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Background

e The Kalman filter is a powerful tool, which can be used in a
variety of contexts.

— can be used for filtering and smoothing.

e To help make it concrete, we will derive the filter here.

— basic tool for forecasting, and for computing forecast
confidence intervals.



State Space/Observer Form

e Canonical representation of data:

¢ = FCiq+u, Euui=Q,
Y{# = a4+ HZ +w, Ewaw} =R,

where

— w;, Ug are iid over time and uncorrelated for all s, t.

— ut's uncorrelated with past ¢,'s.

— wy's uncorrelated with ¢,'s at all leads and lags.

Eigenvalues of F all less than 1 in absolute value.

o Let Y} denote demeaned data, Y; = Y — g,

o Will derive the Kalman filter, which solves the projection
problem:

Yy =P [Yeujl V], Coyje =P [Ct+j|)7t] ,j>0

where YV} = [Yq, ..., Yi] . We simplify by setting w; = 0 for all t.



Example of Projection

o Let the log wage rate, w, and log price level, p, be

w = z+u
p = z+7,

where u and v are uncorrelated with each other and with z. All
have zero mean.
e Suppose you observe w, but what you're really interested in is
w—p.
— obviously a move in w that reflects z is not interesting to you.

e You form the projection,
Plw — plw] = aw,

where « solves
minE [w — p — aw]?
o



Orthogonality Property of Projections:

e Projection solves a particular optimization problem:
min E [w — p — aw)?
o

e First order condition:

projection error
—N—
Elw—p—awjw = 0—
E(w—p)w
Ew?
E(u—0o)(z+u)
E(z+u)?
0w 0u/o?
o2 +02 03/t +1
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e Orthogonality of projections: projection error uncorrelated with
information, w, used in computing the projection.



The Filter

e Will compute projections:

Cer1jtr Yevtr

recursively:

(51\0/ Y1\o> y (Cz|1/Y2|1> (§T+1\T/ YT—H\T)

o Will simultaneously compute measures of uncertainty:

Pt+1\t =E [Ct+l - Ct+1|t} [‘:tﬂ - §t+1t]/



Forecasts of the Data

e Will focus primarily on forecasting ¢; because forecasts of Y;
easy to read from forecast of ¢,

uncorrelated with everything in )y

PN
P[Y1yjlY] = P|HG;+ Wy f |V

= HP |:§t+j‘yti| + P [wtﬂ"yt] = H€t+j|t.

° A|SO,

- /
E _YH]' - Yt+j|t} [Yt+]' - Yt+]'|t]

- /
= E _H€t+j T Weyj — H§t+j|t} [H§t+j + Wy — Hé{fﬂ'\f]

- /
= E|H (Ct+j - Ct+]’\t> + wt+j] [(Ct+]' - Ct+j|t> H' + wt—&-]}




First Date of the Filter

At t = 0 have )y = ¢, the empty set.
So,
G1j0 = P[61]d0] = E¢; =0,

the unconditional expectation. Also,

Pyjo=E {(;(1 - 51\0] [Cl - §1|0}/ =V,

say, where V' denotes the variance of ¢.
Compute V by solving the Ricatti equation:
V =E[F§_q +ug] [F¢,_1 +u)' = FVF' +Q

Most robust way to find Vis V = V in:

— Set V| to be any pos. def. matrix, compute
Viqi=FV;FF+Q,j=0,12,..



An Intermediate Date with the Filter

Suppose we have Cy;_1, Py; 1 in hand.
We now receive a new observation, Y;.

Want to compute
Crv1ler Pryar-

We do this in two steps:

— First, compute ¢y, Py;. Second, compute & )y, Priqs-



First Step for the Filter

e Basic recursive property of projections:

forecast error in [:t|t71 new information in Y} not in Y;_q

— ——

Cop = Cop—1 +P Gt — Cre—1 | Yy — HGy 4
——

=Yy

e This formula is obviously ‘correct’ in the special case where the
information in Y} allows you to compute the forecast error,

e Has a learning interpretation

— you update your old guess, Ct|t71/ about ¢; using what is new
about the information in Yy, i.e., using Yy — HGy;_;.



First Step for the Filter
e Write
& = o1+ P |& — G |Ye — HE g
= Gyt [Ye— Hega)

where the matrix, «;, solves

rrkitnE [Ct = Chlp—1 — Mt (Yt - H‘ftlt—lﬂz

e First order condition associated with optimality:

E [gt = Che-1 — & (Yt - HCt|t71)} [Yt - H€t|t1y =0,

which again is the orthogonality of projections.



First Step for the Filter

e First order condition implies:

E [ét - Ct\t—l] [Yt —Hétt—J/
= wE <Yt - H§t|t71> (Yt - HCttl>/

or,

Py
E (6~ Gy [~ G| H
Pt|/t:1
= oaHE (‘:t - ‘:t|t—1> (‘:t - ‘:t|t—1>lH/r
so that

! A\ !
Xy = Pt\t—lH (Hpt|t—1H> :



First Step for the Filter

e We conclude

-1
8t = Cepp—1 + Py H' <Hpt|t71H,> [Yt - H(;It|t71} :

e With ¢y, in hand, we move on to Py :

Pt\t = E[@t“:t\t] [@t_éﬂt}/

orthogonal to (Yt_HCﬂtfl)

=~

= E |G — §t|t—1 — (Yt - H§t|t—1)

X [Ct — (ft‘t_l — oy (Yt - HCt|t—1):
= E [Ct — Cpj—1 — Mt (Yt - Hgt\t—l)] [gt - ét|t—1}/'

by orthogonality.

/




First Step for the Filter

e From the previous slide,
/
Py, = E [ét — Cylr—1 — &t (Yt - H§t|t—1)] [Ct - ‘:t\t—l]
-1
= Pyq— Py H <Hpt|t71H/> HPy; 4

completing the derivation of ¢;; and Py;.
» Now we proceed to the second step, to compute ¢; ), and

Pyyqjp-



Second Step for the Filter

e By linearity of projections:
=0
Cor1)e = FCyp +Uprqs-
e |t follows that:

forecast, §;yq|;_1, based on {—1 info, J; 4

—
Ct+1|t = th\tfl

Kalman gain matrix, Ky new information

)

7 _ /_/_
+Ppt|t—1H/ (Hpt\t—lHl> 1 [Yt - H§t|t—1]-

o Next, Ppiqjp....



Second Step for the Filter
e Finally,
Pt+1|t = E :Ct+1 _€t+1|t} [€t+1 —§t+1t]l

= E :F (é‘t - §t|t> +ut+1} [F <§t - §t|t> +Mt+1}/
— FP_t‘tF/—i—Q

—1
= F [Py~ Py_1H (HPt|t—1Hl> HPtt—l} F' +Q.

e Done! We now have

(C1|OIP1\0> o <§T+1\T/ PT+1|T>

and also

<§1|1zP1\1> s <§T\T/PT|T>



Forecasting

e \We have the one-step-ahead forecast and its uncertainty:

S Pryar
e Then,

:FCTH\T =0

Crior = P (112l = FP (71| V1] + P [ur2| V1]

and so on:
_ i1
Srejir = Graayr-



Forecasting

e Want measures of forecast uncertainty.
e ForT+2:

Prigr = E [§T+2 - §T+2|T] [§T+2 - €T+2T],
= E [F <CT+1 - CT+1|T> + ”T+2] {F (CTH - §T+1\T>
= FProqrF' +Q
e Similarly, for j > 1
Projr = E [fry— Gragr] [Grey — Srage]
= E [F (§T+j - §T+j\T) +”T+j]
X [F <§T+j - §T+j\T> +”T—i—]}/

= FPryjqrF +Q



Forecasting

e Note, as j — oo,
= Pryjr =V
- §T+j|T —0
e These features follow from the fact that the eigenvalues of F
are less than unity in absolute value.

e Message: for observations far in the future, available data not
helpful and might as well just guess the uconditional mean,
with forecast error variance equal to unconditionarly



Smoothing

e We have reviewed filtering, which is what is used in forecasting
(and, calculation of likelihood).

e Also useful to do smoothing:

PE|Vr], t=1,2,..,T.

Smoothing gives the best guess about the value taken on by a
variable that is in the model (like the output gap, or the natural
rate of interest), but that is not contained among the observed
data.

— Derivations of the Kalman smoother first derive the Kalman
filter, as we did, and then derive the smoother as a second step.



