, com-

putationally. Without a lot of grid points for x close to unity and zero, it was di¢cult

to make the error functions, E1 and E2, close to zero there. We constructed grids in two

di§erent ways, and report results for each. The grids are di§erentiated by the interval in

which additional grid points were concentrated. In each case, we started by constructing 60

grid points for x using the Chebyshev zero approach described above. In the first case, we

added additional grid points very close to unity and zero.‡ In this case, the total number of

grid points was 141. In the second case, additional grid points were also placed close to zero

and unity, but they were spread out a little more.§ The total number of grid points in the

second case was 172.

Figure 2 displays results based on the first way of constructing the grid. Notice that
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now the price-dividend ratio for the first tree rises more sharply in states when the share

of income from that tree, x, is small. It is our impression that this is consistent with the

findings in Martin and CLS. With a larger value of  our distribution of the dividend growth

rates resembles more closely (than in the  = 0.1 case) the unbounded distributions that

they use.

In Figure 2, the variation in the price dividend ratio is between 0.2 and about 0.38.

The shape of the price function as a function of x roughly resembles the one in CLS in that

the rise becomes relatively sharp for values of x below 0.2. Despite the great variation in

the price-dividend function, however, it is still the case that the correlation between the two

asset returns is roughly zero. It is ever-so-slightly bigger in Figure 2 than it is in Figure 1,

however. This is consistent with the notion that for larger values of  perhaps the correlation

would turn positive, as it does in the model in which the dividend growth rates are Normally

distributed (see Ian Martin’s Figure 3).

The error function in Figure 2 does appear to be relatively far from zero for x in a

neighborhood of 0. This motivated our second method for choosing grid points, the results

for which are displayed in Figure 3. Note that in Figure 3 the error function is substantially

smaller, although the errors are still somewhat large for x’s close to the boundaries. Interest-

ingly, however, the price-dividend functions are very similar to what was observed in Figure

2. We may perhaps infer from this evidence of robustness that our computed price-dividend

functions are reasonably accurate.

These results suggest that the findings in Martin and CLS are very sensitive to assump-

tions made about the support of the distribution of growth rates in regions that have very

low probability. This resembles other classic findings in Finance, in which it is shown that

the equity premium is very sensitive to whether the underlying shocks are Normal or have

even fatter tails (see Geweke?).
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