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Background

e Linear projections play an important role in time series analysis.

e These notes provide an introduction to projections and some of
their basic properties.

e In two companion sets of notes, we use the projection theory to
derive the Kalman filter and the Kalman smoother.



An Example

o Let the log wage rate, w, and log price level, p, be given by

w = z+u
p = z+7,

where u and v are uncorrelated with each other and with z. All
have zero mean.
e Suppose you observe w, but what you're really interested in is
w—p.
— obviously a move in w that reflects z is not interesting to you.

e You form the projection,
Plw — p|lw] = aw,

where « solves
minE [w — p — aw]?
o



Orthogonality Property of Projections:

e The optimization that defines the previous projection:
minE [w — p — aw]?
o

e First order condition after differentiating w.r.t. « :

projection error v, o oonality property

Elw—p — aw|w =h 0

solving this, one gets the familiar expression:
‘e E(w—p)w

n Ew?

E(u—v)(z+u)
E(z+u)?
_ 0w _ _oilos
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Orthogonality Property of Projections

e Suppose we have three random variables, Y, X7 and X;. We
denote the projection of Y on a constant, X7 and X5, by

PY[1, Xy, Xo] = ap + a1 X1 + a2X>,
where ag, a1, a, solve the projection problem:

min E [Y—llo —a1X1 —a2X2]2. (1)

ao,A1,42
e If ap,a1,ap solve (1), then
E [Y —ap — a1X1 — ElzXz] =0 (2)
E [Y —ap — 6!1X1 - llzXz] X1
E [Y —ag — a1X1 — LZ2X2] X2 = 0.

I
o

e \We now show that the reverse is also true:
— if ag, a1, a satisfy (2), then they solve (1).



Sufficiency of Orthogonality Condition

o Let
X=[1X3 X,

and let a denote the column vector of projection coefficients.
e We show: if the a's satisfy the orthogonality condition,

EX'[Y —Xa] =0,
then those a's solve the projection problem so that
p[Y|X] = Xa.
o Note that satisfying the orthogonality condition is equivalent to
a = (EX'X) " EXY,

as long as there are no collinearities between the elements of X
(i.e., EX'X has full rank).



Sufficiency of Orthogonality Condition
e Consider an arbitrary column vector of numbers, g, and consider
E[Y — Xg]*. (3)
e Then,
E[Y—Xg]> =E[(Y—Xa)+ X (a—g))
=E[Y-dX +(@a—g)X][Y-Xa+X(a—g)]
>0
=E(Y—a'X') (Y — Xa) +E (a—g) X'X (a —g}
=0 by orthogonality of a
+E [(Y—aX')X(a—g)] + (a—g) EX (Y—Xa} :
e The choice of g only affects the second term, which is
minimized by ¢ = a.

e Thus, if a satisfies the orthogonality condition, then ¢ = a
optimizes (3).




Application #1 of Orthogonality Property

e Suppose we are given a particular linear combination of X
Xa,
having the property
EX' (Y —Xa) =0

e Then, by sufficiency of orthogonality condition, we are entitled

to assert:
P[Y|X] = Xa,

i.e., that a solves to the projection problem.



Application #2 of Orthogonality Property

e Suppose we have three zero-mean random variables, y, x, z, with

Eyx =Exz=0, or,x Ly, x Lz

e Then,
Plylx,z] = Ply|z].

e Proof: follows from sufficiency of orthogonality condition:
y—P(y|z) L x,z

Because x, z are orthogonal to the projection error implied by
P (y|z), it follows that P (y|z) is actually the projection of y on
both x and z.



Application #3 of Orthogonality Property

o Ify L ¢, then,
Plyl¢] = 0.

e Proof follows from sufficiency of orthogonality condition:

Ely—-0]¢=0.



Recursive Property of Projections

e Consider the projection of Y onto a constant, X; and X5 :
PY[1, X1, X5] = ag +a1Xq + a2 X,
so that
Y =a9+a1 X1 +arXp +¢,
where ¢ L X7, X5,1 (the last means, E¢ = 0).
Now, project both sides onto 1, X7 :

P [Y‘l,Xl] =P [Elo +m X1 +aXp +€’1,X1]

linearity of projections =0 by application #3

A ——
= ag+ a X1 + apP [X2|1,X1] + P [8|1,X1]



Recursive Property of Projections

e From previous expression,

Y—P[Y\l,Xl] = a0+a1X1 —|—02X2—|—€
— (110 + a1 X1 + aP [X2|1,X1])
= @ (Xz—blzp [Xz’l,Xl])—l—S.

e Since ¢ L 1,X7, Xp, it follows that
an (Xz — a2P [X2|1,X1]) =P (Y —P [Y|1,X1] |1,X1,X2) ,
SO

Y =P[Y|1,X:] + P (Y —P[Y|1,X][1, X1, X2) +&.



Recursive Property of Projections
e The following two sets of information are the same:

the part of X, that cannot be determined from 1,X;

N\

{1, X1, X} =< 1,X, X, — P (X5|1,Xq)

so
P(Y = P[Y[1,X1][1, X1, X3)
= P(Y—=P[Y[1,X1] |1, X1, Xs = P(X>[1, X1))
e But,
1L,X1 L Xo—P(X|1,X1)
1,X, L Y—P[Y[]1,Xi],
so that by application #2
P(Y=P[Y[1,X1] 1, X1, X7)
= P(Y-P[Y|L,X1]|X; — P(X3[1,X1)).



Recursive Property of Projections
e Then,

Y=P [Y|1,X1] +P(Y— P [Y|1,X1] |1,X1,X2) + &
implies:
Y=P[Y|L,X1]+P(Y—-P[Y|1, X1] |X2 — P (X2|1,X1)) + ¢

e Since ¢ | 1, Xy, X5, we get the recursive property of
projections:

P[Y|1,Xy,Xs] = P[Y[1,X4]
+P (Y —P[Y|1,X1] | X2 — P (Xa]1,X1))

e More generally:

P[Y|Q,X] = P[Y|Q] + P (Y — P[Y|Q] |X — P (X|Q))



Recursive Property of Projections

e The recursive property of projections says:

P[Y|Q,X] = P[Y|Q] + P (Y — P[Y|Q] |X — P (X|Q0))

— When you get new information, X, you adjust your previous
guess, P [Y|Q)], by your best guess of the error in P[Y|Q)].

— You make the adjustment using the part of X that really is
new.

e Has interpretation as a learning algorithm, how a forecast is
adjusted when new information comes in.



Law of Iterated Projections (LIP)
e According to LIP
P[P (Y|, X)|Q] =P[Y|Q].
e Proof: according to the recursive property of projections,

PY|Q,X] = P[Y|Q]+P[Y—P(Y|Q)|X - P(X|Q)]
= P[Y|Q]+4'C

where
C=[X-P(X|Q)] LO
Now, project both sides on () :

=0 by application #3
—N
P(P[YIQ,X]|Q) =P[Y|Q]+a’  P[Z|Q)]



