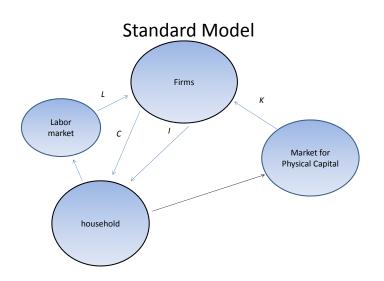
Leverage Restrictions in a Business Cycle Model

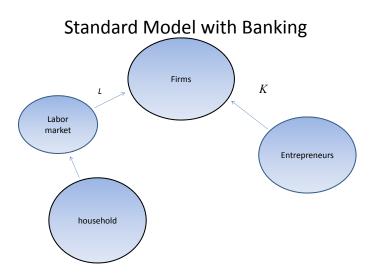
Lawrence J. Christiano Daisuke Ikeda

Background

- Increasing interest in the following sorts of questions:
 - What restrictions should be placed on bank leverage?
 - How should those restrictions be varied over the business cycle?
 - How should monetary policy react to bank leverage, if at all?

What We Do


 Modify a standard medium-sized DSGE model to include a banking sector.


Assets	Liabilities			
Loans and other securities	Deposits			
	Banker net worth			

- Job of bankers is to identify and finance good investment projects.
 - doing this requires exerting costly effort.
- Agency problem between bank and its creditors:
 - banker effort is not observable.
- Consequence: leverage restrictions on banks generate a very substantial welfare gain in steady state.
- Explore some of the dynamic implications of the models.

Outline

- Model
 - first, without leverage restriction
 - observable effort benchmark
 - unobservable case
 - then, with leverage restriction
- Steady state properties of leverage restrictions
- Implications for dynamic effects of shocks

Standard Model with Banking Firms Labor market С Capital Entrepreneurs **Producers** $(1-\delta)K$ household Entrepreneur pays everything to the bank and has nothing.

Entrepreneurs

- After goods production in period t: Purchase raw capital from capital producers, for price $P_{k',t}$.
 - entrepreneurs have no resources of their own and must obtain financing from banks.
- Entrepreneurs convert raw capital into effective capital.
 - Some are good at it and some are bad.
- In period t+1:
 - entrepreneurs rent capital to goods-producers in competitive markets, at rental rate, r_{t+1} .
 - after production, sell undepreciated capital back to capital producers at price, $P_{k',t+1}$.
 - entrepreneurs pay all earnings to bank at end of t+1, keeping nothing.
 - no agency problems between entrepreneurs and banks.

Earnings of Entrepreneurs

- there are good entrepreneurs and bad entrepreneurs.
- bad: 1 unit, raw capital $\rightarrow e^{b_t}$ units, effective capital
- good: 1 unit, raw capital $\rightarrow e^{g_t}$ units, effective capital
- return to capital enjoyed by entrepreneurs:

$$R_{t+1}^g = e^{g_t} R_{t+1}^k, \ R_{t+1}^b = e^{b_t} R_{t+1}^k$$

$$R_{t+1}^{k} \equiv \frac{r_{t+1}^{k} P_{t+1} + (1 - \delta) P_{k,t+1}}{P_{k't}}$$

• In effect, entrepreneurs operate linear investment technologies,

$$R_{t+1}^g > R_{t+1}^b$$

Bankers

- each has net worth, N_t .
- a banker can only invest in one entrepreneur (asset side of banker balance sheet is risky).
- by exerting effort, e_t , a banker finds a good entrepreneur with probability p:

$$p\left(e_{t}\right)=\bar{a}+\bar{b}e_{t}$$

• in t, bankers seek to optimize:

$$E_{t}\lambda_{t+1}\{p(e_{t})\left[R_{t+1}^{g}(N_{t}+d_{t})-R_{g,t+1}^{d}d_{t}\right] + (1-p(e_{t}))\left[R_{t+1}^{b}(N_{t}+d_{t})-R_{b,t+1}^{d}d_{t}\right]\} - \frac{1}{2}e_{t}^{2}$$

Bankers have a cash constraint:

$$R_{t+1}^{b}(N_{t}+d_{t}) \geq R_{b,t+1}^{d}d_{t}$$

Bankers and their Creditors

 Bankers and Mutual Funds interact in competitive markets for loan contracts:

$$\left(d_t, e_t, R_{g,t+1}^d, R_{b,t+1}^d\right)$$

• Free entry and competition among mutual funds implies:

$$p(e_t) R_{g,t+1}^d + (1 - p(e_t)) R_{h,t+1}^d = R_t$$

- Two scenarios:
 - banker effort, e_t , is observed by mutual fund
 - banker effort, e_t , is unobserved.

Unobserved Effort

 In this case, banker always sets e_t to its privately optimal level, whatever e_t is specified in the loan contract:

incentive :
$$\begin{split} e_t &= E_t \lambda_{t+1} p_t'\left(e_t\right) \left[\left(R_{t+1}^g - R_{t+1}^b\right) \left(N_t + d_t\right) \right. \\ &- \left(R_{g,t+1}^d - R_{b,t+1}^d\right) d_t \right]. \end{split}$$

• Set of contracts available to bankers is the $(d_t, e_t, R_{\varphi,t+1}^d, R_{b,t+1}^d)$'s that satisfy 'incentive' in addition to:

MF zero profits :
$$p\left(e_{t}\right)R_{g,t+1}^{d}+\left(1-p\left(e_{t}\right)\right)R_{b,t+1}^{d}=R_{t}$$
, cash constraint : $R_{t+1}^{b}\left(N_{t}+d_{t}\right)\geq R_{b,t+1}^{d}d_{t}$

• One factor that can make e_t inefficiently low:

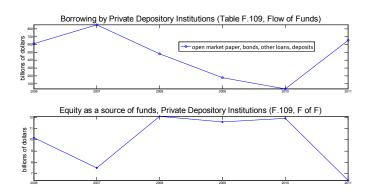
$$-R_{g,t+1}^d > R_{b,t+1}^d.$$

Law of Motion of Net Worth

- Bankers live in a large representative household, with workers (as in Gertler-Karadi, Gertler-Kiyotaki).
 - Bankers pool their net worth at the end of each period (we avoid worrying about banker heterogeneity)
- Law of motion of banker net worth

$$N_{t+1} = \gamma_{t+1} \{ p\left(e_{t}\right) \overbrace{\left[R_{t+1}^{g}\left(N_{t}+d_{t}\right)-R_{g,t+1}^{d}d_{t}\right]}^{\text{profits when bank assets good}} \\ + \left(1-p\left(e_{t}\right)\right) \overbrace{\left[R_{t+1}^{b}\left(N_{t}+d_{t}\right)-R_{b,t+1}^{d}d_{t}\right]}^{\text{profits when bank assets are bad}} \\ + \left(1-p\left(e_{t}\right)\right) \overbrace{\left[R_{t+1}^{b}\left(N_{t}+d_{t}\right)-R_{b,t+1}^{d}d_{t}\right]}^{\text{profits when bank assets good}} \\ + \underbrace{\left[R_{t+1}^{b}\left(N_{t}+d_{t}\right)-R_{g,t+1}^{d}d_{t}\right]}^{\text{profits when bank assets good}} \\ + \underbrace{\left[R_{t+1}^{b}\left(N_{t}+d_{t}\right)-R_{b,t+1}^{d}d_{t}\right]}^{\text{profits when bank assets good}} \\ + \underbrace{\left[R_{t+1}^{b}\left(N_{t}+d_{t}\right)-R_{b,t+1}^{d}d_{t}\right]}^{\text{profits when bank assets are bad}} \\ + \underbrace{\left[R_{t+1}^{b}\left(N_{t}+d_{t}\right)-R_{b,t+1}^{d}d_{t}\right]}^{\text{profits when bank assets good}} \\ + \underbrace{\left[R_{t+1}^{b}\left(N_{t}+$$

Law of Motion of Net Worth


- Bankers live in a large representative household, with workers (as in Gertler-Karadi, Gertler-Kiyotaki).
 - Bankers pool their net worth at the end of each period (we avoid worrying about banker heterogeneity)
- Law of motion of banker net worth

$$N_{t+1} = \gamma_{t+1} \{ p\left(e_{t}\right) \overbrace{\left[R_{t+1}^{g}\left(N_{t}+d_{t}\right)-R_{g,t+1}^{d}d_{t}\right]}^{\text{profits when bank assets good}} \\ + \left(1-p\left(e_{t}\right)\right) \overbrace{\left[R_{t+1}^{b}\left(N_{t}+d_{t}\right)-R_{b,t+1}^{d}d_{t}\right]}^{\text{profits when bank assets are bad}} \\ + \left(1-p\left(e_{t}\right)\right) \overbrace{\left[R_{t+1}^{b}\left(N_{t}+d_{t}\right)-R_{b,t+1}^{d}d_{t}\right]}^{\text{profits when bank assets good}} \\ + \underbrace{\left[R_{t+1}^{b}\left(N_{t}+d_{t}\right)-R_{g,t+1}^{d}d_{t}\right]}^{\text{profits when bank assets good}} \\ + \underbrace{\left[R_{t+1}^{b}\left(N_{t}+d_{t}\right)-R_{b,t+1}^{d}d_{t}\right]}^{\text{profits when bank assets good}} \\ + \underbrace{\left[R_{t+1}^{b}\left(N_{t}+d_{t}\right)-R_{b,t+1}^{d}d_{t}\right]}^{\text{profits when bank assets are bad}} \\ + \underbrace{\left[R_{t+1}^{b}\left(N_{t}+d_{t}\right)-R_{b,t+1}^{d}d_{t}\right]}^{\text{profits when bank assets good}} \\ + \underbrace{\left[R_{t+1}^{b}\left(N_{t}+$$

Model Assumption that Banks Don't Systematically Rely on Equity Issues to Finance Assets

- Adrian and Shin, 'Procyclical Leverage and Value-at-Risk'
 - Changes in financial firm equity not systematically related to their assets.
 - Changes in financial firm debt moves one-for-one with changes in assets.

• The model assumes that when bankers want funds, issuing equity is not an option.

'Crisis'

- Suppose something makes banker net worth, N_t , drop.
- For given d_t , bank cash constraint gets tighter:

$$R_{t+1}^b(N_t+d_t) \geq R_{b,t+1}^d d_t.$$

- So, $R_{b,t+1}^d$ has to be low
 - when N_t is low, banks with bad assets cannot cover their own losses and creditors must share in losses.
 - then, creditors require $R^d_{\mathbf{g},t+1}$ high
- So, interest rate spread, $R_{g,t+1}^d R_t$, high, banker effort low.
- Banks get riskier (cross sectional mean return down, standard deviation up).

Leverage Restrictions

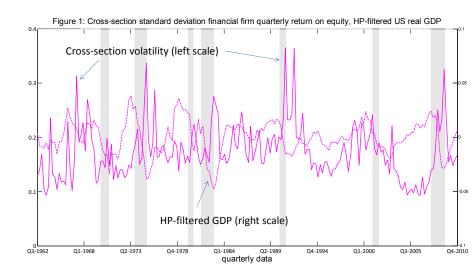
• Banks face the following restriction:

$$L_t \geq \frac{N_t + d_t}{N_t}.$$

- What is the consequence of this restriction?
 - With less d_t , banks with bad assets more able to cover losses
 - interest rate spread, $R_h^d R$, falls, so banker effort rises.
 - Second effect of leverage restriction,
 - leverage restriction in effect implements collusion among bankers
 - allows them to behave as monopsonists
 - make profits on demand deposits....lots of profits:

$$\left[p\left({{e_t}} \right)\left({R_{t + 1}^g - R_{g,t + 1}^d} \right) + \left({1 - p\left({{e_t}} \right)} \right)\left({R_{t + 1}^b - R_{b,t + 1}^d} \right) \right]\overbrace {\frac{{{d_t}}}{{{N_t}}}} ^{\text{big}}$$

makes N_t grow, offseting incentive effects of decline in d_t .


Macro Model

- Sticky wages and prices
- Investment adjustment costs
- Habit persistence in consumption
- Monetary policy rule

Calibration targets

Table 2: Steady state calibration targets for baseline model					
Variable meaning	variable name	magnitude			
Cross-sectional standard deviation of quarterly non-financial firm equity returns	S^b	0.20			
Fnancial firm interest rate spreads (APR)	$400(R_g^d - R)$	0.60			
Financial firm leverage	L	20.00			
Allocative efficiency of the banking system	$p(e)e^g + (1 - p(e))e^b$	1			

Data behind calibration targets

Parameter Values

Table 1: Baseline Model Parameter Values					
Meaning	Name	Value			
Panel A: financial parameters					
return parameter, bad entrepreneur	b	-0.09			
return parameter, good entrepreneur	g	0.00			
constant, effort function	ā	0.83			
slope, effort function	\bar{b}	0.30			
lump-sum transfer from households to bankers	Ť	0.38			
fraction of banker net worth that stays with bankers	γ	0.85			
Panel B: Parameters that do not affect stead	y state				
steady state inflation (APR)	$400(\pi - 1)$	2.40			
Taylor rule weight on inflation	α_{π}	1.50			
Taylor rule weight on output growth	$\alpha_{\Delta y}$	0.50			
smoothing parameter in Taylor rule	ρ_p	0.80			
curvature on investment adjustment costs	S"	5.00			
Calvo sticky price parameter	ξ_p	0.75			
Calvo sticky wage parameter	ξ_w	0.75			
Panel C: Nonfinancial parameters					
steady state gdp growth (APR)	μ=•	1.65			
steady state rate of decline in investment good price (APR)	Υ	1.69			
capital depreciation rate	δ	0.03			
production fixed cost	Φ	0.89			
capital share	α	0.40			
steady state markup, intermediate good producers	λ_f	1.20			
habit parameter	b_u	0.74			
household discount rate	$100(\beta^{-4}-1)$	0.52			
steady state markup, workers	λ_w	1.05			
Frisch labor supply elasticity	$1/\sigma_L$	1.00			
weight on labor disutility	ψ_L	1.00			
steady state scaled government spending	ğ	0.89			

Steady State Calculations

- Next study steady state impact of leverage
 - Quantify role of hidden effort in the analysis (essential!)

Tabl	e 3: Steady State Properties of the Mo	odel			
Variable meaning	Variable name	Unobserved Effort Leverage Restriction		Observed Effort	
				Leverage Restriction	
		non-binding	binding	non-binding	binding
Spread	$400(R_g^d - R)$	0.600		NA	
scaled consumption	c	1.84		2.01	Ī
labor	h	1.18		1.15	Ī
scaled capital stock	k	51.52	_	59.75	Γ
bank assets	N+d	51.52		59.55	Ī
bank net worth	N	2.58	_	2.58	Ī
bank deposits	d	48.94		56.98	Ī
bank leverage	(N+d)/N	20.00		23.12	Ī
bank return on equity (APR)	$400 \left(\frac{\left[p(e_t) R_{\mu_1}^g + (1 - p(e_t)) R_{\mu_1}^b \right] (N_t + d_t) - R_t d_t}{N_t} - 1 \right)$	4.59		4.59	
fraction of firms with good balance sheets	p(e)	0.962		1.000	Ī
Benefit of leverage (in c units)	100χ	NA	_	NA	Γ
Benefit of making effort observable (in c units)	100χ	NA	_	<u> 6.11</u>	Γ

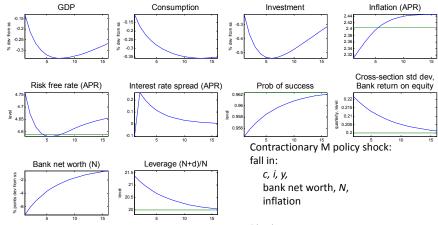
Making effort observable makes things a lot better, equivalent to a 6% permanent jump in consumption!

e 3: Steady State Properties of the Mo	odel			
Variable name	Unobserve	d Effort	Observed Effort	
	Leverage Restriction		Leverage Restriction	
	non-binding	binding	non-binding	binding
$400(R_g^d - R)$	0.600		NA	
c	1.84		2.01	Ī
h	1.18		1.15	Ī
k	51.52	_	59.75	Γ
N+d	51.52	_	59.55	T
N	2.58	_	2.58	Ī
d	48.94		56.98	Ī
(N+d)/N	20.00		7 23.12	Ī
$400 \left(\frac{\left[p(e_t) R_{\mu_1}^g + (1 - p(e_t)) R_{\mu_1}^b \right] (N_t + d_t) - R_t d_t}{N_t} - 1 \right)$	4.59		4.59	
p(e)	0.962		1.000	Ī
100χ	NA	_	NA	Ī
100χ	NA		6.11	
	Variable name $ \frac{400(R_g^d - R)}{c} $ $ \frac{c}{h} $ $ \frac{k}{k} $ $ \frac{N+d}{M} $ $ \frac{N}{d} $ $ \frac{(N+d)/N}{400\left(\frac{[p(e_1)R_{n,1}^e+(1-p(e_1))R_{n,1}^k][N_1+d_1)-kd_1}{N_1}-1\right)}{p(e)} $ $ \frac{p(e)}{100\chi} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Interestingly, leverage goes up.

Table	e 3: Steady State Properties of the Mo	odel			
Variable meaning	Variable name	Unobserve	d Effort	Observed Effort	
		Leverage Re	striction	Leverage Re	estrictio
		non-binding	binding	non-binding	bindir
Spread	$400(R_g^d - R)$	0.600	0.211	NA	
scaled consumption	С	1.84	1.88	2.01	Ī
labor	h	1.18	1.16	1.15	Ī
scaled capital stock	k	51.52	51.40	59.75	Γ
bank assets	N+d	51.52	51.31	59.55	T
bank net worth	N	2.58	3.02	2.58	Ī
bank deposits	d	48.94	48.29	56.98	Ī
bank leverage	(N+d)/N	20.00	17.00	23.12	Ī
bank return on equity (APR)	$400 \left(\frac{\left[p(e_t) R_{\mu_1}^g + (1 - p(e_t)) R_{\mu_1}^b \right] (N_t + d_t) - R_t d_t}{N_t} - 1 \right)$	4.59	14.96	4.59	
fraction of firms with good balance sheets	p(e)	0.962	0.982	1.000	Ī
Benefit of leverage (in c units)	100χ	NA	1.19	NA	Ī
Benefit of making effort observable (in c units)	100χ	ŇA	NA	6.11	Ī

Cut in leverage in the unobserved effort economy moves things towards observed effort.


Table 3: Steady State Properties of the Model						
Variable meaning	Variable name	Unobserved Effort		Observed Effort		
		Leverage Restriction		Leverage Restriction		
		non-binding	binding	non-binding	binding	
Spread	$400(R_g^d - R)$			NA	NA	
scaled consumption	c	Ī	_	2.01	1.95	
labor	h		_	1.15	1.14	
scaled capital stock	k			59.75	53.86	
bank assets	N+d		_	59.55	53.68	
bank net worth	N			2.58	3.16	
bank deposits	d		_	56.98	50.52	
bank leverage	(N+d)/N		_	23.12	17.00	
bank return on equity (APR)	$400 \left(\frac{\left[p(e_t) R_{\mu_1}^g + (1 - p(e_t)) R_{\mu_1}^b \right] (N_t + d_t) - R_t d_t}{N_t} - 1 \right)$			4.59	17.63	
fraction of firms with good balance sheets	p(e)			1.000	1.000	
Benefit of leverage (in c units)	100χ			NA	-2.70	
Benefit of making effort observable (in \emph{c} units)	100χ		/ [6.11	2.03	

Hidden effort assumption is essential. Otherwise, leverage restriction reduces utility.

Dynamics

- Here, we consider the dynamic effects of two shocks
 - shock to monetary policy
 - lump sum shock to net worth

$$R_t = 0.80R_{t-1} + (1 - 0.80)[1.5\pi_{t+1} + 0.5g_{y,t}] + \varepsilon_t^p$$

 $\varepsilon_0^p = +25$ annual basis points

Rise in:

leverage cross-sectional dispersion of bank performance

Conclusion

- Described a model in which there is a problem that is mitigated by the introduction of leverage restrictions.
- Described some loose tests of the model by looking at its dynamic implications.
- Studied steady state implications of leverage.
- Currently exploring what are the optimal dynamic properties of leverage. Conjecture:
 - leverage restrictions useful in a boom, so banks to build up a lot of net worth then.
 - so, when a recession occurs, banks have enough net worth to shield depositors from losses on bank balance sheets.