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Dynamic Factor Models and Factor
Augmented Vector Autoregressions

• Problem:
— the time series dimension of data is relatively short.
— the number of time series variables is huge.

• DFM’s and FAVARs take the position:
— there are many variables and, hence, shocks,
— but, the principle driving force of all the variables may be just
a small number of shocks.

• Factor view has a long-standing history in macro.
— almost the definition of macroeconomics: a handfull of shocks
- demand, supply, etc. - are the principle economic drivers.

— Sargent and Sims: only two shocks can explain a large fraction
of the variance of US macroeconomic data.
• 1977, “Business Cycle Modeling Without Pretending to Have
Too Much A-Priori Economic Theory,” in New Methods in
Business Cycle Research, ed. by C. Sims et al., Minneapolis:
Federal Reserve Bank of Minneapolis.



Why Work with a Lot of Data?

• Estimates of impulse responses to, say, a monetary policy
shock, may be distorted by not having enough data in the
analysis (Bernanke, et. al. (QJE, 2005))

— Price puzzle:
• measures of inflation tend to show transitory rise to a monetary
policy tightening shock in standard (small-sized) VARs.

• One interpretation: Monetary authority responds to a signal
about future inflation that is captured in data not included in a
standard, small-sized VAR.

• May suppose that ‘core inflation’is a factor that can only be
deduced from a large number of different data.

• May want to know (as in Sargent and Sims), whether the data
for one country or a collection of countries can be characterized
as the dynamic response to a few factors.



Outline

• Describe Dynamic Factor Model
— Identification problem and one possible solution.

• Derive the likelihood of the data and the factors.
• Describe priors, joint distribution of data, factors and
parameters.

• Go for posterior distribution of parameters and factors.
— Gibbs sampling, a type of MCMC algorithm.
— Metropolis-Hastings could be used here, but would be very
ineffi cient.

— Gibbs exploits power of Kalman smoother algorithm and the
type of fast ‘direct sampling’done with BVARS.

• FAVAR



Dynamic Factor Model
• Let Yt denote an n× 1 vector of observed data
• Yt related to κ � n unobserved factors, ft, by measurement
(or, observer) equation:

yi,t = ai +

vector of κ factor loadings︷︸︸︷
λ′i ft +

idiosyncratic component of yi,t︷︸︸︷
ξi,t .

• Law of motion of factors:

ft = φ0,1ft−1 + ...+ φ0,qft−q + u0,t, u0,t ∼ N (0, Σ0) .

• Idiosyncratic shock to yi,t (‘measurement error’):

ξi,t = φi,1ξ i,t−1 + ...+ φi,pi
ξ i,t−pi

+ ui,t, ui,t ∼ N
(

0, σ2
i

)
.

• ui,t, i = 0, ..., n, drawn independently from each other and over
time.

• For convenience:

pi = p, for all i, q ≤ p+ 1.



Notation for Observer Equation

• Observer equation:

yi,t = ai + λ′ift + ξi,t

ξi,t = φi,1ξ i,t−1 + ...+ φi,pi
ξi,t−pi

+ ui,t, ui,t ∼ N
(

0, σ2
i

)
.

• Let θi denote the parameters of the ith observer equation:

θi︸︷︷︸
(2+κ+p)×1

=

 σ2
i

ai
λi
φi

 , φi =

 φi,1
...

φi,p

 , i = 1, ..., n.



Notation for Law of Motion of Factors

• Factors:

ft = φ0,1ft−1 + ...+ φ0,qft−q + u0,t, u0,t ∼ N (0, Σ0) .

• Let θ0 denote the parameters of factors:

θ0︸︷︷︸
κ(q+1)×κ

=
[ Σ0

φ0

]
, φ0︸︷︷︸

κq×κ

=

 φ0,1
...

φ0,q


• All model parameters:

θ = [θ0, θ1, ..., θn]



Identification Problem in DFM
• DFM:

yi,t = ai + λ′ift + ξi,t

ft = φ0,1ft−1 + ...+ φ0,qft−q + u0,t, u0,t ∼ N (0, Σ0)

ξi,t = φi,1ξi,t−1 + ...+ φi,pξi,t−p + ui,t.

• Suppose H is an arbitrary invertible κ × κ matrix.
— Above system is observationally equivalent to:

yi,t = ai + λ̃
′
i f̃t + ξ i,t

f̃t = φ̃0,1 f̃t−1 + ...+ φ̃0,q f̃t−q + ũ0,t ∼ N
(
0, Σ̃0

)
,

where

f̃t = Hft, λ̃
′
i = λ′iH

−1, φ̃0,j = Hφ0,jH
−1, Σ̃0 = HΣ0H′, .

• Desirable to restrict model parameters so that there is no
change of parameters that leaves the system observationally
equivalent, yet has all different factors and parameter values.



Geweke-Zhou (1996) Identification
• Note for any model parameterization, can always choose an H
so that Σ0 = Iκ.
— Find C such that CC′ = Σ0 (there is a continuum of these),
set H = C−1.

• Geweke-Zhou (1996) suggest the identifying assumption,
Σ0 = Iκ.
— But, this is not enough to achieve identification.
— Exists a continuum of orthonormal matrices with property,

CC′ = Iκ.
• Simple example: for κ = 2, for each ω ∈ [−π, π] ,

C =
[

cos (ω) sin (ω)
− sin (ω) cos (ω)

]
, 1 = cos2 (ω) + sin2 (ω)

— For each C, set H = C−1 = C′. That produces an
observationally equivalent alternative parameterization, while
leaving intact the normalization, Σ0 = Iκ, since
HΣ0H′ = C′C = C−1C = Iκ.



Geweke-Zhou (1996) Identification
• Write:

Λ =



λ1
...

λκ
λκ+1
...

λn

 =
[ Λ1,κ

Λ2,κ

]
, Λ1,κ ∼ κ × κ

• Geweke-Zhou also require Λ1,κ is lower triangular.

— then, in simple example, only orthonormal matrix C that
preserves lower triangular Λ1,κ is lower triangular (i.e., b = 0,
a = ±1).

• Geweke-Zhou resolve identification problem with last
assumption: diagonal elements of Λ1,κ non-negative (i.e., a = 1
in example).



Geweke-Zhou (1996) Identification

• Identifying restrictions: Λ1,κ is lower triangular, Σ0 = Iκ.

— Only first factor, f1,t, affects first variable, y1,t.
— Only f1,t and f2,t affect y2,t, etc.

• Ordering of yit affects the interpretation of the factors.

• Alternative identifications:
— Σ0 diagonal and diagonal elements of Λ1,κ equal to unity.
— Σ0 unrestricted (positive definite) and Λ1,κ = Ik.



Next:

• Move In direction of using data to obtain posterior distribution
of parameters and factors.

• Start by going after the likelihood.



Likelihood of Data and Factors
• System, i = 1, ..., n :

yi,t = ai + λ′ift + ξi,t

ft = φ0,1ft−1 + ...+ φ0,qft−q + u0,t, u0,t ∼ N (0, Σ0)

ξi,t = φi,1ξi,t−1 + ...+ φi,pξi,t−p + ui,t.

• Define:

φi (L) = φi,1 + ...+ φi,pLp−1, Lxt ≡ xt−1.

• Then, the quasi-differenced observer equation is:

[1− φi (L) L] yi,t = [1− φi (1)] ai + λ′i [1− φi (L) L] ft

+

ui,t︷ ︸︸ ︷
[1− φi (L) L] ξi,t



Likelihood of Data and of Factors

• Quasi-differenced observer equation:

yi,t = φi (L) yi,t−1 + [1− φi (1)] ai + λ′i [1− φi (L) L] ft + ui,t

• Consider the MATLAB notation:

xt1:t2 ≡ xtt , ..., xt2 .

• Note: yi,t, conditional on yi,t−p:t−1, ft−p:t, θi, is Normal:

p
(
yi,t|yi,t−p:t−1, ft−p:t, θi

)
∼ N

(
φi (L) yi,t−1 + [1− φi (1)] ai + λ′i [1− φi (L) L] ft, σ2

i

)



Likelihood of Data and of Factors

• Independence of ui,t’s implies the conditional density of
Yt = [ y1,t · · · yn,t ]

′ :

n

∏
i=1

p
(
yi,t|yi,t−p:t−1, ft−p:t, θi

)
.

• Density of ft conditional on ft−q:t−1 :

p
(
ft|ft−q:t−1, θ0

)
.

• Conditional joint density of Yt, ft :

n

∏
i=1

p
(
yi,t|yi,t−p:t−1, ft−p:t, θi

)
p
(
ft|ft−q:t−1, θ0

)
.



Likelihood of Data and of Factors
• Likelihood of Yp+1:T, fp+1:T, conditional on initial conditions:

p
(
Yp+1:T, fp+1:T|Y1:p, fp−q:p, θ

)
=

T

∏
t=p+1

[
n

∏
i=1

p
(
yi,t|yi,t−p:t−1, ft−p:t, θi

)
p
(
ft|ft−q:t−1, θ0

)]
• Likelihood of initial conditions:

p
(
Y1:p, fp−q+1:p|θ

)
= p

(
Y1:p|fp−q+1:p, θ

)
p
(
fp−q+1:p|θ0

)
• Likelihood of Y1:T, fp−q:T conditional on parameters only, θ :

T

∏
t=p+1

[
n

∏
i=1

p
(
yi,t|yi,t−p:t−1, ft−p:t, θi

)
p
(
ft|ft−q:t−1, θ0

)]
×p
(
Y1:p|fp−q+1:p, θi, i = 1, .., n

)
p
(
fp−q+1:p|θ0

)



Joint Density of Data, Factors and
Parameters

• Parameter priors: p (θi) , i = 0, ..., n.
• Joint density of Y1:T, fp−q:T, θ :

T

∏
t=p+1

p
(
ft|ft−q:t−1, θ0

) n

∏
i=1

p
(
yi,t|yi,t−p:t−1, ft−p:t, θi

)
×
[

n

∏
i=1

p
(
yi,1:p|fp−q+1:p, θ

)
p (θi)

]
p
(
fp−q+1:p|θ0

)
p (θ0)

• From here on, drop the density of initial observations.
— if T is not too small, then has no effect on results.
— BVAR lecture notes describe an example of how to not ignore
initial conditions; for general discussion, see Del Negro and
Otrok (forthcoming, RESTAT, "Dynamic Factor Models with
Time-Varying Parameters: Measuring Changes in International
Business Cycles").



Outline

• Describe Dynamic Factor Model (done!)
— Identification problem and one possible solution.

• Derive the likelihood of the data and the factors. (done!)
• Describe priors, joint distribution of data, factors and
parameters. (done!)

• Go for posterior distribution of parameters and factors.
— Gibbs sampling, a type of MCMC algorithm.
— Metropolis-Hastings could be used here, but would be very
ineffi cient.

— Gibbs exploits power of Kalman smoother algorithm and the
type of fast ‘direct sampling’done with BVARS.

• FAVAR



Gibbs Sampling

• Idea is similar to what we did with the Metropolis-Hastings
algorithm.



Gibbs Sampling versus Metropolis-Hastings
• Metropolis-Hastings: we needed to compute the posterior
distribution of parameters, θ, conditional on the data.

— output of Metropolis-Hastings algorithm: sequence of values of
θ whose distribution corresponds to the posterior distribution
of θ given the data:

P =
[

θ(1) · · · θ(M)
]

• Gibbs sampling algorithm: sequence of values of DFM model
parameters, θ, and unobserved factors, f , whose distribution
corresponds to the posterior distribution conditional on the
data:

P =
[

θ(1) · · · θ(M)

f (1) · · · f (M)

]
.

Histogram of elements in individual rows of P represent
marginal distribution of corresponding parameter or factor.



Gibbs Sampling Algorithm

• Computes sequence:

P =
[

θ(1) · · · θ(M)

f (1) · · · f (M)

]
= [ P1 · · · PM ] .

• Given Ps−1 compute Ps in two steps.

— Step 1: draw θ(s) given Ps−1 (direct sampling, using approach
for BVAR)

— Step 2: draw f (s) given θ(s) (direct sampling, based on
information from Kalman smoother).



Step 1: Drawing Model Parameters

• Parameters, θ

observer equation: ai, λi

measurement error: σ2
i , φi

law of motion of factors: φ0.

where the identification, Σ0 = I, is imposed.
— Algorithm must be adjusted if some other identification is used.

• For each i :

— Draw ai, λi, σ2
i from Normal-Inverse Wishart, conditional on

the φ
(s−1)
i ’s.

— Draw φi from Normal, given ai, λi, σ2
i .



Drawing Observer Equation Parameters and
Measurement Error Variance

• The joint density of Y1:T, fp−q:T, θ :

T

∏
t=p+1

[
p
(
ft|ft−q:t−1, θ0

) n

∏
i=1

p
(
yi,t|yi,t−p:t−1, ft−p:t, θi

)]

×p (θ0)
n

∏
i=1

p (θi) ,

was derived earlier (but we have now dropped the densities
associated with the initial conditions).

• Recall,

p (A|B) = p (A, B)
p (B)

=
p (A, B)∫

A p (A, B) dA



Drawing Observer Equation Parameters and
Measurement Error Variance

• Conditional density of θi obtained by dividing joint density by
itself, after integrating out θi :

p
(

θi|Y1:T, fp−q:T,
{

θj
}

j 6=i

)
=

p
(
Y1:T, fp−q:T, θ

)∫
θi

p
(
Y1:T, fp−q:T, θ

)
dθi

∝ p (θi)
T

∏
t=p+1

p
(
yi,t|yi,t−p:t−1, ft−p:t, θi

)
here, we have taken into account that the numerator and
denominator have many common terms.

• We want to draw θ
(s)
i from this posterior distribution for θi.

Gibbs sampling procedure:

— first, draw ai, λi, σ2
i taking the other elements of θi from θ

(s−1)
i .

— then, draw other elements of θi taking ai, λi, σ2
i as given.



Drawing Observer Equation Parameters and
Measurement Error Variance

• The quasi-differenced observer equation:

ỹi,t︷ ︸︸ ︷
yi,t − φi (L) yi,t−1 = (1− φi (1)) ai + λ′i

f̃i,t︷ ︸︸ ︷
[1− φi (L) L] ft + ui,t,

or,
ỹi,t = [1− φi (1)] ai + λ′i f̃i,t + ui,t.

• Let
Ai =

[ ai
λi

]
, xi,t =

[
(1− φi (1))

f̃i,t

]
,

so
ỹi,t = A′ixi,t + ui,t,

where ỹi,t and xt are known, conditional on φ
(s−1)
i .



Drawing Observer Equation Parameters and
Measurement Error Variance

• From the Normality of the observer equation error:

p
(
yi,t|yi,t−p:t−1, ft−p:t, θi

)
∝

1
σi

exp

{
−1

2

(
yi,t −

[
φi (L) yi,t−1 +A′ixi,t

])2

σ2
i

}

=
1
σi

exp

{
−1

2

(
ỹi,t −A′ixi,t

)2

σ2
i

}
• Then,

T

∏
t=p+1

p
(
yi,t|yi,t−p:t−1, ft−p:t, θi

)
∝

1

σ
T−p
i

exp

{
−1

2

T

∑
t=p+1

(
ỹi,t −A′ixi,t

)2

σ2
i

}
.



Drawing Observer Equation Parameters and
Measurement Error Variance

• As in the BVAR analysis, express in matrix terms:

p
(
yi|yi,1:p, f1:T, θi

)
∝

1

σ
T−p
i

exp

{
−1

2

T

∑
t=p+1

(
ỹi,t −A′ixt

)2

σ2
i

}

=
1

σ
T−p
i

exp

{
−1

2
[yi −XiAi]

′ [yi −XiAi]

σ2
i

}
,

where

fp+1:T = f (s−1), yi =

 ỹi,p+1
...

ỹi,T

 , Xi =

 x′i,p+1
...

x′i,T

 ,

where fq−p:p fixed (could set to unconditional mean of zero).
• Note: calculations are conditional on factors, f (s−1), from
previous Gibbs sampling iteration.



Including Dummy Observations
• As in the BVAR analysis, T̄ dummy equations are one way to
represent priors, p (θi) :

p (θi)
T

∏
t=p+1

p
(
yi,t|yi,t−p:t−1, ft−p:t, θi

)
• Dummy observations (can include restriction that Λ1,κ is lower
triangular by suitable construction of dummies)

ȳi = X̄iAi + Ūi,

Ūi =

 ui,1
...

ui,T̄

 .

• Stack the dummies with the actual data:

y
i︸︷︷︸

(T−p+T̄)×1

=
[ yi

ȳi

]
, Xi︸︷︷︸
(T−p+T̄)×(1+κ)

=

[
Xi
X̄i

]
.



Including Dummy Observations
• As in BVAR:

p
(
yi|yi,1:p, f1:T, θi

)
p
(

λi, ai|σ2
i

)
∝

1

σ
T+T̄−p
i

exp

−1
2

[
y

i
−XiAi

]′ [
y

i
−XiAi

]
σ2

i


=

1

σ
T+T̄−p
i

exp

{
−1

2
S+ (Ai −Ai)

′ X′iXi (Ai −Ai)

σ2
i

}

=
1

σ
T+T̄−p
i

exp

{
−1

2
S
σ2

i

}
exp

{
−1

2
(Ai −Ai)

′ X′iXi (Ai −Ai)

σ2
i

}
where

S =
[
y

i
−XiAi

]′ [
y

i
−XiAi

]
, Ai =

(
X′iXi

)−1 X′iyi
.



Inverse Wishart Distribution
• Scalar version of Inverse Wishart distribution with (i.e., m = 1
in BVAR discussion) :

p
(

σ2
i

)
=
|S∗|ν/2

2νΓ
[

ν
2

] ∣∣∣σ2
i

∣∣∣− ν+2
2 exp

{
− S∗

2σ2
i

}
,

degrees of freedom, ν, and shape, S∗ (Γ denotes the Gamma
function).

• Easy to verify (after collecting terms), that

p
(
yi|yi,1:p, f1:T, θi

)
p
(

λi, ai|σ2
i

)
p
(

σ2
i

)
= N

(
Ai, σ2

i
(
X′iX

)−1
)

×IW (ν+ T− p+ T̄− (κ + 1) , S+ S∗) .

• Direct sampling from posterior of distribution:
— draw σ2

i from IW . Then, draw Ai from N , given σ2
i



Draw Distributed Lag Coeffi cients in
Measurement Error Law of Motion

• Given λi, ai, σ2
i , draw φi.

• Observer equation and measurement error process:

yi,t = ai + λ′ift + ξi,t

ξi,t = φi,1ξi,t−1 + ...+ φi,pξi,t−p + ui,t.

• Conditional on ai, λi and the factors, ξi,t can be computed from

ξi,t = yi,t − ai − λ′ift,

so the measurement error law of motion can be written,

ξi,t = A′ixi,t + ui,t, Ai = φi =

 φi,1
...

φi,p

 , xi,t =

 ξi,t−1
...

ξi,t−p





Draw Distributed Lag Coeffi cients in
Measurement Error Law of Motion

• The likelihood of ξi,t conditional on xi,t is

p
(

ξi,t|xi,t, φi, σ2
i

)
= N

(
A′ixi,t, σ2

i

)
=

1
σi

exp

{
−1

2

(
ξi,t −A′ixi,t

)2

σ2
i

}
,

where σ2
i , drawn previously, is for present purposes treated as

known.
• Then, the likelihood of ξi,p+1, ..., ξi,T is

p
(

ξi,p+1:T|xi,p+1, φi, σ2
i

)
∝

1

(σi)
T−p exp

{
−1

2

T

∑
t=p+1

(
ξi,t −A′ixi,t

)2

σ2
i

}



Draw Distributed Lag Coeffi cients in
Measurement Error Law of Motion

T

∑
t=p+1

(
ξi,t −A′ixi,t

)2
= [yi −XiAi]

′ [yi −XiAi] ,

where

yi =

 ξi,p+1
...

ξi,T

 , Xi =

 x′i,p+1
...

x′i,T

 ,



Draw Distributed Lag Coeffi cients in
Measurement Error Law of Motion

• If we impose priors by dummies, then

p
(

ξi,p+1:T|xi,p+1, φi, σ2
i

)
p (φi)

∝
1

(σi)
T−p exp

−1
2

[
y

i
−XiAi

]′ [
y

i
−XiAi

]
σ2

i

 ,

where y
i
and Xi represents the stacked data that includes

dummies.
• By Bayes’rule,

p
(

φi|ξi,p+1:T, xi,p+1, φi, σ2
i

)
= N

(
Ai, σ2

i
(
X′iX

)−1
)

.

So, we draw φi from N
(

Ai, σ2
i
(
X′iX

)−1
)

.



Draw Parameters in Law of Motion for
Factors

• Law of motion of factors:

ft = φ0,1ft−1 + ...+ φ0,qft−q + u0,t, u0,t ∼ N (0, Σ0)

• The factors, fp+1:T, are treated as known, and they correspond
to f (s−1), the factors in the s− 1 iteration of Gibbs sampling.

• By Bayes’rule:

p
(
φ0|fp+1:T

)
∝ p

(
fp+1:T|φ0

)
p
(
φ0
)

.

• The priors can be implemented by dummy variables.
— direct application of the methods developed for inference
about the parameters of BVARs.

• Draw φ0 from N .



This Completes Step 1 of Gibbs Sampling

• Gibbs sampling computes sequence:

P =
[

θ(1) · · · θ(M)

f (1) · · · f (M)

]
= [ P1 · · · PM ] .

• Given Ps−1 compute Ps in two steps.

— Step 1: draw θ(s) given Ps−1 (direct sampling)
— Step 2: draw f (s) given θs (Kalman smoother).

• We now have θ(s), and must now draw factors.

— This is done using the Kalman smoother.



Drawing the Factors
• For this, we will put the DFM in the state-space form used to
study Kalman filtering and smoothing.

— In that previous state space form, the measurement error was
assumed to be iid.

— We will make use of the fact that we have all model
parameters.

• The DFM:

yi,t = ai + λ′ift + ξi,t

ft = φ0,1ft−1 + ...+ φ0,qft−q + u0,t, u0,t ∼ N (0, Σ0)

ξi,t = φi,1ξi,t−1 + ...+ φi,pξi,t−p + ui,t.

• This can be put into our state space form (in which the errors
in the observation equation are iid) by quasi-differencing the
observer equation.



Observer Equation
• Quasi differencing:

ỹi,t︷ ︸︸ ︷
[1− φi (L) L] yi,t =

constant︷ ︸︸ ︷
[1− φi (1)] ai + λ′i [1− φi (L) L] ft + ui,t

Then,

a =

 [1− φi (1)] ai
...

[1− φi (1)] ai

 , ỹt =

 ỹ1,t
...

ỹn,t

 , Ft =

 ft
...

ft−p


H =

 λ′1 −λ′1φ1,1 · · · −λ′1φ1,p
...

...
. . .

...
λ′n −λ′nφn,1 · · · −λ′nφn,p

 , ut =

 u1,t
...

un,t


ỹt = a+HFt + ut



Law of Motion of the State
• Here, the state is denoted by Ft.
• Law of motion:

ft
ft−1
ft−2
...

ft−p

 =


φ0,1 φ0,2 · · · φ0,q 0κ×(p+1−q)
Iκ 0κ · · · 0κ 0κ×(p+1−q)
0 Iκ · · · 0κ 0κ×(p+1−q)
...

...
. . .

...
...

0 0 · · · Iκ 0κ×(p+1−q)




ft−1
ft−2
ft−3
...

ft−1−p



+


u0,t

0κ×1
0κ×1
...

0κ×1


• LoM:

Ft = ΦFt−1 + ut, ut ∼ N
(

0κ(p+1)×1, V(p+1)κ×(p+1)κ

)
.



State Space Representation of the Factors
• Observer equation:

ỹt = a+HFt + ut.

• Law of motion of state:

Ft = ΦFt−1 + ut.

• Kalman smoother provides:

P
[
Fj|ỹ1, ..., ỹT

]
, j = 1, ..., T,

together with appropriate second moments.
• Use this information to directly sample f (s) from the
Kalman-smoother-provided Normal distribution, completing
step 2 of the Gibbs sampler.



Factor Augmented VARs (FAVAR)
• Favar’s are DFM’s which more closely resemble macro models.

— There are observables that act like ‘factors’, hitting all
variables directly

— Examples: the interest rate in the monetary policy rule,
government spending, taxes, price of housing, world trade,
international price of oil, uncertainty, etc.

• The measurement equation:

yi,t = ai + γiy0,t + λift + ξ i,t, i = 1, ..., n, t = 1, ..., T,

where y0,t and γi are m× 1 and 1×m vectors, respectively.
• The vectors, y0,t and ft follow a VAR:[ ft

y0,t

]
= Φ0,1

[ ft−1
y0,t−1

]
+ ...+Φ0,q

[
ft−q

y0,t−q

]
+ u0,t,

u0,t ∼ N (0, Σ0)



Literature on FAVARs is Large

• Initial paper: Bernanke and Boivin (2005QJE), "Measuring the
Effects of Monetary Policy: A Factor-Augmented Vector
Autoregressive (FAVAR) Approach."

• Intention was to correct problems with conventional VAR-based
estimates of the effects of monetary policy shocks.

• Include a large number of variables:
— better capture the actual policy rule of monetary authorities,
which look at lots of data in making their decisions.

— include a lot of variables so that the FAVAR can be used to
obtain a comprehensive picture of the effects of a monetary
policy shock on the whole economy.

— Bernanke, et al, include 119 variables in their analysis.



Literature on FAVARs is Large

• Literature is growing: "Large Bayesian Vector Autoregressions,"
Banbura, Giannone, Reichlin (2010Journal of Applied
Economicts), studies importance of including sectoral data to
get better estimates of impulse response functions to policy
shocks and a better estimate of their impact.

• DFM have been taken in interesting directions, more suitable
for multicountry settings, see, e.g., Canova and Ciccarelli
(2013,ECB WP1507)

• Time varying FAVARs: Eickmeier, Lemke, Marcellino, "Classical
time-varying FAVAR models - estimation, forecasting and
structural analysis," (2011Bundesbank Discussion Paper, no.
04/2011). Argue that by allowing parameters to change over
time, get better forecasts and characterize how the economy is
changing.


