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Dynamic Factor Models and Factor

Augmented Vector Autoregressions

e Problem:
— the time series dimension of data is relatively short.
— the number of time series variables is huge.

e DFM's and FAVARs take the position:

— there are many variables and, hence, shocks,
— but, the principle driving force of all the variables may be just
a small number of shocks.
e Factor view has a long-standing history in macro.
— almost the definition of macroeconomics: a handfull of shocks
- demand, supply, etc. - are the principle economic drivers.
— Sargent and Sims: only two shocks can explain a large fraction
of the variance of US macroeconomic data.
e 1977, “Business Cycle Modeling Without Pretending to Have
Too Much A-Priori Economic Theory,” in New Methods in
Business Cycle Research, ed. by C. Sims et al., Minneapolis:
Federal Reserve Bank of Minneapolis.



Why Work with a Lot of Data?

e Estimates of impulse responses to, say, a monetary policy
shock, may be distorted by not having enough data in the
analysis (Bernanke, et. al. (QJE, 2005))

— Price puzzle:

e measures of inflation tend to show transitory rise to a monetary
policy tightening shock in standard (small-sized) VARs.

e One interpretation: Monetary authority responds to a signal
about future inflation that is captured in data not included in a
standard, small-sized VAR.

e May suppose that ‘core inflation’ is a factor that can only be
deduced from a large number of different data.

e May want to know (as in Sargent and Sims), whether the data
for one country or a collection of countries can be characterized
as the dynamic response to a few factors.



Outline

Describe Dynamic Factor Model
— ldentification problem and one possible solution.

Derive the likelihood of the data and the factors.

Describe priors, joint distribution of data, factors and
parameters.

Go for posterior distribution of parameters and factors.

— Gibbs sampling, a type of MCMC algorithm.

— Metropolis-Hastings could be used here, but would be very
inefficient.

— Gibbs exploits power of Kalman smoother algorithm and the
type of fast ‘direct sampling’ done with BVARS.

FAVAR



Dynamic Factor Model

Let Y; denote an n X 1 vector of observed data
Y} related to ¥ < n unobserved factors, f;, by measurement
(or, observer) equation:

vector of k factor loadings idiosyncratic component of y;;
/ ’ )
Vit = a; + Aj fr + Cit

Law of motion of factors:

fr = ‘Po,lftfl +ot ‘Po,pft—v/ + Uot, Ut ™~ N (0,%).

Idiosyncratic shock to y;; (‘measurement error’):

Cit = PinCip1 T o+ @y Cipp, T Uiy Ui ™~ N <0/ ‘71‘2) :

ujt, 1 =0,...,n, drawn independently from each other and over
time.
For convenience:

pi=p, foralli, g <p+1.



Notation for Observer Equation

e Observer equation:

vie = ai+Afi +3;;
Cit = Pi1Git—1 T T i Cipp, +ttip, tig ~N (01 ‘71‘2> :

o Let 6; denote the parameters of the i" observer equation:

2
v; $i1
a; . .
91' = /\l. ’ (Pi = : s 1= 1/""”'
" 1
(2+K+p) x1 4)1 (Plrp



Notation for Law of Motion of Factors

e Factors:

_ft == 4)0’1ft—1 + ...+ ¢0’qft—q + u()’t, l/l(),t ~ N (0, ZO) .

o Let 6y denote the parameters of factors:

5, 4’(?,1
\99./ :[470}'\4)9_/: 4’(:),51

All model parameters:

6 = [00,061, ..., 0,]



Identification Problem in DFM
o DFM:
Vie = ai+AMfr +8&;
fo = ¢orfier+ o Poftg + o o ~ N (0,X0)
Cit = PinCip—1t TP Cirp t Ui

7

e Suppose H is an arbitrary invertible k¥ X k¥ matrix.
— Above system is observationally equivalent to:
vie = ai+Af +8&,
ft == &)O,U?t_l + .+ @O,qft—q + ﬁO,t ~ N (O, 20) ’
where
~ ~/ _ ~ _ ~
fr=Hf,, Ai=MH", §o; = Hpy;H ', L9 = HLH, .

e Desirable to restrict model parameters so that there is no
change of parameters that leaves the system observationally
equivalent, yet has all different factors and parameter values.



Geweke-Zhou (1996) Identification

¢ Note for any model parameterization, can always choose an H
so that 2o = Ii.
— Find C such that CC' = X (there is a continuum of these),
set H=C"1.
o Geweke-Zhou (1996) suggest the identifying assumption,
>0 = Ix.
— But, this is not enough to achieve identification.
— Exists a continuum of orthonormal matrices with property,
CC' = I.
e Simple example: for x = 2, for each w € [, 7],

cos(w)  sin(w)

€= —sin (w) cos (w) 2(

, 1= cos? (w) + sin” (w)

— For each C, set H = C~! = C’. That produces an
observationally equivalent alternative parameterization, while
leaving intact the normalization, Xy = I, since

HYyH' =C'C=C"IC=1I,.



Geweke-Zhou (1996) Identification

o Write:
AT
IV [ Aix ]
A= Mot | = K Nx~KXK
| A

e Geweke-Zhou also require A . is lower triangular.

— then, in simple example, only orthonormal matrix C that
preserves lower triangular Aq . is lower triangular (i.e., b =0,

a=+1).
o Geweke-Zhou resolve identification problem with last

assumption: diagonal elements of A, non-negative (i.e., a =1
in example).



Geweke-Zhou (1996) Identification

e l|dentifying restrictions: A1y is lower triangular, Xo = I.

— Only first factor, f1;, affects first variable, yq ;.
— Only f1; and fo; affect vy, etc.

e Ordering of y;; affects the interpretation of the factors.
o Alternative identifications:

— X diagonal and diagonal elements of A, equal to unity.
— X unrestricted (positive definite) and Aj, = Ii.



Next:

e Move In direction of using data to obtain posterior distribution
of parameters and factors.

e Start by going after the likelihood.



Likelihood of Data and Factors

e System,i=1,...,n:

vie = ai+Afi +8;;
ft = Qbol]ft_l + ...+ (Po,qft—q + Uo,t, Uot ™~ N (0, Zo)
Cit Gi1Cit1 T o TPy Cisp Ui

e Define:

¢; (L) =@y + o+ ¢, LP 1, Lty =211
e Then, the quasi-differenced observer equation is:

[1—¢; (L) Llyie = [1—¢;(D]ai+Ai[1 - ¢; (L) L]fi

Uit
o

+[1 -9, (L) L] &,




Likelihood of Data and of Factors

¢ Quasi-differenced observer equation:
Yie = ¢; (L) Yig-1 + (L= @i (V)] ai + A [1— ¢, (L) L] fi + uyy
e Consider the MATLAB notation:
X1ty = Xty oo Xty
e Note: y;, conditional on y;; ,.t—1, fe—p:t, 0, is Normal:

p (yi,tlyi,tfp:tflzﬁ—p:t/ 91’)
~ N (9 (L) g+ 1= ¢y (D] ai A [1 = 9, (L) LI, 0F )



Likelihood of Data and of Factors

e Independence of u;;'s implies the conditional density of
Y=yt -+ Ynt]:

n
Hp (yi,t|yi,tfp:t—l/ft—p:t/ 91') .
i=1

e Density of f; conditional on f; ¢ 1 :

p (ft |ft7q:t71/ 00) .

¢ Conditional joint density of Y, f;

Hp (yi,t|yi,tfp:t71/fi—p:tz 91’) p (ftlftfq:tfl/ 90) .

i=1



Likelihood of Data and of Factors

e Likelihood of Y, 1.1, fyo1.T, conditional on initial conditions:
p+1:T/ fp+

p (Yp+1:Trfp+1:T’Y1:pzfp—q:p, 9)
T n
- H [Hp (yi,t|yi,t—p:t—1/ftfp:tz 91’) p (ftlft—q:t—l, 90)]
t=p+1 [i=1
e Likelihood of initial conditions:
P (lep/fpfq+1:p|9)
= p (Yiplfp—g+1:p,0) P (fo—q+15/60)

e Likelihood of Y1.1, f,— 4.1 conditional on parameters only, 6 :

T n
I [HP (Wit Vi p—pit—1,fr—pets 0i) P (Felfi—gqit—1s 90)]

t=p+1 |i=1
Xp (lep U:pfq+1:p/ 0, i=1, ..,1’1) P (fp*l]+1ip|90)



Joint Density of Data, Factors and
Parameters

e Parameter priors: p (6;),i=0,...,n.
e Joint density of Yy.1, fyg.1, 0

H p (felfi—gi—1,60) HP Vi

t=p+1

HP (Yirplfo—gr1,0) P (8:) | P (fr—g2160) P (60)

e From here on, drop the density of initial observations.
— if T is not too small, then has no effect on results.
— BVAR lecture notes describe an example of how to not ignore
initial conditions; for general discussion, see Del Negro and
Otrok (forthcoming, RESTAT, "Dynamic Factor Models with
Time-Varying Parameters: Measuring Changes in International
Business Cycles").

~1frpit, 01)




Outline

Describe Dynamic Factor Model (done!)
— ldentification problem and one possible solution.

Derive the likelihood of the data and the factors. (done!)

Describe priors, joint distribution of data, factors and
parameters. (done!)

Go for posterior distribution of parameters and factors.

— Gibbs sampling, a type of MCMC algorithm.

— Metropolis-Hastings could be used here, but would be very
inefficient.

— Gibbs exploits power of Kalman smoother algorithm and the
type of fast ‘direct sampling’ done with BVARS.

FAVAR



Gibbs Sampling

e |dea is similar to what we did with the Metropolis-Hastings
algorithm.



Gibbs Sampling versus Metropolis-Hastings

e Metropolis-Hastings: we needed to compute the posterior
distribution of parameters, 6, conditional on the data.

— output of Metropolis-Hastings algorithm: sequence of values of
0 whose distribution corresponds to the posterior distribution
of 6 given the data:

e Gibbs sampling algorithm: sequence of values of DFM model
parameters, 6, and unobserved factors, f, whose distribution
corresponds to the posterior distribution conditional on the
data: M o

0 ... 0

P=1r0 oo g

Histogram of elements in individual rows of P represent
marginal distribution of corresponding parameter or factor.



Gibbs Sampling Algorithm

e Computes sequence:

o) ... g
P=lso ... joo [=L1P1 o Pul.

e Given P,_1 compute Ps in two steps.
— Step 1: draw o) given Ps_1 (direct sampling, using approach
for BVAR)

— Step 2: drawf(s) given o) (direct sampling, based on
information from Kalman smoother).



Step 1: Drawing Model Parameters

e Parameters, 0

observer equation: a;, A
measurement error: o?, ¢
law of motion of factors: ¢o-

where the identification, Xy = I, is imposed.
— Algorithm must be adjusted if some other identification is used.
e For eachi:

— Draw a;, A;, (71.2 from Normal-Inverse Wishart, conditional on

the 4)5571)'5.
— Draw ¢, from Normal, given g;, A;, (71.2.



Drawing Observer Equation Parameters and
Measurement Error Variance

e The joint density of Y1.1, fy—g.1, 0 :

T n
H p (ft[ft—q:t—lfeo) HP (yi,t’yi,t—p:t—llftfp:t/ 91’)
t=p+1 i=1
n
xp(60) [ Ip(6:),
i=1

was derived earlier (but we have now dropped the densities
associated with the initial conditions).

e Recall,
_PAB) _ p(AB)
PR =5 ®) T TpaB)da




Drawing Observer Equation Parameters and

Measurement Error Variance

e Conditional density of 0; obtained by dividing joint density by
itself, after integrating out 6; :

| | B p (leTzfp—q:T/ 6)
P <61|Y11T’fP*41T’ {9] }]751> B fgip (Yl:T/fpfﬂliT’ 9) a0;

T
xp (91') H p (yi,t|yi,tfp:t71/ft—p:t/ 91’)
t=p+1

here, we have taken into account that the numerator and

denominator have many common terms.

e We want to draw 91(5) from this posterior distribution for 6;.
Gibbs sampling procedure:

(s—1)

— first, draw a;, A;, (Tiz taking the other elements of 6; from 6,

— then, draw other elements of 0; taking a;, A;, 012 as given.



Drawing Observer Equation Parameters and
Measurement Error Variance

e The quasi-differenced observer equation:

Vi, fi
]Q ™~ //_/t_\
Vit — @ (L) yig—1 = (1= ¢; (1)) a; + Aj[1 — ¢; (L) L] fe + u;,

or,
Ui = [1— ¢; (V)] a; + Alfis + i
" (1-¢,(1))
aj R — ¢
Ai:[/\i]'xl’t_[ fi }'
SO

~ /
Vip = Ajxip + Uiy,
(s—1)

where ; ; and x; are known, conditional on ¢;



Drawing Observer Equation Parameters and
Measurement Error Variance

e From the Normality of the observer equation error:
P (yi,t|yi,tfp:t71/ft—p:tz 91’)
2
o« L exp {_1 (Wip — [@; (L) yip—1 + Alxis]) }

0 2 0’1.2

_ 1 exp {—1 (Bt — A;xi/f)z }

o; 2 0'1.2

T

H P (YitlVip—pt—1.fr—p:ts 0;)
t=p+1

1 1 L (i — Alxiy)”
x UT—peXP{_E ). (i 5 ) }

t=p+1 i




Drawing Observer Equation Parameters and
Measurement Error Variance

e As in the BVAR analysis, express in matrix terms:

1 1 T 7 — Alx 2
p (vilyirp fr1, 0;) o T exp{_E y M}

o

1 1[y; — XA) [yi — XiAj]
= exp{ —=
p{ 2
where
Vip+1 Xipi1
fp+1:T :f(S—l)’ yi= ’ Xi == ’
vir x;T

where f; ., fixed (could set to unconditional mean of zero).

o Note: calculations are conditional on factors, f(*=1), from
previous Gibbs sampling iteration.



Including Dummy Observations

e As in the BVAR analysis, T dummy equations are one way to
represent priors, p (6;) :

T
P (91) H p (yi,t|yi,t—p:t—1/ﬁ—p:t; 61)
t=p+1

e Dummy observations (can include restriction that Aj . is lower
triangular by suitable construction of dummies)
7 = XA+ U,
Ui
U, = :
)
e Stack the dummies with the actual data:

w =B & -

(T—p+T)x1 (T—p+T)x(1+x)



Including Dummy Observations

e As in BVAR:
p (yi|yi,1:p/f1:Tr 91) p (/\i,tli|0'zz)
/
1 1 [zi - KiAi] [gi - XiAi}
o~ T exp —3 (71.2

1 1S+ (A — A) XiX; (A — A))
= exp i =5 .
1

- 1 ex —1 § ex _l(AZ _Ai)/}—q)—(i (Al _Az)




Inverse Wishart Distribution

e Scalar version of Inverse Wishart distribution with (i.e., m =1
in BVAR discussion) :

N ‘S*|V/2 ) _% B S*
r(7F) = o7 B T

degrees of freedom, v, and shape, S* (I denotes the Gamma
function).
e Easy to verify (after collecting terms), that

p (yi‘yi,lzprflzT/ 0:) p ()\i, ui|012> p (0’%)
= N (4,0 (xx)7)
XIWW+T—p+T—(k+1),5+5%).

e Direct sampling from posterior of distribution:
— draw (712 from ZW. Then, draw A; from N/, given (712



Draw Distributed Lag Coefficients in
Measurement Error Law of Motion
o Given A;,q;, 012, draw ¢;.
e Observer equation and measurement error process:
Vie = a;+Afi + Git
Cit = PinGip—1t ot Cipp T tig.
e Conditional on a;, A; and the factors, ¢;; can be computed from
Cir = Yip — ai — Alft,
so the measurement error law of motion can be written,
Piq Git—1
Cir = Afxi,t tuy, Ai=¢; = : ; Xip = :
¢i,p gi,t—p



Draw Distributed Lag Coefficients in
Measurement Error Law of Motion

e The likelihood of ¢;, conditional on x;; is

P(Ci,t xi,t/(Pi/Uzz) = N (Agx"'t’aa
2
_ ip{_;w}

0; 0;

where (712, drawn previously, is for present purposes treated as
known.

e Then, the likelihood of &; ,, 1, ..., &7 is

2
P <§i,p+1:T Xip+1, Pjs Ui)




Draw Distributed Lag Coefficients in
Measurement Error Law of Motion

T
Yo (& — Alig) = [y — XA [vi — XiAl),
t=p+1
where
Cipt1 xz/',p+1
yi= [ : , Xi= : ,
it X,




Draw Distributed Lag Coefficients in
Measurement Error Law of Motion

e |f we impose priors by dummies, then

p (gi,erl:T Xip+1, Pir U?) p(¢;)
/
y,— XiAi| |y, — XA
- (cri)lT_” P _% L ]af[ ] ’

where v, and X; represents the stacked data that includes
dummies.
e By Bayes' rule,

(0t 0?) = (4068 (537

So, we draw ¢, from N </_li, o? (XIX) 71) .



Draw Parameters in Law of Motion for

Factors

Law of motion of factors:

fr = ¢O,1ﬁ—1 +ot 4)0,4ft—q + Uot, Ut ™~ N (0, %)

The factors, f, 1.1, are treated as known, and they correspond
to f(5=1), the factors in the s — 1 iteration of Gibbs sampling.
By Bayes' rule:

P (Polfp+11) < (fr17ldg) P (¢0) -

The priors can be implemented by dummy variables.

— direct application of the methods developed for inference
about the parameters of BVARs.

Draw ¢, from N.



This Completes Step 1 of Gibbs Sampling

e Gibbs sampling computes sequence:

Bre ()

.0
P=lsm ... joo [=L1P1 - Pul.

e Given P,_1 compute Ps in two steps.

— Step 1: draw 6 given P,_; (direct sampling)
— Step 2: draw f) given 6° (Kalman smoother).

e We now have 8, and must now draw factors.

— This is done using the Kalman smoother.



Drawing the Factors

e For this, we will put the DFM in the state-space form used to
study Kalman filtering and smoothing.

— In that previous state space form, the measurement error was
assumed to be iid.

— We will make use of the fact that we have all model
parameters.

e The DFM:

vir = ai+Afr +&;,
fr = ‘Po,lft—l + ...+ ‘Po,qff—q + ugyt, Ugt ~ N (0,%)
Cit = Pinlip—1t ot ¢Cisp T Uip.
e This can be put into our state space form (in which the errors

in the observation equation are iid) by quasi-differencing the
observer equation.



Observer Equation
¢ Quasi differencing:

Yit constant

/\\

—N—
=g, Llyy = W=, (D]a+ A [1— ¢, (L) LIfi +uy
Then,

[ [1- 471' (1)] a; a1t fr
t ] ,yt ) ( ) , Ft ) ( )
L [1- sz( ) a; Un fi—p
(A — /1<P11 e —Mgy, ( Ui )
H = , Ut =

_A1/1 _/\/(Pnl _/\;l(Pn,p
t = a+HF+u




Law of Motion of the State

e Here, the state is denoted by F;.
e Law of motion:

/t P01 Po2 1 Pog Oxx(pri-g) fi—1
—1 IK OK OK 0;(><(p+1—q) fth
fi— = 0 L -+ O Oxx(erlfq) t-3
fe-p 0 0 - I 0K><(p'—|—1—q) fe-1-p
Uo,t
Kx1
+ OK><1
O1<.><1

e LoM:

Fy = ®F 1 +u, up ~ N (Ox(p+1)><l/ V(p+l)1<><(p+1);<) :




State Space Representation of the Factors

Observer equation:
yt =a+ HF; + u;.

Law of motion of state:

Fy = ®F;_1 + uy.

Kalman smoother provides:

P [Filiy, - ir) j=1,.., T,

together with appropriate second moments.

Use this information to directly sample () from the
Kalman-smoother-provided Normal distribution, completing
step 2 of the Gibbs sampler.



Factor Augmented VARs (FAVAR)

e Favar's are DFM's which more closely resemble macro models.

— There are observables that act like ‘factors’, hitting all
variables directly

— Examples: the interest rate in the monetary policy rule,
government spending, taxes, price of housing, world trade,
international price of oil, uncertainty, etc.

e The measurement equation:
Vie=ai+vyor +Afe + 8, i=1,.,n, t=1,..,T,

where yo; and 7; are m x 1 and 1 X m vectors, respectively.
e The vectors, yo; and f; follow a VAR:

[ft ] - q)o,l[ fi—1 }—f—...-I—CIDo,q{ fi—q }-i-uo,t,

Yot Yot-1 Yo,t—q
u(),t ~ N(O,Zo)



Literature on FAVARSs is Large

e Initial paper: Bernanke and Boivin (2005QJE), "Measuring the
Effects of Monetary Policy: A Factor-Augmented Vector
Autoregressive (FAVAR) Approach."

e Intention was to correct problems with conventional VAR-based
estimates of the effects of monetary policy shocks.

e Include a large number of variables:

— better capture the actual policy rule of monetary authorities,
which look at lots of data in making their decisions.

— include a lot of variables so that the FAVAR can be used to
obtain a comprehensive picture of the effects of a monetary
policy shock on the whole economy.

— Bernanke, et al, include 119 variables in their analysis.



Literature on FAVARSs is Large

e Literature is growing: "Large Bayesian Vector Autoregressions,"
Banbura, Giannone, Reichlin (2010Journal of Applied
Economicts), studies importance of including sectoral data to
get better estimates of impulse response functions to policy
shocks and a better estimate of their impact.

e DFM have been taken in interesting directions, more suitable
for multicountry settings, see, e.g., Canova and Ciccarelli
(2013,ECB WP1507)

e Time varying FAVARs: Eickmeier, Lemke, Marcellino, "Classical
time-varying FAVAR models - estimation, forecasting and
structural analysis," (2011Bundesbank Discussion Paper, no.
04/2011). Argue that by allowing parameters to change over
time, get better forecasts and characterize how the economy is
changing.



