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Background

• The Kalman filter is a powerful tool, which can be used in a
variety of contexts.

— can be used for filtering and smoothing.

• To help make it concrete, we will derive the filter here.

— basic tool for forecasting, and for computing forecast
confidence intervals.



State Space/Observer Form
• Canonical representation of data:

xt = Fxt−1 + ut, Eutu0t = Q,

Ydata
t = a+Hxt +wt, Ewtw0t = R,

where
— wt, us are iid over time and uncorrelated for all s, t.
— ut’s uncorrelated with past xt’s.
— wt’s uncorrelated with xt’s at all leads and lags.
— Eigenvalues of F all less than 1 in absolute value.

• Let Yt denote demeaned data, Yt ≡ Ydata
t − a,

• Will derive the Kalman filter, which solves the projection
problem:

Yt+j|t ≡ P
!
Yt+j|Yt

"
, xt+j|t ≡ P

h
xt+j|Yt

i
, j > 0

where Yt ≡ [Y1, ..., Yt] . We simplify by setting wt = 0 for all t.



Example of Projection
• Let the log wage rate, w, and log price level, p, be

w = z+ u
p = z+ v,

where u and v are uncorrelated with each other and with z. All
have zero mean.

• Suppose you observe w, but what you’re really interested in is
w− p.
— obviously a move in w that reflects z is not interesting to you.

• You form the projection,

P [w− p|w] ≡ aw,

where a solves
min

a

E [w− p− aw]2



Orthogonality Property of Projections:
• Projection solves a particular optimization problem:

min
a

E [w− p− aw]2

• First order condition:

E

projection errorz }| {
[w− p− aw]w = 0 !

a =
E (w− p)w

Ew2

=
E (u− v) (z+ u)

E (z+ u)2

=
s

2
u

s

2
u + s

2
z
=

s

2
u/s

2
z

s

2
u/s

2
z + 1

• Orthogonality of projections: projection error uncorrelated with
information, w, used in computing the projection.



The Filter

• Will compute projections:

xt+1|t, Yt+1|t,

recursively:
)

x1|0, Y1|0

*
,
)

x2|1, Y2|1

*
, ...,

)
xT+1|T, YT+1|T

*

• Will simultaneously compute measures of uncertainty:

Pt+1|t = E
h
xt+1 − xt+1|t

i h
xt+1 − xt+1|t

i0



Forecasts of the Data
• Will focus primarily on forecasting xt because forecasts of Yt
easy to read from forecast of xt

P
!
Yt+j|Yt

"
= P

2

4Hxt+j +

uncorrelated with everything in Ytz}|{
wt+j |Yt

3

5

= HP
h
xt+j|Yt

i
+ P

!
wt+j|Yt

"
= Hxt+j|t.

• Also,

E
h
Yt+j − Yt+j|t

i h
Yt+j − Yt+j|t

i0

= E
h
Hxt+j +wt+j −Hxt+j|t

i h
Hxt+j +wt+j −Hxt+j|t

i0

= E
h
H
)

xt+j − xt+j|t

*
+wt+j

i h)
xt+j − xt+j|t

*
H0 +wt+j

i0

= HPt+j||tH
0 + R.



First Date of the Filter
• At t = 0 have Y0 = f, the empty set.
• So,

x1|0 = P [x1|Y0] = Ex1 = 0,

the unconditional expectation. Also,

P1|0 = E
h
x1 − x1|0

i h
x1 − x1|0

i0
= V,

say, where V denotes the variance of x1.
• Compute V by solving the Ricatti equation:

V = E [Fxt−1 + ut] [Fxt−1 + ut]
0 = FVF0 +Q

• Most robust way to find V is V = V• in:

— Set V0 to be any pos. def. matrix, compute
Vj+1 = FVjF0 +Q, j = 0, 1, 2, ...



An Intermediate Date with the Filter

• Suppose we have xt|t−1, Pt|t−1 in hand.

• We now receive a new observation, Yt.

• Want to compute
xt+1|t, Pt+1|t.

• We do this in two steps:

— First, compute xt|t, Pt|t. Second, compute xt+1|t, Pt+1|t.



First Step for the Filter

• Basic recursive property of projections:

xt|t = xt|t−1+P

2

664

forecast error in xt|t−1z }| {
xt − xt|t−1 |

new information in Yt not in Yt−1z }| {
Yt −Hxt|t−1| {z }

≡Yt|t−1

3

775

• This formula is obviously ‘correct’ in the special case where the
information in Yt allows you to compute the forecast error,
xt − xt|t−1, exactly.

• Has a learning interpretation

— you update your old guess, xt|t−1, about xt using what is new
about the information in Yt, i.e., using Yt −Hxt|t−1.



First Step for the Filter
• Write

xt|t = xt|t−1 + P
h
xt − xt|t−1|Yt −Hxt|t−1

i

= xt|t−1 + at

h
Yt −Hxt|t−1

i
,

where the matrix, at, solves

min
at

E
h
xt − xt|t−1 − at

)
Yt −Hxt|t−1

*i2

• First order condition associated with optimality:

E
h
xt − xt|t−1 − at

)
Yt −Hxt|t−1

*i h
Yt −Hxt|t−1

i0
= 0,

which again is the orthogonality of projections.



First Step for the Filter
• First order condition implies:

E
h
xt − xt|t−1

i h
Yt −Hxt|t−1

i0

= atE
)

Yt −Hxt|t−1

* )
Yt −Hxt|t−1

*0

or,

Pt|t−1z }| {
E
h
xt − xt|t−1

i h
xt − xt|t−1

i0
H0

= atH

Pt|t−1z }| {
E
)

xt − xt|t−1

* )
xt − xt|t−1

*0
H0,

so that

at = Pt|t−1H0
)

HPt|t−1H0
*−1

.



First Step for the Filter
• We conclude

xt|t = xt|t−1 + Pt|t−1H0
)

HPt|t−1H0
*−1 h

Yt −Hxt|t−1

i
.

• With xt|t in hand, we move on to Pt|t :

Pt|t = E
h
xt − xt|t

i h
xt − xt|t

i0

= E

2
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orthogonal to (Yt−Hxt|t−1)z }| {
xt − xt|t−1 − at

)
Yt −Hxt|t−1

*

3
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×
h
xt − xt|t−1 − at

)
Yt −Hxt|t−1

*i0

= E
h
xt − xt|t−1 − at

)
Yt −Hxt|t−1

*i h
xt − xt|t−1

i0
,

by orthogonality.



First Step for the Filter

• From the previous slide,

Pt|t = E
h
xt − xt|t−1 − at

)
Yt −Hxt|t−1

*i h
xt − xt|t−1

i0

= Pt|t−1 − Pt|t−1H0
)

HPt|t−1H0
*−1

HPt|t−1

completing the derivation of xt|t and Pt|t.
• Now we proceed to the second step, to compute xt+1|t and

Pt+1|t.



Second Step for the Filter

• By linearity of projections:

xt+1|t = Fxt|t +

=0z }| {
ut+1|t.

• It follows that:

xt+1|t =

forecast, xt+1|t−1, based on t−1 info, Yt−1z }| {
Fxt|t−1

+

Kalman gain matrix, Ktz }| {
FPt|t−1H0

)
HPt|t−1H0

*−1
new informationz }| {h
Yt −Hxt|t−1

i
.

• Next, Pt+1|t....



Second Step for the Filter
• Finally,

Pt+1|t = E
h
xt+1 − xt+1|t

i h
xt+1 − xt+1|t

i0

= E
h
F
)

xt − xt|t

*
+ ut+1

i h
F
)

xt − xt|t

*
+ ut+1

i0

= FPt|tF
0 +Q

= F
1

Pt|t−1 − Pt|t−1H0
)

HPt|t−1H0
*−1

HPt|t−1

2
F0 +Q.

• Done! We now have
)

x1|0, P1|0

*
, ...,

)
xT+1|T, PT+1|T

*

and also )
x1|1, P1|1

*
, ...,

)
xT|T, PT|T

*



Forecasting

• We have the one-step-ahead forecast and its uncertainty:

xT+1|T, PT+1|T

• Then,

xT+2|T = P [xT+2|Yt] =

=FxT+1|Tz }| {
FP [xT+1|YT] +

=0z }| {
P [uT+2|YT]

and so on:
xT+j|T = Fj−1

xT+1|T.



Forecasting
• Want measures of forecast uncertainty.
• For T+ 2 :

PT+2|T = E
h
xT+2 − xT+2|T

i h
xT+2 − xT+2|T

i0

= E
h
F
)

xT+1 − xT+1|T

*
+ uT+2

i h
F
)

xT+1 − xT+1|T

*
+ uT+2

i0

= FPT+1|TF0 +Q

• Similarly, for j > 1

PT+j|T = E
h
xT+j − xT+j|T

i h
xT+j − xT+j|T

i0

= E
h
F
)

xT+j − xT+j|T

*
+ uT+j

i

×
h
F
)

xT+j − xT+j|T

*
+ uT+j

i0

= FPT+j−1|TF0 +Q



Forecasting

• Note, as j ! •,
— PT+j|T ! V
— xT+j|T ! 0

• These features follow from the fact that the eigenvalues of F
are less than unity in absolute value.

• Message: for observations far in the future, available data not
helpful and might as well just guess the uconditional mean,
with forecast error variance equal to unconditionarly



Smoothing

• We have reviewed filtering, which is what is used in forecasting
(and, calculation of likelihood).

• Also useful to do smoothing :

P [xt|YT] , t = 1, 2, ..., T.

Smoothing gives the best guess about the value taken on by a
variable that is in the model (like the output gap, or the natural
rate of interest), but that is not contained among the observed
data.

— Derivations of the Kalman smoother first derive the Kalman
filter, as we did, and then derive the smoother as a second step.


