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Background

• Linear projections play an important role in time series analysis.

• These notes provide an introduction to projections and some of
their basic properties.

• In two companion sets of notes, we use the projection theory to
derive the Kalman filter and the Kalman smoother.



An Example
• Let the log wage rate, w, and log price level, p, be given by

w = z+ u
p = z+ v,

where u and v are uncorrelated with each other and with z. All
have zero mean.

• Suppose you observe w, but what you’re really interested in is
w− p.
— obviously a move in w that reflects z is not interesting to you.

• You form the projection,

P [w− p|w] ≡ αw,

where α solves
min

α
E [w− p− αw]2



Orthogonality Property of Projections:
• The optimization that defines the previous projection:

min
α

E [w− p− αw]2

• First order condition after differentiating w.r.t. α :

E

projection error︷ ︸︸ ︷
[w− p− αw]w

orthogonality property︷︸︸︷
= 0

solving this, one gets the familiar expression:

α =
E (w− p)w

Ew2

=
E (u− v) (z+ u)

E (z+ u)2

=
σ2

u

σ2
u + σ2

z
=

σ2
u/σ2

z

σ2
u/σ2

z + 1



Orthogonality Property of Projections
• Suppose we have three random variables, Y, X1 and X2. We
denote the projection of Y on a constant, X1 and X2, by

P [Y|1, X1, X2] = a0 + a1X1 + a2X2,

where a0, a1, a2 solve the projection problem:

min
a0,a1,a2

E [Y− a0 − a1X1 − a2X2]
2 . (1)

• If a0, a1, a2 solve (1), then

E [Y− a0 − a1X1 − a2X2] = 0 (2)

E [Y− a0 − a1X1 − a2X2]X1 = 0
E [Y− a0 − a1X1 − a2X2]X2 = 0.

• We now show that the reverse is also true:
— if a0, a1, a2 satisfy (2), then they solve (1).



Suffi ciency of Orthogonality Condition
• Let

X = [ 1 X1 X2 ] ,

and let a denote the column vector of projection coeffi cients.
• We show: if the a’s satisfy the orthogonality condition,

EX′ [Y−Xa] = 0,

then those a’s solve the projection problem so that

p [Y|X] = Xa.

• Note that satisfying the orthogonality condition is equivalent to

a =
(
EX′X

)−1 EX′Y,

as long as there are no collinearities between the elements of X
(i.e., EX′X has full rank).



Suffi ciency of Orthogonality Condition
• Consider an arbitrary column vector of numbers, g, and consider

E [Y−Xg]2 . (3)

• Then,

E [Y−Xg]2 = E [(Y−Xa) +X (a− g)]2

= E
[
Y− a′X′ + (a− g)′ X′

]
[Y−Xa+X (a− g)]

= E
(
Y− a′X′

)
(Y−Xa) +

≥0︷ ︸︸ ︷
E (a− g)′ X′X (a− g)

+

=0 by orthogonality of a︷ ︸︸ ︷
E
[(

Y− a′X′
)

X (a− g)
]
+ (a− g)′ EX′ (Y−Xa) .

• The choice of g only affects the second term, which is
minimized by g = a.

• Thus, if a satisfies the orthogonality condition, then g = a
optimizes (3).



Application #1 of Orthogonality Property

• Suppose we are given a particular linear combination of X

Xa,

having the property

EX′ (Y−Xa) = 0

• Then, by suffi ciency of orthogonality condition, we are entitled
to assert:

P [Y|X] = Xa,

i.e., that a solves to the projection problem.



Application #2 of Orthogonality Property
• Suppose we have three zero-mean random variables, y, x, z, with

Eyx = Exz = 0, or, x ⊥ y, x ⊥ z.

• Then,
P [y|x, z] = P [y|z] .

• Proof: follows from suffi ciency of orthogonality condition:

y− P (y|z) ⊥ x, z.

Because x, z are orthogonal to the projection error implied by
P (y|z) , it follows that P (y|z) is actually the projection of y on
both x and z.



Application #3 of Orthogonality Property

• If y ⊥ ξ, then,
P [y|ξ] = 0.

• Proof follows from suffi ciency of orthogonality condition:

E [y− 0] ξ = 0.



Recursive Property of Projections

• Consider the projection of Y onto a constant, X1 and X2 :

P [Y|1, X1, X2] = a0 + a1X1 + a2X2,

so that
Y = a0 + a1X1 + a2X2 + ε,

where ε ⊥ X1, X2, 1 (the last means, Eε = 0).

Now, project both sides onto 1, X1 :

P [Y|1, X1] = P [a0 + a1X1 + a2X2 + ε|1, X1]

linearity of projections︷︸︸︷
= a0 + a1X1 + a2P [X2|1, X1] +

=0 by application #3︷ ︸︸ ︷
P [ε|1, X1]



Recursive Property of Projections

• From previous expression,

Y− P [Y|1, X1] = a0 + a1X1 + a2X2 + ε

− (a0 + a1X1 + a2P [X2|1, X1])

= a2 (X2 − a2P [X2|1, X1]) + ε.

• Since ε ⊥ 1, X1, X2, it follows that

a2 (X2 − a2P [X2|1, X1]) = P (Y− P [Y|1, X1] |1, X1, X2) ,

so

Y = P [Y|1, X1] + P (Y− P [Y|1, X1] |1, X1, X2) + ε.



Recursive Property of Projections
• The following two sets of information are the same:

{1, X1, X2} =

1, X1,

the part of X2 that cannot be determined from 1,X1︷ ︸︸ ︷
X2 − P (X2|1, X1)

 .

so

P (Y− P [Y|1, X1] |1, X1, X2)

= P (Y− P [Y|1, X1] |1, X1, X2 − P (X2|1, X1))

• But,

1, X1 ⊥ X2 − P (X2|1, X1)

1, X1 ⊥ Y− P [Y|1, X1] ,

so that by application #2

P (Y− P [Y|1, X1] |1, X1, X2)

= P (Y− P [Y|1, X1] |X2 − P (X2|1, X1)) .



Recursive Property of Projections
• Then,

Y = P [Y|1, X1] + P (Y− P [Y|1, X1] |1, X1, X2) + ε.

implies:

Y = P [Y|1, X1] + P (Y− P [Y|1, X1] |X2 − P (X2|1, X1)) + ε

• Since ε ⊥ 1, X1, X2, we get the recursive property of
projections:

P [Y|1, X1, X2] = P [Y|1, X1]

+P (Y− P [Y|1, X1] |X2 − P (X2|1, X1))

• More generally:

P [Y|Ω, X] = P [Y|Ω] + P (Y− P [Y|Ω] |X− P (X|Ω))



Recursive Property of Projections

• The recursive property of projections says:

P [Y|Ω, X] = P [Y|Ω] + P (Y− P [Y|Ω] |X− P (X|Ω))

— When you get new information, X, you adjust your previous
guess, P [Y|Ω] , by your best guess of the error in P [Y|Ω] .

— You make the adjustment using the part of X that really is
new.

• Has interpretation as a learning algorithm, how a forecast is
adjusted when new information comes in.



Law of Iterated Projections (LIP)
• According to LIP

P [P (Y|Ω, X) |Ω] = P [Y|Ω] .

• Proof: according to the recursive property of projections,

P [Y|Ω, X] = P [Y|Ω] + P [Y− P (Y|Ω) |X− P (X|Ω)]
= P [Y|Ω] + α′ξ

where
ξ = [X− P (X|Ω)] ⊥ Ω

Now, project both sides on Ω :

P (P [Y|Ω, X] |Ω) = P [Y|Ω] + α′
=0 by application #3︷ ︸︸ ︷

P [ξ|Ω]


