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Bayesian Vector Autoregressions
• Vector Autoregressions are a flexible way to summarize the
dynamics in the data, and use these to construct forecasts.

• Problem: vector autoregressions have an enormous number of
parameters.
— Individual parameters imprecisely estimated.

• imprecision increases variance of forecast errors.
— Doan, Litterman and Sims, working at the Federal Reserve
Bank of Minneapolis, developed Bayesian methods to use
Bayesian priors to reduced instability in estimated VAR
parameters, and thus improve forecast accuracy.

• Initial work provided in Litterman’s Phd dissertation, released
as “A Bayesian Procedure for Forecasting with Vector
Autoregression,”Massachusetts Institute of Technology,
Department of Economics Working Paper, 1980.

• Another important early paper: Doan, Litterman and Sims,
1984. “Forecasting and Conditional Projection Using Realistic
Prior Distributions.”Econometric Reviews 3:1—100.



Bayesian Vector Autoregressions

• Of course, much has been written to describe BVARs.
— Classic treatment: Arnold Zellner, An Introduction to Bayesian
Inference in Econometrics, John Wiley & Sons, 1971.

— Hamilton’s textbook, Time Series Analysis has a very good
chapter.

— Here is an accessible discussion: Robertson and Tallman,
‘Vectors Autoregressions: Forecasting and Reality’, Federal
Reserve Bank of Atlanta, Economic Reviews, First Quarter,
1999.

— Rigorous recent reviews of the subject: Del Negro and
Schorfheide, ‘Bayesian Macroeconometrics,’chapter in
Handbook Bayesian Econometrics, Oxford University Press,
2011.



Outline
• Normal Likelihood, Illustrated with Simple AR(2)
representation.
— conditional versus unconditional likelihood.
— maximum likelihood with level GDP data.
— the Hurwicz bias.

• Three representations of a VAR.
— Standard Representation
— Matrix Representation
— Vectorized Representation.

• Priors, posteriors and marginal likelihood
— Dummy observations.
— Conjugate Priors.

• Forecasting with BVARs
— stochastic simulations, versus non-stochastic.
— forecast probability intervals.



Scalar Autoregressive Representation
• pth order autoregression:

yt = A0 +A1yt−1 +A2yt−2 + ut, ut ∼ N (0, Σ)

Y =

 y1
...

yT

 .

• Observed data:

Y,
initial conditions︷ ︸︸ ︷

y0, y−1 .

• Normal likelihood of observed data:

p (Y, y0, y−1|A, Σ) ∼ N (µ, V) ,

where V ∼ (T+ 2)× (T+ 2) . To evaluate p, must invert V.
• Matrix inversion is expensive, O

(
T3) .

• Express likelihood in recursive form to simplify inversion.



Recursive Representation of Likelihood
• Property of probabilities:

p (A, B) = p (A|B) p (B) .

• Suppose T = 1.

— Then, the joint likelihood of the data, y1, y0, y−1, conditional
on the model parameters:

p (y1, y0, y−1|A, Σ)

=

likelihood of y1, conditional on initial conditions︷ ︸︸ ︷
p (y1|y0, y−1, A, Σ)

×
marginal likelihood of initial conditions︷ ︸︸ ︷

p (y0, y−1|A, Σ)



Recursive Representation of Likelihood

• Consider T = 2:

p (y2, y1, y0, y−1|A, Σ) =

p(y2,y1,y0,y−1|A,Σ)︷ ︸︸ ︷
p (y2|y1, y0, y−1, A, Σ)×

p(y1,y0,y−1|A,Σ)︷ ︸︸ ︷
p (y1|y0, y−1, A, Σ)× p (y0, y−1|A, Σ) ,

and so on for T = 2, 3, ... .



Recursive Representation of Likelihood
• Consider T ≥ 1:

p (yT, ..., y1, y0, y−1|A, Σ) =

p (yT|yT−1, yT−2, A, Σ)

×p (yT−1|yT−2, yT−3, A, Σ)

× · · · ×p (yt|yt−1, yt−2, A, Σ)

× · · · ×p (y2|y1, y0, A, Σ) p (y1|y0, y−1, A, Σ) p (y0, y−1|A, Σ) .

• Note how we have converted a single (T+ 2)× (T+ 2)
inversion problem into a set of scalar inversions.



Conditional (Normal) Likelihood

• From Normality

p (yt|yt−1, yt−2, A, Σ)

=
1

(2πΣ)1/2 exp

[
−1

2
(yt −A0 −A1yt−1 −A2yt−2)

2

Σ

]
,

for t = 1, ..., T.
• Likelihood of data, conditional on initial observations,

p (Y|y0, y−1, A, Σ) =
T

∏
t=1

p (yt|yt−1, yt−2, A, Σ)

=
1

(2πΣ)T/2 exp

[
−1

2

T

∑
t=1

(yt −A0 −A1yt−1 −A2yt−2)
2

Σ

]
.



Maximum (Conditional) Likelihood
• Log-Likelihood conditional on initial observations:

log [p (Y|y0, y−1, A, Σ)]

= −T
2

log Σ− T
2

log (2π)

−1
2

T

∑
t=1

(yt −A0 −A1yt−1 −A2yt−2)
2

Σ

• Conditional maximum likelihood: optimize w.r.t. A, Σ

• First order conditions for maximum provide four equations in
four unknowns:

Σ̂, Â0, Â1, Â2.



First Order Conditions Associated with
Conditional Maximum Likelihood

• Setting derivatives to zero:

Σ : Σ̂ =
1
T

T

∑
t=1

(
yt − Â0 − Â1yt−1 − Â2yt−2

)2

A0 :
T

∑
t=1

(
yt − Â0 − Â1yt−1 − Â2yt−2

)
= 0

A1 :
T

∑
t=1

(
yt − Â0 − Â1yt−1 − Â2yt−2

)
yt−1 = 0

A1 :
T

∑
t=1

(
yt − Â0 − Â1yt−1 − Â2yt−2

)
yt−2 = 0.

• Yay....OLS!



Application
• US log, real per capita GDP, 1947Q1 - 2015Q4, T = 274
• Conditional maximum likelihood (OLS) estimates

— Eigenvalues less than unity, so estimated model implies
covariance stationarity

λ2
i − Â1λi − Â2 = 0→ λ1 = 0.9970, λ2 = 0.3630.

— Implied mean and standard deviation in ut:

Â0

1− Â1 − Â2
= 11.88, .

• Notice: if

yt = 11.88+ a1λt
1 + a2λt

2, any a1, a2,

then trend implied by initial conditions:

yt = Â0 + Â1yt−1 + Â2yt−2, t ≥ 1.

Set a1 and a2 to be consistent with actual y0 and y−1 (' 9.5).
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Message of Application

• Illustrates how maximum of conditional likelihood is computed
by OLS.

• Maximum of conditional likelihood with growing data.
— tends to ‘explain’data as emerging from covariance stationary
model (roots inside unit circle).

• related to ‘Hurwicz bias’, tendency for roots of VAR to shrink
towards zero.

— interprets growth as reflecting transition from unusual initial
conditions.

• initial conditions account for a very large portion of data
dynamics (see previous figure).

• most researchers view this as implausible.



Unconditional Likelihood in the Application
• Alternative: go to (unconditional) maximum likelihood:

p (Y, y0, y−1|A, Σ) = p (Y|y0, y−1, A, Σ) p (y0, y−1|A, Σ) ,
where

p (y0, y−1|A, Σ) =
1

2π
|V|−1/2 exp

[
−1

2
ζ ′V−1ζ

]
,

ζ =
( y0 − ȳ

y−1 − ȳ
)

, V =

[
c (0) c (1)
c (1) c (0)

]
,

c (τ) = E (yt − ȳ) (yt−τ − ȳ) , ȳ =
A0

1−A1 −A2

c (1) =
A1

1−A2
c (0) ,

c (0) =
Σ

1−A2
1 −A2

2 − 2A1A2
A1

1−A2



Unconditional Likelihood in the Application

• Unconditional likelihood:

p (Y, y0, y−1|A, Σ) = p (Y|y0, y−1, A, Σ) p (y0, y−1|A, Σ) ,

where

p (y0, y−1|A, Σ) =
1

2π
|V|−1/2 exp

[
−1

2
ζ ′V−1ζ

]
,

ζ =
( y0 − ȳ

y−1 − ȳ
)

, V =

[
c (0) c (1)
c (1) c (0)

]
,

• presence of ζ ′V−1ζ penalizes the OLS strategy of ‘explaining’
the data based on a trend that jumps off initial conditions.

— in this application, trend virtually completely eliminated.



Results

Conditional versus Unconditional Likelihood
Parameter Cond. Likelihood (OLS) Unconditional Likelihood
Â0 0.023 0.0020
Â1 1.36 1.499
Â2 -0.3619 -0.4993

Â0
1−Â1−Â2

11.88 10.18
λ1 0.9970 0.9996
λ2 0.3630 0.4995√

Σ̂ 0.00876 0.00916
c (0) 0.03154 0.41053
c (1) 0.03150 0.41048



Why Does OLS Like to Extrapolate Initial
Conditions?

• Answer is related to the ‘Hurwicz bias’.
• OLS estimator of ρ in yt = ρyt−1 + ut, with T = 2
observations:

ρ̂ =
y2y1 + y1y0

y2
1 + y2

0
=
(ρy1 + ε2) y1 + (ρy0 + ε1) y0

y2
1 + y2

0

= ρ+
ε2y1 + ε1y0

y2
1 + y2

0

= ρ+

(
y1

y2
1 + y2

0

)
ε2 +

(
y0

y2
1 + y2

0

)
ε1.

• Standard result that OLS is BLUE (Best Linear Unbiased
Estimator) requires right hand variables independent of error
terms.
— Assumption fails in AR representations



Why Does OLS Like to Extrapolate Initial
Conditions?

• The phenomenon reflects that y1 and ε1 are not independent

E

(
y0

y2
1 + y2

0

)
ε1 6= E

(
y0

y2
1 + y2

0

)
Eε1.

• Problem gets smaller as T → ∞ because there is less
correlation between εt and denominator term:

E

(
yt−1

∑T
j=1 y2

j−1

)
εt.

Note that εt is dependent on only a relatively small number of
yj’s in the denominator.

• This Hurwicz ‘bias’is pervasive in VARs.



Initial Conditions
• General tendency in BVAR literature to work with level,
growing data.
— idea is incorporated in ‘random walk prior’(i.e., Minnesota
prior).

— argument in Sims-Stock-Watson (Econometrica, 1990)
suggests to many that working with level data is a good idea.

• Partly because of general tendency towards levels in the
literature, literature is in the habit of working with the
conditional likelihood.
— Likelihood of initial conditions not defined when roots are unity
or explosive.

• Still, some people worry about tendency of conditional
likelihood to make implausibly high use of initial conditions.
— could work with growth rates.
— alternative strategies are suggested in Giannone, Lenza and
Primiceri, 2015, ‘Priors for the Long Run’.



Outline
• Normal Likelihood, Illustrated with Simple AR(2)
representation. (done!)
— conditional versus unconditional likelihood.
— maximum likelihood with level GDP data.
— the Hurwicz bias.

• Three representations of a VAR.
— Standard Representation
— Matrix Representation
— Vectorized Representation.

• Priors, posteriors and marginal likelihood
— Dummy observations.
— Conjugate Priors.

• Forecasting with BVARs
— stochastic simulations, versus non-stochastic.
— forecast probability intervals.



VAR: Standard Representation
• Let

yt ∼ m× 1 vector of data
ζt ∼ q× 1 vector of (unmodeled) exogenous variables

(e.g., time trend, constant, World GDP)

ut ∼ m× 1 vector of iid disturbances, ut ∼N (0, Σ) .

• Vector Autoregression VAR (p):

yt = A0︸︷︷︸
m×q

ξt + A1︸︷︷︸
m×m

yt−1 + ...+ Ap︸︷︷︸
m×m

yt−p + ut, t = 1, ..., T,

ut orthogonal to ξt−s, yt−1−s, s ≥ 0.

• The available data:

y1−p, ..., y0, y1, ...., yT.

• Generally, take initial conditions as given

y1−p, ..., y0.



VAR: Likelihood
• Likelihood of data:

p
(
Y, y1−p, ..., y0|A, Σ, ζ

)
=

‘conditional likelihood’(conditional on initial conditions and ζ)︷ ︸︸ ︷
p
(
yT|yT−1, ..., yT−p, A, Σ, ζ

)
× · · · × p

(
y1|y0, ..., y−p, A, Σ, ζ

)

×
likelihood of initial conditions (conditional on ζ)︷ ︸︸ ︷

p
(
y0, ..., y−p|A, Σ, ζ

)
,

where the analysis is always conditioned on the exogenous
variables, ζ :

ζ =

 ζT
...

ζ−p


• From here on, conditioning on ζ is taken for granted and not
even included explicitly in the notation.



VAR: Likelihood
• First, let

xt︸︷︷︸
k×1

=


ζt

yt−1
...

yt−p

 , t = 1, 2, ..., T, k ≡ q+ pm

• Then,
yt = A′xt + ut,

where
A′ = [ A0 A1 · · · Ap ]︸ ︷︷ ︸

m×k

.

• Notice:

p (yt|xt, A, Σ)

=
1

(2π)
m
2
|Σ|−

1
2 exp

[
−1

2
(
yt −A′xt

)′ Σ−1 (yt −A′xt
)]



VAR: Likelihood

• Conditional likelihood of Y :

p (Y|x1, A, Σ)

=
1

(2π)
mT
2
|Σ|−

T
2 exp

[
−1

2

T

∑
t=1

(
yt −A′xt

)′ Σ−1 (yt −A′xt
)]

• From now on, drop the notation, x1, to avoid clutter.
• Now, for a little matrix algebra....



Trace of a Matrix
• Trace of a square matrix, A :

tr [A] = ∑
i

aii.

• Properties of trace:
— cyclic property of trace: if A, B, C are (conformable) matrices,
then

tr (ABC) = tr (CAB) = tr (BCA) .

• example: if a is a n× 1 vector and B is n× n, then, by cyclic
property,

a′Ba = tr
[
a′Ba

]
= tr

[
aa′B

]
= tr

[
Baa′

]
— linearity property of trace:

tr [A+ B] = tr [A] + tr [B] .



VAR: Likelihood
• Conditional likelihood of Y :

p (Y|A, Σ)

=
1

(2π)
mT
2
|Σ|−

T
2 exp

[
−1

2

T

∑
t=1

(
yt −A′xt

)′ Σ−1 (yt −A′xt
)]

=
1

(2π)
mT
2
|Σ|−

T
2 exp

[
−1

2

T

∑
t=1

tr
[(

yt −A′xt
)′ Σ−1 (yt −A′xt

)]]

=
1

(2π)
mT
2
|Σ|−

T
2 exp

[
−1

2

T

∑
t=1

tr
[(

yt −A′xt
) (

yt −A′xt
)′ Σ−1

]]

=
1

(2π)
mT
2
|Σ|−

T
2 exp

[
−1

2

T

∑
t=1

tr
[
Σ−1 (yt −A′xt

) (
yt −A′xt

)′]]

=
1

(2π)
mT
2
|Σ|−

T
2 exp

[
−1

2
tr

[
Σ−1

T

∑
t=1

(
yt −A′xt

) (
yt −A′xt

)′]]



VAR: Matrix Representation

• Define

Y︸︷︷︸
T×m

=

 y′1
...

y′T

 , X︸︷︷︸
T×k

=

 x′1
...

x′T

 .

• ‘Standard VAR’representation:

yt = A′xt + ut

• Transpose it:
y′t = x′tA+ u′t

• Then, ‘stack’:
Y = XA+U.



VAR: Likelihood in Matrices
• Representation in matrix form:

T

∑
t=1

(
yt −A′xt

) (
yt −A′xt

)′
=

T

∑
t=1

(
yt −A′xt

) (
y′t − x′tA

)
= [ (y1 −A′x1) · · · (yT −A′xT) ]

 y′1 − x′1A
...

y′T − x′TA


= (Y−XA)′ (Y−XA)

• So, matrix representation of VAR and (conditional) likelihood:

Y = XA+U
p (Y|A, Σ)

=
1

(2π)
mT
2
|Σ|−

T
2 exp

[
−1

2
tr
[
Σ−1 (Y−XA)′ (Y−XA)

]]
• With the likelihood in hand, we now move on to the priors.



Priors and Posteriors
• Use Bayes’rule and priors to compute posterior distribution.
• Identities:

p (Y, Σ, A) = p (Y|Σ, A) p (Σ, A) = p (Σ, A|Y) p (Y) ,

so that

Bayes’rule:

posterior︷ ︸︸ ︷
p (Σ, A|Y) =

likelihood︷ ︸︸ ︷
p (Y|Σ, A)

prior︷ ︸︸ ︷
p (Σ, A)

p (Y)
.

• Will work with ‘conjugate prior’, p (Σ, A)
— p (Σ, A|Y) is the same density as p (Σ, A)

• To find a conjugate prior, it is convenient to notice that a
likelihood, p (Y|Σ, A) , can be rewritten so that it looks like a
density function for A.



Rewriting the Likelihood
• OLS estimator of A and sum, squared residuals, Ŝ :

Â ≡
(
X′X

)−1 X′Y, Ŝ ≡
(
Y−XÂ

)′ (Y−XÂ
)

• Orthogonality property of OLS:

X′
[
Y−XÂ

]
= X′

[
I−X

(
X′X

)−1 X′
]

Y

=
[
X′ −X′X

(
X′X

)−1 X′
]

Y = 0

• Orthogonality implies:

(Y−XA)′ (Y−XA)

=
(
Y−XÂ+X

(
Â−A

))′ (Y−XÂ+X
(
Â−A

))
orthogonality︷︸︸︷

=
(
Y−XÂ

)′ (Y−XÂ
)
+
(
Â−A

)′ X′X (Â−A
)

= Ŝ+
(
A− Â

)′ X′X (A− Â
)



Rewriting the Likelihood

• The previous results imply:

p (Y|A, Σ)

=
1

(2π)
mT
2
|Σ|−

T
2 exp

{
−1

2
tr
[
Σ−1 (Y−XA)′ (Y−XA)

]}

=
1

(2π)
mT
2
|Σ|−

T
2 exp

{
−1

2
tr
[
Σ−1Ŝ

]}
× exp

{
−1

2
tr
[
Σ−1 (A− Â

)′ X′X (A− Â
)]}

• The likelihood looks more and more like a distribution for A!

— Just one more step...



Vectorization and Kronecker Product
• Kronecker product:

A =
[ a11 a12

a21 a22

]
→ A⊗ B ≡

[ a11B a12B
a21B a22B

]
→ (A⊗ B)′ = A′ ⊗ B′, (A⊗ B)−1 = A−1 ⊗ B−1.

• Let the ith column of the m× n matrix A be denoted by ai,
i = 1, ..., n :

A = [ a1 · · · an ]→ vec (A) ≡

 a1
...

an


Then,

→ tr
[
A′BCD′

]
= vec (A)′ (D⊗ B) vec (C)



Rewriting the Likelihood
• Let

a = vec (A) , â = vec
(
Â
)

• Then,

tr

Σ−1︸︷︷︸
m×m

(
A− Â

)′︸ ︷︷ ︸
m×k

X′X︸︷︷︸
k×k

(
A− Â

)︸ ︷︷ ︸
k×m


= tr

[(
A− Â

)′ X′X (A− Â
)

Σ−1
]

= (a− â)′
(

Σ−1 ⊗X′X
)
(a− â)

= (a− â)′
(

Σ⊗
(
X′X

)−1
)−1

(a− â)

• This looks a lot like the exponential term in the Normal
distribution!



Rewriting the Likelihood
• Likelihood

p (Y|A, Σ)

=
1

(2π)
mT
2
|Σ|−

T
2 exp

{
−1

2
tr
[
Σ−1Ŝ

]}
× exp

{
−1

2
tr
[
Σ−1 (A− Â

)′ X′X (A− Â
)]}

=
1

(2π)
mT
2
|Σ|−

T
2 exp

{
−1

2
tr
[
Σ−1Ŝ

]}
× exp

{
−1

2
(a− â)′

(
Σ⊗

(
X′X

)−1
)−1

(a− â)
}

• Payoff: suppose that Σ is known and p (A|Σ) = constant (flat
prior), then posterior of a is N

(
â, Σ⊗ (X′X)−1

)
.



VAR: Vectorized Form
• VAR in Matrix form:

Y = XA+U.

• Matrix fact:

vec (ABC) =
(
C′ ⊗A

)
vec (B) ,

so,

vec (XA) = vec

 X︸︷︷︸
T×k

A︸︷︷︸
k×m

Im

 = (Im ⊗X) a

• Then,

y = (Im ⊗X) a+ u, u ∼ N (0, Σ⊗ IT) ,

y ≡ vec (Y) , u ≡ vec (U) .



VAR: Vectorized Form
• VAR -

y = (Im ⊗X) a+ u, u ∼ N (0, Σ⊗ IT) .

• OLS:

â =
[
(Im ⊗X)′ (Im ⊗X)

]−1
(Im ⊗X)′ y

= a+
[
(Im ⊗X)′ (Im ⊗X)

]−1
(Im ⊗X)′ u.

— Classical (asymptotic) sampling theory for â is Normal with

mean: a
variance:

[
(Im ⊗X)′ (Im ⊗X)

]−1
(Im ⊗X)′

×
=Σ⊗IT︷︸︸︷
Euu′ (Im ⊗X)

([
(Im ⊗X)′ (Im ⊗X)

]−1
)′



VAR: Vectorized Form
• Matrix facts:

(A⊗ B)′ = A′ ⊗ B′, (A⊗ B)−1 = A−1 ⊗ B−1,
(A⊗ B) (C⊗D) = (AC⊗ BD) , (AB)′ = B′A′

• Then, [
(Im ⊗X)′ (Im ⊗X)

]−1
(Im ⊗X)′ (Σ⊗ IT)

× (Im ⊗X)
([
(Im ⊗X)′ (Im ⊗X)

]−1
)′

= Σ⊗
(
X′X

)−1

• This is a heuristic demonstration of the large sample result that

â ∼ N
(

a, Σ⊗
(
X′X

)−1
)

• Interesting to compare with Bayesian posterior with flat prior:

a ∼ N
(

â, Σ⊗
(
X′X

)−1
)

.



Where we Now Stand: Three
Representations of VAR

• Standard representation and likelihood:

yt = A0ξt +A1yt−1 + ...+Apyt−p + ut, Eutu′t = Σ.
p (Y|A, Σ)

=
1

(2π)
mT
2
|Σ|−

T
2 exp

[
−1

2
tr

[
Σ−1

T

∑
t=1

(
yt −A′xt

) (
yt −A′xt

)′]]
• Matrix representation and likelihood:

Y = XA+U
p (Y|A, Σ)

=
1

(2π)
mT
2
|Σ|−

T
2 exp

{
−1

2
tr
[
Σ−1Ŝ

]}
× exp

{
−1

2
tr
[
Σ−1 (A− Â

)′ X′X (A− Â
)]}



Where we Now Stand: Three
Representations of VAR

• Finally: Vectorized representation and likelihood -

y = (Im ⊗X) a+ u, u ∼ N (0, Σ⊗ IT)

p (Y|A, Σ)

=
1

(2π)
mT
2
|Σ|−

T
2 exp

{
−1

2
tr
[
Σ−1Ŝ

]}
× exp

{
−1

2
(a− â)′

(
Σ⊗

(
X′X

)−1
)−1

(a− â)
}

• Key insight: this likelihood has the shape of
N
(

â, Σ⊗ (X′X)−1
)
.



Outline
• Normal Likelihood, Illustrated with Simple AR(2)
representation. (done!)
— conditional versus unconditional likelihood.
— maximum likelihood with level GDP data.
— the Hurwicz bias.

• Three representations of a VAR. (done!)
— Standard Representation
— Matrix Representation
— Vectorized Representation.

• Priors, posteriors and marginal likelihood
— Dummy observations.
— Conjugate Priors.

• Forecasting with BVARs
— stochastic simulations, versus non-stochastic.
— forecast probability intervals.



Priors for VARs
• Priors designed based on insight in the vectorized
representation of VAR.

• Example: suppose (for now) that Σ is known and p (A|Σ) = c
(‘uninformative prior’).

• Then,

p (A|Y, Σ) ∝ p (Y|A, Σ) p (A|Σ)

=
1

(2π)
mT
2
|Σ|−

T
2 exp

{
−1

2
tr
[
Σ−1Ŝ

]}
× exp

{
−1

2
(a− â)′

(
Σ⊗

(
X′X

)−1
)−1

(a− â)
}

c ,

where ∝ means ‘is proportional to’.
• We now turn to an influential class of priors for A, constructed
using ‘dummy observations’.



Priors and Dummy Observations
• Suppose we have T̄ dummy observations, (Ȳ, X̄).
• Consider the following ‘likelihood’for the dummy observations:

p(Ȳ|A,Σ) =
1

(2π)
mT̄
2

|Σ|−
T̄
2

× exp

{
−1

2
tr

[
Σ−1

T̄

∑
j=1

(
ȳj −A′x̄j

) (
ȳj −A′x̄j

)′]} .

• In vectorized form,

Ā ≡
(
X̄′X̄

)−1 X̄′Ȳ, S̄ ≡ (Ȳ− X̄Ā)′ (Ȳ− X̄Ā) ,

p(Ȳ|A,Σ) =
1

(2π)
mT̄
2

|Σ|−
T̄
2 exp

{
−1

2
tr
[
Σ−1S̄

]}
× exp

{
−1

2
(a− ā)′

(
Σ⊗

(
X̄′X̄

)−1
)−1

(a− ā)
}

.

• Prior distribution, a ∼ N
(

ā, Σ⊗ (X̄′X̄)−1
)

.



Dummy Observations and Posterior
Multiply p(Y|A,Σ) (the likelihood of the data) times p(Ȳ|A,Σ)
(something proportional to a Normal prior for A) :

p(A|Σ, Y) ∝ p(Y|A,Σ)p(Ȳ|A,Σ)

=
1

(2π)
m(T+T̄)

2

|Σ|−
T+T̄

2

× exp

[
−1

2
tr

[
Σ−1

T

∑
t=1

(
yt −A′xt

) (
yt −A′xt

)′]]

× exp

[
−1

2
tr

[
Σ−1

T̄

∑
j=1

(
ȳj −A′x̄j

) (
ȳj −A′x̄j

)′]]

We have ∝ here because (i) we want the Normal prior for A which is
only proportional to p(Ȳ|A,Σ) and (ii) we need to divide by p (Y|Σ) .



Dummy Observations and Posterior
Collect terms in A (using linearity of tr [·])

tr[Σ−1(
T

∑
t=1

(
yt −A′xt

) (
yt −A′xt

)′
+

T̄

∑
j=1

(
ȳj −A′x̄j

) (
ȳj −A′x̄j

)′
)]

= tr
[
Σ−1 (X− YA) (X− YA)′

]
where

X =



x′1
...

x′T
x̄′1
...

x̄′T̄


=

[
X
X̄

]
︸ ︷︷ ︸
(T+T̄)×k

, Y =



y′1
...

y′T
ȳ′1
...

ȳ′T̄


=

[
Y
Ȳ

]
︸ ︷︷ ︸
(T+T̄)×m

.



Dummy Observations and Posterior

• Mapping all the way to exponential representation:

tr
[
Σ−1 (Y−XA) (Y−XA)′

]
= tr

[
Σ−1 (S+ (A−A)′ X′X (A−A)

)]
= tr

[
Σ−1S

]
+ tr

[
(A−A)′ X′X (A−A)

]
= tr

[
Σ−1S

]
+ (a− a)′

(
Σ⊗

(
X′X

)−1
)−1

(a− a)

where

A =
(
X′X

)−1 X′Y

S = (Y−XA)′ (Y−XA) .



Dummy Observations and Posterior

• The posterior distribution is proportional to:

p(Y|A,Σ)p(Ȳ|A,Σ) =
1

(2π)
m(T+T̄)

2

|Σ|−
T+T̄

2 exp
{
−1

2
tr
[
Σ−1S

]}

× exp
[
−1

2
(a− a)′

(
Σ⊗

(
X′X

)−1
)−1

(a− a)
]

• Thus, we see that the posterior distribution of a, p(A|Σ, Y), is
Normal and:

p(A|Σ, Y) ∝ p(Y|A,Σ)p(Ȳ|A,Σ).



Interpreting the Posterior

• Note

A =
(
X′X

)−1 X′Y

=
(
X′X+ X̄′X̄

)−1

×

X′X

Â︷ ︸︸ ︷[(
X′X

)−1 X′Y
]
+ X̄′X̄

Ā︷ ︸︸ ︷[(
X̄′X̄

)−1 X̄′Ȳ
] ,

so that the posterior mean of A, A, is a weighted average of
what the data say, Â, and the prior, Ā.



Simple VAR(2), m=2

• Standard VAR representation:

[ y1,t
y2,t

]
=

A0︷ ︸︸ ︷[
α1
α2

]
+

A1︷ ︸︸ ︷[
β11 β12
β21 β22

] [ y1,t−1
y2,t−1

]

+

A2︷ ︸︸ ︷[
γ11 γ12
γ21 γ22

] [ y1,t−2
y2,t−2

]
+
[ u1,t

u2,t

]

A =

 A′0
A′1
A′2

 =


α1 α2
β11 β21
β12 β22
γ11 γ21
γ12 γ22





Simple VAR(2), m=2

• Matrix representation:

xt︸︷︷︸
5×1

=


1

y1,t−1
y2,t−1
y1,t−2
y2,t−2

 , X =

 x′1
...

x′T

 , Y =

 y1,1 y2,1
...

...
y1,T y2,T


• Then,

Y︸︷︷︸
T×2

= X︸︷︷︸
T×5


α1 α2
β11 β21
β12 β22
γ11 γ21
γ12 γ22

+ U︸︷︷︸
T×2

.



Minnesota Prior
• Very clever!
• Basic idea: each variable is a scalar 1st order autoregression:

— yi,t = βiiyi,t−1 + ui,t, βii ∼ N
(

φi,
Σii

λ2
1s2

i

)
— yi,t = βijyj,t−1 + ui,t, βij ∼ N

(
0, Σii

λ2
1s2

j

)
, j 6= i

— λ1 ∼ ‘overall tightness parameter’
— si ∼ ‘scaling parameter on coeffi cient on yj,t−1’

• Parameter, φi :
— if yi,t is in levels, then φi = 1 (random walk).
— if yi,t is in first difference, then φi = 0 (again, random walk).
— could have φi 6= 1.

• Analogous restrictions on lags 2, ..., p parameters.
— Prior assumes that the data has less information on parameters
at higher order lags.



Minnesota Prior
• Each variable follows a simple 1st order scalar autoregression.

— Motivation: it has been found that such models (especially,
random walk) perform well in forecasting.

— Although the prior is that data dynamics are quite simple, this
need not be the case in the posterior when λ1, si < ∞.

— if the data really want a lot of interaction, the posterior will
show that.

• Note: the variance of the prior is proportional to Σii/s2
j .

— Motivation: the numerator is related to the volatility of yi,t and
the denominator is (actually, will be) related to the volatility of
yj,t.
• It is perhaps intuitively appealing that the confidence or
strength of belief in the prior that βij is close to zero is stronger
the more variable yj,t is, relative to yi,t.

• Imagine you feel βij is close to zero, i 6= j, and you see yj,t is
highly variable while yi,t is not. This would reinforce your belief
that yj,t has no impact on yi,t.



Minnesota Prior

• Dummy observations for A :

Ȳ1︷ ︸︸ ︷[
φ1λ1s1 0

0 φ2λ1s2

]
=

X̄1︷ ︸︸ ︷[
0 λ1s1 0 0 0
0 0 λ1s2 0 0

]
A︷ ︸︸ ︷

α1 α2
β11 β21
β12 β22
γ11 γ21
γ12 γ22



+

Ū1︷ ︸︸ ︷[ u1,1 u2,1
u1,2 u2,2

]
where λ1 is an ‘overall tightness’parameter; si is a tightness
parameter that applies to the ith equation; φi prior on
parameter on own first lag of yi,t.



Implications of Minnesota Prior
• 1,1 and 1,2 elements of system, Ȳ1 = X̄1A+ Ū1 :

φ1λ1s1 = λ1s1β11 + u1,1 → β11 = φ1 −
u1,1

λ1s1

→ β11 ∼ N
(

φ1,
Σ11

λ2
1s2

1

)
0 = λ1s1β21 + u2,1 → β21 = 0− u2,1

λ1s1

→ β21 ∼ N
(

0,
Σ22

λ2
1s2

1

)
• Similarly, 2,2 and 2,1 elements imply:

β22 ∼ N
(

φ2,
Σ22

λ2
1s2

2

)
, β12 ∼ N

(
0,

Σ11

λ2
1s2

2

)
.



Minnesota Prior
• Dummy observations for Al, l > 1 :

Ȳ2︷ ︸︸ ︷[ 0 0
0 0

]
=

X̄2︷ ︸︸ ︷[
0 0 0 λ1s1lλ2 0
0 0 0 0 λ1s2lλ2

]
A︷ ︸︸ ︷

α1 α2
β11 β21
β12 β22
γ11 γ21
γ12 γ22

+ Ū2

γ11 ∼ N
(

0,
Σ11

λ2
1s2

1l2λ2

)
, γ21 ∼ N

(
0,

Σ22

λ2
1s2

1l2λ2

)
,

γ12 ∼ N
(

0,
Σ11

λ2
1s2

2l2λ2

)
, γ22 ∼ N

(
0,

Σ22

λ2
1s2

2l2λ2

)
,

• Hyperparameter, λ2 > 0, controls the amount of prior
information at higher lags.
— Bigger λ2 or l ∼ more information in the prior at higher lags.
— Prior is that there is relatively little info in data about high
order lags.



Own-persistence Dummies
If yi,t has been stable at some level, ȳi, i = 1, 2, it tends to stay
there:

Ȳ3︷ ︸︸ ︷[
λ3ȳ1 0

0 λ3ȳ2

]
=

X̄3︷ ︸︸ ︷[
0 λ3ȳ1 0 λ3ȳ1 0
0 0 λ3ȳ2 0 λ3ȳ2

]
A︷ ︸︸ ︷

α1 α2
β11 β21
β12 β22
γ11 γ21
γ12 γ22


+Ū3

→ λ3ȳ1 = λ3ȳ1β11 + λ3ȳ1γ11 + u1,1

→ β11 + γ11 = 1− u1,1

λ3ȳ1
→ (β11 + γ11) ∼ N

(
1,

Σ11

λ2
3ȳ2

1

)



Interpretation of Own-persistence Dummies
• Suppose

yt = β11yt−1 + γ11yt−2 + ut,

with
1 = β11 + γ11 → β11 = 1− γ11,

so that
yt = (1− γ11) yt−1 + γ11yt−2 + ut

or,
yt − yt−1 = −γ11 (yt−1 − yt−2) + ut.

• Own-persistence is a generalization on random walk.
— random walk: first differences not autocorrelated, but
stationary.

— sum of coeffi cients = unity: first differences are autocorrelated.

• example: US GDP looks like

∆yt = 0.4∆y−1 + ut, γ11 = −0.4.



Co-persistence Dummies

• If (y1,t, y2,t) have been persistent at (ȳ1, ȳ2) they tend to stay
there:

Ȳ4︷ ︸︸ ︷
[ λ4ȳ1 λ4ȳ2 ] =

X̄4︷ ︸︸ ︷
[ λ4 λ4ȳ1 λ4ȳ2 λ4ȳ1 λ4ȳ2 ]A+ Ū4

• This implies:

λ4ȳ1 = λ4ȳ1β11 + λ4ȳ2β12 + λ4ȳ1γ11 + λ4ȳ2γ12 + λ4α1 + u1

→ ȳ1(1− β11 − γ11) = α1 + ȳ2(β12 + γ12) +
u1

λ4
λ4ȳ2 = λ4ȳ1β21 + λ4ȳ2β22 + λ4ȳ1γ21 + λ4ȳ2γ22 + λ4α2 + u2

→ ȳ2(1− β22 − γ22) = α2 + ȳ1(β21 + γ21) +
u2

λ4



Dummy Priors

• Set them up like this:

Ȳ =

 Ȳ1
Ȳ2
Ȳ3
Ȳ4

 , X̄ =

 X̄1
X̄2
X̄3
X̄4

 , Ū =

 Ū1
Ū2
Ū3
Ū4

 .

• Pad the Y and X vectors with the ‘observations’, Ȳ and X̄ :

Y =
[

Y
Ȳ

]
, X =

[
X
X̄

]
.



Prior for Variance-Covariance Matrix

• Up to now, we’ve focused on the prior and posterior for the
VAR parameters in A.

• We’ve supposed that the analyst ‘knows’the value of Σ.

• Next, we consider the more plausible case that the analyst also
does not know Σ.



Inverse Wishart Prior for
Variance-Covariance Matrix

• Trick is to find p (Σ) that is ‘sensible’and convenient, i.e.,
conjugate with the likelihood.

• Inverse Wishart distribution for Σ, IW (S, ν) :

p (Σ) =
|S|ν/2

2νm
m

∏
i=1

Γ
[

ν+1−i
2

] |Σ|− ν+m+1
2 exp

{
−1

2
tr
[
Σ−1S

]}
,

where Γ denotes the gamma function.

— Inverse Wishart distribution, IW (ν, S) , with ‘degrees of
freedom’, ν, and ‘scale matrix’S.



Properties of Inverse Wishart

• Looks like inverse of Chi-square distribution:
— Draw ν vectors Z1, ..., Zν from N

(
0, S−1) , and:

Σ =
[
Z1Z′1 + ...+ ZνZ′ν

]−1 .

Nice: (i) Σ is guaranteed to be positive definite for ν big
enough, (ii) trace and determinant terms in IW (S, ν) match
up with analogous terms in rewritten Normal likelihood.

• Property:

mean, Σ =
S

ν− (m+ 1)
, mode, Σ =

S
ν+ (m+ 1)



Recall

• We previously derived:

∝p(A|Y,Σ)︷ ︸︸ ︷
p(Y|A,Σ)p(Ȳ|A,Σ) =

1

(2π)
m(T+T̄)

2

|Σ|−
T+T̄

2 exp
{
−1

2
tr
[
Σ−1S

]}

× exp
[
−1

2
(a− a)′

(
Σ⊗

(
X′X

)−1
)−1

(a− a)
]

,

where

A =
(
X′X

)−1 X′Y

S = (Y−XA)′ (Y−XA)
a = vec (A) .



Prior and Posterior
• Want:

p (A, Σ|Y) ∝ p(Y|A,Σ)p(Ȳ|A,Σ)

IW(ν,S∗)︷ ︸︸ ︷
p (Σ) .

• Plugging stuff in:

p (A, Σ|Y) ∝ p(Y|A,Σ)p(Ȳ|A,Σ)p (Σ)

=
1

(2π)
m(T+T̄)

2

|Σ|−
T+T̄

2 exp
{
−1

2
tr
[
Σ−1S

]}

× exp
[
−1

2
(a− a)′

(
Σ⊗

(
X′X

)−1
)−1

(a− a)
]

× |S∗|ν/2

2νm
m

∏
i=1

Γ
[

ν+1−i
2

] |Σ|− ν+m+1
2 exp−1

2
tr
[
Σ−1S∗

]



Prior and Posterior
• Collecting terms in A and Σ :

p(Y|A,Σ)p(Ȳ|A,Σ)p (Σ)

=
1

(2π)
m(T+T̄)

2

|Σ|−
T+T̄+ν+m+1

2 exp
{
−1

2
tr
[
Σ−1 (S+ S∗)

]}

× exp
[
−1

2
(a− a)′

(
Σ⊗

(
X′X

)−1
)−1

(a− a)
]

× |S∗|ν/2

2νm
m

∏
i=1

Γ
[

ν+1−i
2

]
• We can sort of ‘see’a Normal distribution in here and an
inverse Wishart.

• Must dig a little to find it!



Prior and Posterior
• Multiply and divide non-exponential term in the Normal:

p(Y|A,Σ)p(Ȳ|A,Σ)p (Σ)

=
1

(2π)
m(T+T̄)

2

|Σ|−
T+T̄+ν+m+1

2 exp
{
−1

2
tr
[
Σ−1 (S+ S∗)

]}

×N
(

a, Σ⊗
(
X′X

)−1
)
(2π)

mk
2

∣∣∣Σ⊗ (X′X)−1
∣∣∣ 1

2

× |S∗|ν/2

2νm
m

∏
i=1

Γ
[

ν+1−i
2

]
where

N
(

a, Σ⊗
(
X′X

)−1
)
= (2π)−

mk
2

∣∣∣Σ⊗ (X′X)−1
∣∣∣− 1

2

× exp
[
−1

2
(a− a)′

(
Σ⊗

(
X′X

)−1
)−1

(a− a)
]



Fact About Determinant of Kronecker
Product

• Suppose A is m×m and B is n× n.
• Then,

|A⊗ B| = |A|n |B|m .

— Special case where A is a scalar:

|A⊗ B| = An |B|

• So, ∣∣∣Σ⊗ (X′X)−1
∣∣∣ = |Σ|k ∣∣X′X∣∣−m



Prior and Posterior

Multiply and divide non-exponential term in the Normal:

p(Y|A,Σ)p(Ȳ|A,Σ)p (Σ)

=
1

(2π)
m(T+T̄)

2

|Σ|−
T+T̄−k+ν+m+1

2 exp
{
−1

2
tr
[
Σ−1 (S+ S∗)

]}
×N

(
a, Σ⊗

(
X′X

)−1
)
(2π)

mk
2
∣∣X′X∣∣−m

× |S∗|ν/2

2νm
m

∏
i=1

Γ
[

ν+1−i
2

]
∝ N

(
a, Σ⊗

(
X′X

)−1
)
IW (T+ T̄− k+ ν, S+ S∗)



Prior and Posterior

• Conclude:

p (A, Σ|Y) = N
(

a, Σ⊗
(
X′X

)−1
)

×IW (T+ T̄− k+ ν, S+ S∗)
= p (A|Y, Σ) p (Σ) .

• Drawing A, Σ from posterior:

— Draw Σ from IW (T+ T̄− q− pm+ ν, S∗ + S) .
— Then, draw a from N

(
a, Σ⊗

(
X′X

)−1
)

.



Hyperparameters for Priors

• Inverse Wishart prior: degrees of freedom, ν, and scale, S∗.
— In practice, S∗ is a diagonal matrix constructed by (i)
constructing a diagonal matrix using the variance of fitted
disturbances in univariate autoregressive representations of the
variables in yt fit to a pre-sample and (ii) multiplying that
matrix by ν.

— Sometimes, S∗ = 0 and priors for Σ are instead captured with
dummies (see Del Negro and Schorfheide, 2011).

• Dummies: λ1, λ2, λ3, λ4, other parameters - s1, s2, ȳ1, ȳ2.



Marginal Likelihood
• Marginal likelihood of data (see, e.g., Del Negro and
Schorfheide, 2011, equation 15):

p (Y) =
∫

A,Σ
p (Y|A, Σ) p (A|Σ) p (Σ) dAdΣ

= (2π)−
mT
2

∣∣X′X∣∣−m
2 |S|−

T+T̄−k
2

|X̄′X̄|−
m
2 |S∗|−

T̄−k
2

×
2

m(T+T̄−k)
2

m

∏
i=1

Γ
(

T+T̄−k+1−i
2

)
2

m(T̄−k)
2

m

∏
i=1

Γ
(

T̄−k+1−i
2

)
,

where Γ is the gamma function, independent of the value of
hyperparameters,

λ = (λ1, λ2, λ3, λ4) .

— The hyperparameters could be selected to maximize p (Y) .



Outline
• Normal Likelihood, Illustrated with Simple AR(2)
representation. (done!)
— conditional versus unconditional likelihood.
— maximum likelihood with level GDP data.
— the Hurwicz bias.

• Three representations of a VAR. (done!)
— Standard Representation
— Matrix Representation
— Vectorized Representation.

• Priors, posteriors and marginal likelihood (done!)
— Dummy observations.
— Conjugate Priors.

• Forecasting with BVARs
— stochastic simulations, versus non-stochastic.
— forecast probability intervals.



Forecasting
• Repeated draws from p (yT+1, ..., yT+F|Y, ξT+1, ..., ξT+F) ,
where F is the forecast horizon.

• Stochastic simulation algorithm. For l = 1, ..., N,
— Draw A(l), Σ(l) from

p (A, Σ|Y) = N
(

a, Σ⊗
(
X′X

)−1
)
×IW (T+ T̄− k+ ν, S∗ + S) .

— Draw, for t = T+ 1, ..., T+ F :

u(l)t ∼ N
(

0, Σ(l)
)

.

— Solve, recursively, for y(l)t , t = T+ 1, ..., T+ F :

y(l)t = A(l)0 ξt +A(l)1 y(l)t−1 + ...+A(l)p y(l)t−p + u(l)t ,

where
y(l)t = yt, for t ≤ T.



Forecasting
• The sequence,

y(l)T+1, ..., y(l)T+F,
for l = 1, ..., N, is a single draw from
p (yT+1, ..., yT+F|Y, ξT+1, ..., ξT+F).

• For each i, i = 1, ..., m, we have

Mi︸︷︷︸
N×F

=


y(1)i,T+1 · · · y(1)i,T+F
...

. . .
...

y(N)i,T+1 · · · y(N)i,T+F

 .

• Then, for example, letting

τ︸︷︷︸
1×N

=
1
N
[ 1 · · · 1 ] ,

ET [yi,T+1, ..., yi,T+F]

≡ E [yi,T+1, ..., yi,T+F|Y, ξT+1, ..., ξT+F] = τMi.



Mean Forecast, AR(1), T+1, T+2

y(l)T+1 = A(l)0 +A(l)1 y(l)T + u(l)T+1

y(l)T+2 = A(l)0 +A(l)1

[
A(l)0 +A(l)1 y(l)T + u(l)T+1

]
+ u(l)T+1

=
[
A(l)0 +A(l)1 A(l)0

]
+
(

A(l)1

)2
y(l)T +A(l)1 u(l)T+1 + u(l)T+1,

for l = 1, .., N. Then, if Âi ≡ ETAi, i ≥ 0 :

ETyT+2 = ET [A0 +A1A0] + yTET (A1)
2

+

=ETA1ETuT+1=0︷ ︸︸ ︷
ET [A1uT+1] +

=0︷ ︸︸ ︷
ET [uT+1]

= ETA0 + CovT (A1, A0) + ETA0ETA1

+yT

[
varT (A1) + (ET (A1))

2
]

6= Â0 + Â0Â1 + Â2
1yT.



Message of Previous Slide

• To obtain mathematically correct mean forecast, ETyT+i,
i = 1, ..., F,

— must do stochastic simulations of future.
— simple non-stochastic simulations not enough:

y(l)t = Â0ξt + Â1yt−1 + ...+ Âpyt−p,

setting ETuT+i = 0 for i = 1, ..., F.

• Problem with non-stochastic simulation procedure is
quantitatively large if there is a lot of uncertainty at T about A
and Σ (e.g., posterior second moments of A are large).

— Whether it is worth the extra time to do stochastic simulation
must be assessed on case by case basis.



Forecast Probability Interval

• After stochastic simulation, we have:

Mi︸︷︷︸
N×F

=


y(1)i,T+1 · · · y(1)i,T+F
...

. . .
...

y(N)i,T+1 · · · y(N)i,T+F

 ,

for i = 1, ..., m.
• To obtain the date T conditional distribution of yi,T+j display
histogram of jth column of Mi.

• 90% probability interval for yi,T+j obtained by:

— sorting contents of ith column of Mi from smallest to largest
— reporting 50th and 950th elements (say, N = 1, 000).


