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Bayesian Vector Autoregressions

e Vector Autoregressions are a flexible way to summarize the
dynamics in the data, and use these to construct forecasts.

e Problem: vector autoregressions have an enormous number of
parameters.

— Individual parameters imprecisely estimated.

® imprecision increases variance of forecast errors.

— Doan, Litterman and Sims, working at the Federal Reserve
Bank of Minneapolis, developed Bayesian methods to use
Bayesian priors to reduced instability in estimated VAR
parameters, and thus improve forecast accuracy.

e Initial work provided in Litterman’s Phd dissertation, released
as “A Bayesian Procedure for Forecasting with Vector
Autoregression,” Massachusetts Institute of Technology,
Department of Economics Working Paper, 1980.

e Another important early paper: Doan, Litterman and Sims,
1984. “Forecasting and Conditional Projection Using Realistic
Prior Distributions.” Econometric Reviews 3:1-100.



Bayesian Vector Autoregressions

e Of course, much has been written to describe BVARs.

— Classic treatment: Arnold Zellner, An Introduction to Bayesian
Inference in Econometrics, John Wiley & Sons, 1971.

— Hamilton's textbook, Time Series Analysis has a very good
chapter.

— Here is an accessible discussion: Robertson and Tallman,
‘Vectors Autoregressions: Forecasting and Reality’, Federal
Reserve Bank of Atlanta, Economic Reviews, First Quarter,
1999.

— Rigorous recent reviews of the subject: Del Negro and
Schorfheide, ‘Bayesian Macroeconometrics,’ chapter in
Handbook Bayesian Econometrics, Oxford University Press,
2011.



Outline

Normal Likelihood, Illustrated with Simple AR(2)
representation.

— conditional versus unconditional likelihood.
— maximum likelihood with level GDP data.
— the Hurwicz bias.

Three representations of a VAR.

— Standard Representation
— Matrix Representation
— Vectorized Representation.

Priors, posteriors and marginal likelihood

— Dummy observations.
— Conjugate Priors.

Forecasting with BVARs

— stochastic simulations, versus non-stochastic.
— forecast probability intervals.



Scalar Autoregressive Representation
o p'* order autoregression:
yi = Ag+Awyi1+AyroHu, up ~ N(O,X)
n
Y = ;
yr
Observed data:

initial conditions
Y —~ =~
;YooY

Normal likelihood of observed data:
(Y, yo,y-1lA L) ~ N(uV),

where V ~ (T +2) x (T 4 2). To evaluate p, must invert V.
Matrix inversion is expensive, O (T3) .

Express likelihood in recursive form to simplify inversion.



Recursive Representation of Likelihood
e Property of probabilities:
p(A,B) =p(A[B)p(B).

e Suppose T =1.

— Then, the joint likelihood of the data, y1, Y0, y—1, conditional
on the model parameters:

P (y1,%0,y-1|A L)

likelihood of y;, conditional on initial conditions

= p (vilyo,y-1,4A,%)

marginal likelihood of initial conditions
A~—

X p (yo,y-11A,X)



Recursive Representation of Likelihood

e Consider T = 2:

p (Y2, y1,v0,y-1]A,2) =

pl2y1y0y-1|AL)

~

p(]/l/]/O//y\—l |A,X)

R

P (v2ly1,¥0,y-1,AZ) X p (V1lyo,y-1, 4, L) X p (Yo, y-1]|A,Z)

andsoonforT =23, ....



Recursive Representation of Likelihood

e Consider T > 1:

p (Y, 1Yo, Y-1]A ) =
p (yrlyr-1,y1-2,4,%)
xp (yr-1lyr-2,yr-3,4, %)
X - Xp (Yelyi-1,Yi-2, A, E)

X - xp (Y2lyn, yo, A Z) p (Yilyo, y—1,4,Z) p (yo, y—1|A Z) .

e Note how we have converted a single (T +2) x (T + 2)
inversion problem into a set of scalar inversions.



Conditional (Normal) Likelihood

From Normality

p(yf|yt—11yt—21A/Z)
1y — Ao — Ay — Azyt_2)2]

= A on1/2 exp

(27%) 2 z
fort=1,...,T.
Likelihood of data, conditional on initial observations,
T
p (Y‘yo’y—llA’Z) = I—[p (]/t’]/t—lrl/t—er, Z)
t=1

1

T2 [_

1 i (i — Ao — A1y 1 — Agyy2)°
25 )y '



Maximum (Conditional) Likelihood

o Log-Likelihood conditional on initial observations:
log [p (Ylyo,y-1,4, %))
T T
= —ElogZ 5 log (27)

1 i (ye — Ao — Aryi—1 — Agyi—2)”
2 2

t=1

e Conditional maximum likelihood: optimize w.r.t. A, %

e First order conditions for maximum provide four equations in
four unknowns:

2/ AO/ALAZ



First Order Conditions Associated with
Conditional Maximum Likelihood

e Setting derivatives to zero:

1< .. . )
=7 Y (vi — Ay — Arys—1 — Azys2)
=1
T ~ ~ A
Ao = Y (yr—Ag— A1 — Agyyn) =0
=1
T ~ ~ A
Ay o) (e —Ao— Ay — Agyr2) Y1 =0
=1
T Lo} ~ A
Ay o) (e —Ao— A — Ay 2) yr2 = 0.
=1

e Yay....OLS!



Application

e US log, real per capita GDP, 1947Q1 - 2015Q4, T = 274
¢ Conditional maximum likelihood (OLS) estimates

— Eigenvalues less than unity, so estimated model implies
covariance stationarity

A2 — AjA; — Ay =0 — Ay = 0.9970, A, = 0.3630.
— Implied mean and standard deviation in u;:
1-A1—A;
e Notice: if
y: = 11.88 + al/\ﬁ + a2/\t2, any ai,ap,
then trend implied by initial conditions:
vi =Ag+ A1y + Ay o, > 1

Set a1 and a; to be consistent with actual yp and y_1 (~ 9.5).



Impact of Initial Conditions on Dynamics of US log, per capita real GDP
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Message of Application

e |llustrates how maximum of conditional likelihood is computed
by OLS.

e Maximum of conditional likelihood with growing data.

— tends to ‘explain’ data as emerging from covariance stationary
model (roots inside unit circle).

o related to ‘Hurwicz bias’, tendency for roots of VAR to shrink
towards zero.

— interprets growth as reflecting transition from unusual initial
conditions.

e initial conditions account for a very large portion of data
dynamics (see previous figure).
e most researchers view this as implausible.



Unconditional Likelihood in the Application

e Alternative: go to (unconditional) maximum likelihood:

p (Y, y0,y-114,Z) = p (Ylyo,y-1,A,Z)p (yo,y-1|A,Z),

where

_ L -1/2 _1/ -1
pnyalan) = v e |50V,
c
c

iy c (0 1
¢ = (yy_ol—y]?>'vz{cglg EO%]’
c(t) = E(yt—?)(]/tf_y)'yzl—jﬁ
A
c(l) = 1—11426(0)'

)
A
1— A% — A3 — 24140120




Unconditional Likelihood in the Application

e Unconditional likelihood:

p(Y.yo,y-1lAZ) =p (Ylyo,y-1,AZ)p (vo,y-1]A,Z),

where
p (Yo, y-1]A, L) = %T V|~ exp [—%é’Vlé] ,
.y 0) ¢(1
= (%) v= ) c

e presence of 'V ™17 penalizes the OLS strategy of ‘explaining’
the data based on a trend that jumps off initial conditions.

— in this application, trend virtually completely eliminated.



Results

Conditional versus Unconditional Likelihood

Parameter | Cond. Likelihood (OLS) | Unconditional Likelihood
Ag 0.023 0.0020
A, 1.36 1.499
Ay -0.3619 -0.4993
A

R 11.88 10.18
A 0.9970 0.9996
Ao 0.3630 0.4995
Vi 0.00876 0.00916
c(0) 0.03154 0.41053
c(1) 0.03150 0.41048




Why Does OLS Like to Extrapolate Initial
Conditions?

e Answer is related to the ‘Hurwicz bias'.
e OLS estimator of p in yy = py; 1 + up, with T = 2
observations:
p = Yty (oy1 + €2) y1 + (pyo + €1) Yo
Yi+ys vi+yg
Y1 + €1Yo
2 2
Y1 t+Yo

Y1 Yo
= p+ & + €.
<y%+1%) (y%+y%>

e Standard result that OLS is BLUE (Best Linear Unbiased
Estimator) requires right hand variables independent of error
terms.

— Assumption fails in AR representations




Why Does OLS Like to Extrapolate Initial
Conditions?

e The phenomenon reflects that y; and &1 are not independent

Yo Yo
E &1 75 E ESl.
<y% +}/%> (y% +y%>

e Problem gets smaller as T — oo because there is less
correlation between &; and denominator term:

Y
El —4—— ] ¢.
<Z]T—1 y]21>

Note that & is dependent on only a relatively small number of
Yj's in the denominator.

e This Hurwicz ‘bias’ is pervasive in VARs.



Initial Conditions

e General tendency in BVAR literature to work with level,
growing data.
— idea is incorporated in ‘random walk prior’ (i.e., Minnesota
prior).
— argument in Sims-Stock-Watson (Econometrica, 1990)
suggests to many that working with level data is a good idea.
e Partly because of general tendency towards levels in the
literature, literature is in the habit of working with the
conditional likelihood.
— Likelihood of initial conditions not defined when roots are unity
or explosive.
e Still, some people worry about tendency of conditional
likelihood to make implausibly high use of initial conditions.
— could work with growth rates.
— alternative strategies are suggested in Giannone, Lenza and
Primiceri, 2015, ‘Priors for the Long Run’.



Outline

Normal Likelihood, Illustrated with Simple AR(2)
representation. (donel!)

— conditional versus unconditional likelihood.
— maximum likelihood with level GDP data.
— the Hurwicz bias.

Three representations of a VAR.

— Standard Representation
— Matrix Representation
— Vectorized Representation.

Priors, posteriors and marginal likelihood

— Dummy observations.
— Conjugate Priors.

Forecasting with BVARs

— stochastic simulations, versus non-stochastic.
— forecast probability intervals.



VAR: Standard Representation
Let

Yyt ~ m X 1 vector of data
C; ~ g x 1 vector of (unmodeled) exogenous variables
(e.g., time trend, constant, World GDP)
uy ~ m x 1 vector of iid disturbances, u; ~N (0,%).
Vector Autoregression VAR (p):
Y= ff(}/ét +<1/1_ﬂt—1 + ... —l—ilﬁ/yt,p +u, t=1,..,T,
mxq mxm mxim

u; orthogonal to &; ., y;—1-s, s > 0.
The available data:

ylfp/ -~-,y0;y1; vy YT
Generally, take initial conditions as given

ylfp,...,yo.



VAR: Likelihood
e Likelihood of data:

p (Y, y1—p, - YolA L, 0) =

‘conditional likelihood’ (conditional on initial conditions and )
7\

~

p (yrlyr-1, e YT—ps AL, 0) x - xplyo, - Yy—p AL Q)

likelihood of initial conditions (conditional on ()

X P (Yo, Y—plA, %, Q) ,
where the analysis is always conditioned on the exogenous
variables,  :
Cr

Cp
e From here on, conditioning on ( is taken for granted and not
even included explicitly in the notation.

(=



VAR: Likelihood

e First, let
Gt
Vi1
Xy = : ,t=1, k=gqg+4pm
kx1 Yi—p
e Then,
v = A'xi +uy,
where
mxk
e Notice:
(yt|xt,A )
1

(yt



VAR: Likelihood

e Conditional likelihood of Y :

p (Y|x1, A %)

1 T 1<
~ T e |3 27

e From now on, drop the notation, x1, to avoid clutter.

e Now, for a little matrix algebra....



Trace of a Matrix

e Trace of a square matrix, A :
tr [A] = Zaii'
i

e Properties of trace:

— cyclic property of trace: if A, B, C are (conformable) matrices,
then
tr (ABC) = tr (CAB) = tr (BCA).

e example: if ais a n x 1 vector and B is n x n, then, by cyclic

property,
aBa=tr [a/Ba] =tr [aa/B] =tr [Baa/]

— linearity property of trace:

tr [A+ B] = tr [A] + tr [B].



VAR: Likelihood
e Conditional likelihood of Y :

p(YIA,2) _
1 T 1o N et ,
= 7 |2 2 exp —EZ(yt—Axt) 27 (g — Aly)
(2m) 2 t=1 |
1 r [ 1 , 1)
= 7 12| Zexp —5 Z tr|(yr—A xt) (yt A'xy)
(27) 2 | =1 4
1 1L 1]
= s R |3 Yt A (e - A) 2
(2m) 2 | ‘=1 4
1 7 1] -1 / vt
= — |Z| 2 exp —EZtr S (e — Av) (v — Alxy)
(2m) 2 | “t=1 °
1 T T
=L Fewp |3 |2 (- A% - A% ]
o)




VAR: Matrix Representation

Define , ,
51 X1

Y = : , X = :

./ ./
Txm yT T><k xT

‘Standard VAR’ representation:
yr = Alxe + uy

Transpose it:
Yi =X A+u

Then, ‘stack’:
Y = XA+ U.



VAR: Likelihood in Matrices

e Representation in matrix form:
T

t; (e = A'xt) (ye — A'm)" = t; (ye — A'xt) (i — x1A)
y1 — 1A
= —Ax) - (yr—Alxr) | :
Yy — XA

= (Y — XA) (Y = XA)

e So, matrix representation of VAR and (conditional) likelihood:

Y=XA+U
p(V]4,%)
_ 1 mT =]~ 7 exp [_ltr [Zfl (Y—XA), (Y — XA)H
(2m) 2

e With the likelihood in hand, we now move on to the priors.



Priors and Posteriors

e Use Bayes' rule and priors to compute posterior distribution.

o |dentities:
p(Y,Z,A) =p(Y|IZ,A)p(Z,A) =p(EAlY)p(Y),

so that

likelihood prior

e e
—N—
Bayes' rule: p (£, A|Y) = P (Y|Z‘;;L(‘¥; (Z'A).

posterior

o Will work with ‘conjugate prior’, p (%, A)
— p(X,A]Y) is the same density as p (X, A)
e To find a conjugate prior, it is convenient to notice that a

likelihood, p (Y|X, A), can be rewritten so that it looks like a
density function for A.



Rewriting the Likelihood

e OLS estimator of A and sum, squared residuals, S :

A= (X'X)7'XY, §= (Y - XA) (Y — XA)

e Orthogonality property of OLS:
X [Y=x4] = X [1-X(x%)7' x| Y
=[x -xx(xx) 7' x| Y =0
e Orthogonality implies:
(Y — XA)' (Y — XA)
= (Y-XA+X(A-A)) (Y-XA+X(A-A))

orthogonality

(v - XA) (Y- XA) + (A A) XX (A 4)
= 54 (A-A) XX (4-A)



Rewriting the Likelihood

e The previous results imply:
p(Y|AX)
1

1 _ /
= o =~ 2exp{——tr [z 'Y —XA) (Y—XA)}}

_ 1 T 1z~ 7 exp {—ltr [Z 1@] }

(2m) =

X exp {—%tr 271 (A= 2) XX (A A)] }

e The likelihood looks more and more like a distribution for A!

— Just one more step...



Vectorization and Kronecker Product

e Kronecker product:

_ a1 a2 _ [anB alzB]
A = [azl azz} —A®B= [0213 a»B

— (A®B) =A'®B, (A®B) '=A"1@B™ L

e Let the it" column of the m x n matrix A be denoted by a;,
i=1,..,n:

Then,
— tr [A'BCD'] = vec (A)' (D ® B) vec (C)



Rewriting the Likelihood

o Let
a =vec(A), a = vec (A)

e Then,

tr |27 (A-A)X'X (A-A)
\,./_\/_/\,/A/_/
mxk kxk kxm

= tr|(A-2)' XX (A-A)x7|

mXxXm

= (a—a) (z—1®xfx) (a—a)
= (@-8)(ze (X’X)_1>_1 (a—a)

e This looks a lot like the exponential term in the Normal
distribution!



Rewriting the Likelihood
e Likelihood

p(Y[AZ)

e )

X exp —%tr[z_l(A—A) X'X(A- A)}}
1

gt
X exp {—% (a—a) (z ® (X’X)‘l)_1 (a— ﬁ)}

e Payoff: suppose that X is known and p (A|X) = constant (flat
prior), then posterior of a is N (&,Z ® (X’X)_1> :




VAR: Vectorized Form
e VAR in Matrix form:

Y =XA+U.
e Matrix fact:
vec (ABC) = (C' ® A) vec (B),
so,
vec (XA) = vec (\}S/\A;/Im> =In®X)a
Txk kxm

e Then,

(y=I,®X)a+u, u~N(0O,XRIr), |

y=vec(Y), u=wvec(U).



VAR: Vectorized Form
e VAR -

y=In®X)a+u u ~ NOIIr).
e OLS:

>
I

((In©X) In®X)] " In®X)y
= a4+ [ ®X) In®X)] " (In®X)

— Classical (asymptotic) sampling theory for 4 is Normal with

mean: a
variance: (In®@X) (In®X)]
=Ly

PN -1
X Euu’ (I, @ X) ([(Im ®X)' (In ® X)] >

", eXx)

/



VAR: Vectorized Form

Matrix facts:
(A®B) = A®B, (A9B) '=A"1@B7},
(A®B)(C®D) = (AC®BD), (AB) =BA’
Then,
(I ®X) (In®X)] " (In®X) (E@I7)
< (In®X) ([l ®X) (lnoX)] ")
= 2o ((X'X)"
This is a heuristic demonstration of the large sample result that
i~ N(eze(xx)7)
Interesting to compare with Bayesian posterior with flat prior:

i~ N(aze (X)),



Where we Now Stand: Three
Representations of VAR

e Standard representation and likelihood:
ye = Aoy + Aryi—1 + . + Apyi—p + 1y, Eupuy = X
p (YA L)

T
_ 1 7 1z~ 7 exp _ltr Y (e — A'x) (e _AIXf)/ ]
(2m) 2 t=1
e Matrix representation and likelihood:
Y=XA+U
p(Y|AX)

= ! mT 1z~ z exp {—%tr [2_13] }

xexp{——tr (A—A)' X'x (A—A)]}



Where we Now Stand: Three
Representations of VAR

e Finally: Vectorized representation and likelihood -

y=(In®X)a+u, u ~ N(0,Z®Ir)
b (Y|A,X)

= T e (o=}

X exp {—% (a—a) (2@ (X’X)‘l)_1 (a —ﬁ)}

e Key insight: this likelihood has the shape of
N(aze X)),




Outline

Normal Likelihood, Illustrated with Simple AR(2)
representation. (donel!)

— conditional versus unconditional likelihood.
— maximum likelihood with level GDP data.
— the Hurwicz bias.

Three representations of a VAR. (done!)

— Standard Representation
— Matrix Representation
— Vectorized Representation.

Priors, posteriors and marginal likelihood

— Dummy observations.
— Conjugate Priors.

Forecasting with BVARs

— stochastic simulations, versus non-stochastic.
— forecast probability intervals.



Priors for VARs

Priors designed based on insight in the vectorized
representation of VAR.

Example: suppose (for now) that X is known and p (A|X) = ¢
(‘uninformative prior’).
Then,

p(AlY,Z) xp (YA Z)p (A]Z)

= ! — |Z|” H exp {—ltr [ _19}}

e
xexp{—%(a—ﬁ)/ (Z@(X’X)_1>_1(a—€z)}c ,

where o« means ‘is proportional to'.

We now turn to an influential class of priors for A, constructed
using ‘dummy observations'.



Priors and Dummy Observations

Suppose we have T dummy observations, (Y, X).
Consider the following ‘likelihood’ for the dummy observations:

_ 1 _T
p(YIAE) = — |52

mT
X exp {——tr

(2m) 2
In vectorized form,
A= (X'%)"




Dummy Observations and Posterior

Multiply p(Y|A,Z) (the likelihood of the data) times p(Y|A,X)
(something proportional to a Normal prior for A) :

p(AIZ,Y) «p(Y|AZ)p(Y[AE)

1 T+T
= ——am =57
(2m) "2
; -
X exp [——tr Z —A'x) (yr — A xt)
T s
X exp [——tr Y (3 ~A'z)
=1

We have o here because (i) we want the Normal prior for A which is
only proportional to p(Y|A,X) and (i) we need to divide by p (Y|Z).



Dummy Observations and Posterior
Collect terms in A (using linearity of tr[-])

tr[Z” 1(2 (ye — A'xe) (ye — A'xy)

T
+ Z A’x] A’x]) )]
]:1
— tr[E7 (X - YA) (X — XA)’}
where
[ % ] [ ]
B x.’ [ X B y.’ Y
IR R
. ~——— . ~——
_:/ (T+T) xk _:/ (T+T) xm
| *7 | Y7 |




Dummy Observations and Posterior

e Mapping all the way to exponential representation:
tr[271 (Y — XA4) (Y - XA) ]

=[S (S+(A-A4) XX (A - 4))

—

B :z—lg} +tr[(A—A) X'X(A—A)]

— fr :Z_lﬁ} +(a—a) (Z ® (X'X) 1>1 (a—a)

where

[V NRS
|

ot

<

|

>

>-<



Dummy Observations and Posterior

e The posterior distribution is proportional to:

_ 1 _T4T 1 _
em™"

X exp {—% (a-a) (zo (XX) ") - 2)]

e Thus, we see that the posterior distribution of a, p(A|%,Y), is
Normal and:

p(AIZY) ecp(Y|AZ)p(YIAE).



Interpreting the Posterior

e Note

A = (XX)'XY
= (X'X+XX)"!
A A

x| xx|(x%) 7 x|+ X% (X%) T XY |

so that the posterior mean of A, A, is a weighted average of
what the data say, A, and the prior, A.



Simple VAR(2), m=2
e Standard VAR representation:

Ao Aq
—_—

] - Tl R

21 P2 Y2,t-1
Ap
———
+[ Y11 Y12 } [ Y142 ] 4 [ Uy }
Yo1 T2 Y2,4-2 Up ¢
o [3061 gz
0 11 P2
A= A} = | B B
A, Y11 Y21

T2 T2



Simple VAR(2), m=2

e Matrix representation:

1 /
Y11 X Yip Y21
Xp = | Y1 |, X=| |, Y=]
5x1 Yii-2 X7 VT Yar
Yar—2
e Then,
X1 &
P11 PBx
Y = X u .
~— 1312 1822 +\,./
Tx2 <5 | Y11 V21 Tx2

T2 T2



Minnesota Prior

Very clever!

Basic idea: each variable is a scalar 15 order autoregression:
= Yip = Bilit—1 + Uip, By ~ <¢zr A2 2>
E” . .

- Yir = ,Bz‘]'yj,t—l + Uit ,Bij ~N <0 AZs 2> JJF

— A1 ~ ‘overall tightness parameter’
— s; ~ 'scaling parameter on coefficient on y;; 1’

Parameter, ¢, :

— if y;; is in levels, then ¢; = 1 (random walk).
— if y;; is in first difference, then ¢, = 0 (again, random walk).
— could have ¢, # 1.

Analogous restrictions on lags 2, ..., p parameters.

— Prior assumes that the data has less information on parameters
at higher order lags.



Minnesota Prior

e Each variable follows a simple 15 order scalar autoregression.
— Motivation: it has been found that such models (especially,
random walk) perform well in forecasting.
— Although the prior is that data dynamics are quite simple, this
need not be the case in the posterior when Aq,s; < oo.
— if the data really want a lot of interaction, the posterior will
show that.
e Note: the variance of the prior is proportional to Z,-Z-/s]z.

— Motivation: the numerator is related to the volatility of y;; and
the denominator is (actually, will be) related to the volatility of
Yit-

e It is perhaps intuitively appealing that the confidence or
strength of belief in the prior that Bij is close to zero is stronger
the more variable y; ; is, relative to y; ;.

e Imagine you feel Bij is close to zero, i # j, and you see Yj is
highly variable while y; ; is not. This would reinforce your belief
that Yit has no impact on y; ;.



Minnesota Prior

Dummy observations for A :

A
Xi )fi X1 &2
pMs1 0 ] B [o Ms; 0 0 o} gn P
0 A1S - 0 0 A9 0O 12 P2
Pas2 172 T Y21
T2 Y22
U

—_—

U1 Uz

Jr[ul,z uz,z]

where Aq is an ‘overall tightness' parameter; s; is a tightness
parameter that applies to the it equation; ¢, prior on
parameter on own first lag of v; .



Implications of Minnesota Prior
e 1,1 and 1,2 elements of system, Y1 = X1A + Uj :

u
P51 = Msifyy Furn — Py =1 — ﬁ
211
— By (4)1, )
Uz
0 = Msify Huz1 — Py =0— A5t

X
P N( X %)

e Similarly, 2,2 and 2,1 elements imply:

X 211
1322 ~ N (472/ > s ,312 ~ N <O, —> .
A3s Afs3



Minnesota Prior
e Dummy observations for A;, [ > 1:

Ajsal2he " Aisqiehe

e Hyperparameter, A, > 0, controls the amount of prior
information at higher lags.

A
,_f; X2 [ a1« T
[0 0}_{0 00 AMsyI™ 0 } gn 221 i,
0 0| A 12 P2
000 0 Ml Y11 Y21
| Y12 Y22
Z‘11 222
~ 0, ——1, ~ 0, .
N (o) (0558
)2 )
T2 ™~ N<O/ 1 )I ’)’22NN 0 22 )/

— Bigger Ay or [ ~ more information in the prior at higher lags.
— Prior is that there is relatively little info in data about high



Own-persistence Dummies

If y;; has been stable at some level, ;, i = 1,2, it tends to stay
there:

A
2/3’ 553’ 1 (1%
r{/\391 0 T _ {0 At 0 Asin O ] gll 521
0 ] L0 0 om0 ] A
Y12 T2

— Az = Az By + A3y + Ui

211
— BuArn=1-- By +rn) ~N (1,52
B+ 711 AsTi (511 Y1) ~ ( A%y%)



Interpretation of Own-persistence Dummies

e Suppose
Vi = ByYi—1 + Y1Yi—2 + U,
with
I=Fpn+r1—=PFu=1—711
so that
ye= (1= 711) Y—1 + Y11¥e—2 + the
or,

Ye— Y1 = =711 (Ye—1 — Ye—2) + U
e Own-persistence is a generalization on random walk.

— random walk: first differences not autocorrelated, but
stationary.
— sum of coefficients = unity: first differences are autocorrelated.

e example: US GDP looks like
Ayy = 04Ay_1 +uy, y11 = —04.



Co-persistence Dummies

o If (y14,Y2+) have been persistent at (I/1,7) they tend to stay
there:

Yy X4
TAdn A ] =T A M Maie M M JA+ Ty

e This implies:

Agin = AgiByg + a2 + Ay + Adlayrn + Asr + 1
_ _ 241
— 1(1 =By —711) = @1 +72(Bin +712) + A

Adilp = A1 Byy + Au2PBos + Al voq + Adlayon + Aso + U
_ _ Uup
— P21 =By —712) =2+ 71(Byy +721) + A



Dummy Priors

e Set them up like this:

Yl Xl lill
v_ | Y o _ | X2 7 | Uz
Y= Y; |’ x= X5 |’ U= Us
Yy Xy Uy

e Pad the Y and X vectors with the ‘observations’, Y and X :

(1] x-[3]



Prior for Variance-Covariance Matrix

e Up to now, we've focused on the prior and posterior for the
VAR parameters in A.

e We've supposed that the analyst ‘knows’ the value of 2.

o Next, we consider the more plausible case that the analyst also
does not know ..



Inverse Wishart Prior for
Variance-Covariance Matrix

e Trick is to find p (X) that is ‘sensible’ and convenient, i.e.,
conjugate with the likelihood.

e Inverse Wishart distribution for X, ZW (S,v) :

Sv/2
e p—

e+

=1
where I' denotes the gamma function.

— Inverse Wishart distribution, ZW (v, S) , with ‘degrees of
freedom’, v, and ‘scale matrix’ S.



Properties of Inverse Wishart

e Looks like inverse of Chi-square distribution:
— Draw v vectors Zy, ..., Z, from N (0,S7!), and:

= (22 + .+ 2,2,

Nice: (i) X is guaranteed to be positive definite for v big
enough, (ii) trace and determinant terms in ZW (S, v) match
up with analogous terms in rewritten Normal likelihood.

e Property:

S S

2= — de, = —————
mean, i P mode, v m+1)



Recall

e We previously derived:

Sp(AJY.E)

- = N 1 _T4T 1 _
PAERTIAL) =y (2] exp {3 [2] |
em™ "

X exp {—% (a — Q)/ <Z ® ()_(’X) 1>1 (a— Z)} ,
where
= (X'X)7' XY

= (Y-XA) (Y- XA)
= vec(4).

BRSNS



Prior and Posterior
e Want:
IW(v,5%)
_ —~ =

p(AZ]Y) cp(YIAD)p(YIAE) p(X) .
e Plugging stuff in:

p(AZ]Y) < p(Y[AZ)p(Y|AZ)p (T)

T

= (27T)+(T;T) ]Z|*T% exp {—%tr [Z_lﬁ} }
X exp {—% (a—a) (Z ® (X’X)ﬂ) - (a— 2)1
Exlie

_vtm 1
X — 1Z| S exp —Etr [Z_IS*}

e[+

i=1



Prior and Posterior

e Collecting terms in A and X :

p(YIAZ)p(Y|AZ)p (Z)
- —(m)i@ | e S [ (5457 |
<exp |3 (-0 (20 (X)) (6-0)
S

i=1

e We can sort of ‘see’ a Normal distribution in here and an
inverse Wishart.

e Must dig a little to find it!



Prior and Posterior
e Multiply and divide non-exponential term in the Normal:

p(YIAZ)p(Y|AZ)p (X)

_ 1 T+ T+vtm+1 exp {—%tr [Z_l (§+ S*)] }

m(T+T) |Z|_ :

)™
x N (Q,Z ® (X'X) 71) (27r)m7k
572

2 [Tr [24]

=1

L@ (X'X)

X

where
N(zze(xX)) = 2r)" %

X exp [_% (a—a) (2 ® ()_i’x)‘l)_1 (a —4)}

NI—=

-1

L@ (X'X)

Nj—



Fact About Determinant of Kronecker
Product

e Suppose A ism x m and B is n X n.

e Then,
|A® B| = |A|" [B|"

— Special case where A is a scalar:

|A® B| = A" |B|

T (xx)7 = [z XX



Prior and Posterior

Multiply and divide non-exponential term in the Normal:

p(Y[AZ)p(Y|AZ)p (X)
1 _ T+T—ktvtmt1 1 _ X

(2m)
N (a2 (XX) ) @0 [x'x| ™"
5"

2 [Tr [25]

i=1

X

o<N<Q,Z® ()_(’g)*l) IW(T+T —k+v,5+ 5



Prior and Posterior

e Conclude:

pAZ)Y) = N(aze(XX)")
XIW(T+T—k+v,S+S5%)
= pAY,Z)p(2).
e Drawing A, X from posterior:

— Draw X from IW (T+T—q—pm+v,5*+5).
— Then, draw a from N(@Z@ (K'K)_l )



Hyperparameters for Priors

o Inverse Wishart prior: degrees of freedom, v, and scale, S*.

— In practice, S* is a diagonal matrix constructed by (i)
constructing a diagonal matrix using the variance of fitted
disturbances in univariate autoregressive representations of the
variables in y; fit to a pre-sample and (ii) multiplying that
matrix by v.

— Sometimes, S* = 0 and priors for X are instead captured with
dummies (see Del Negro and Schorfheide, 2011).

e Dummies: Ay, Ay, A3, A4, other parameters - s1, 52,11, /2.



Marginal Likelihood

e Marginal likelihood of data (see, e.g., Del Negro and
Schorfheide, 2011, equation 15):

p() = [ p(YIAD)p(AIE)p (D) dAdE

) (T+T ) ﬁr <T+T k+1— 1)

up | X'X] 2

= (2n)

1
- o _m _T=k X l - .
[ X'X[ 2 [S*[ 2 (%)
2 7

where I" is the gamma function, independent of the value of
hyperparameters,

A= (A1, A, A3, A4).

— The hyperparameters could be selected to maximize p (Y).



Outline

Normal Likelihood, Illustrated with Simple AR(2)
representation. (donel!)

— conditional versus unconditional likelihood.
— maximum likelihood with level GDP data.
— the Hurwicz bias.

Three representations of a VAR. (done!)

— Standard Representation
— Matrix Representation
— Vectorized Representation.

Priors, posteriors and marginal likelihood (done!)

— Dummy observations.
— Conjugate Priors.

Forecasting with BVARs

— stochastic simulations, versus non-stochastic.
— forecast probability intervals.



Forecasting

e Repeated draws from p (71, ..., YT+F|Y, C11s - CToE)
where F is the forecast horizon.

e Stochastic simulation algorithm. For [ =1, ...,N,
— Draw A(l),Z(l) from

p(A,Z]Y) =N <g,2® (g’g)‘l) X IW(T+T—k+v,5 +85)
— Draw, fort=T+1,..,T+F:
ut(l) ~ N (O,Z(l)> :

— Solve, recursively, for ygl), t=T+1,...,T+F:

; I D, (1 N, !
v =05+ A 4 APy, ),

where
yt(l) =1y, fort <T.



Forecasting
e The sequence,

! I
y(Tllr ""yg"—)i-F’

for | =1,...,N, is a single draw from

P Yr+1 - Y1+El Y, Sri1s s G4 F)-
e Foreachi,i=1,..,m, we have

(1) (1)

Yirta 0 Yirer
M; = A
—~—

(N) (N)
NxF Yiryr 0 Yirhr

e Then, for example, letting
1
To= Gl 1,

1xN
ET [YiT41, s YiT+F)
EWYir+1, - YiT+E|Y, Crits - CTp) = M.



Mean Forecast, AR(1), T+1, T+2

I z
y(Tzrl = Ac()) +A

n (1 )
O ),

l l ) l n (1 1 1
Mo = A0+ A0 [AD ALY 1) ol

I 1) (1 N\2 ( N (I I
= A AP (DY A

forl=1,..,N. Then,

Etyri2

+17
if A, =ErA;, i>0:

Et[Ag+ A1Ao] + yTET (1‘11)2
—ETAlETuT+1 0 —0

+ Er [Ajuri1] +Er [MT+1]
ETAg + Covr (A1,Ag) + ETAoETA

+yr [WTT (A1) + (ET (Al))z]
Ao + AOAl + A%yT




Message of Previous Slide

e To obtain mathematically correct mean forecast, ETyr.;,
i=1,..,F,

— must do stochastic simulations of future.
— simple non-stochastic simulations not enough:

ygl) = AOCt + Alyt—l + ...+ Apytfp/

setting Erupy; =0fori=1,..,F.

e Problem with non-stochastic simulation procedure is
quantitatively large if there is a lot of uncertainty at T about A
and X (e.g., posterior second moments of A are large).

— Whether it is worth the extra time to do stochastic simulation
must be assessed on case by case basis.



Forecast Probability Interval

e After stochastic simulation, we have:

(1) (1)

Yitr+1 " Yir+r
M; = e ’
(N) (N)
NxF Yirywn ~ Yiryr

fori=1,.. m.

e To obtain the date T conditional distribution of y; r; display
histogram of j* column of M;.

e 90% probability interval for YiT+j obtained by:

— sorting contents of i column of M; from smallest to largest
— reporting 50" and 950" elements (say, N = 1,000).



