
Christiano
Econometric Tools for Macroeconomics
Bayesian Methods Exercise

1. Here is a very simple example to convey some of the ideas of Bayesian
analysis. Consider a time series, yt, which is independently and iden-
tically distributed N (µ, σ2) , where the value of σ2 is known to the
analyst. The analyst is uncertain about the value of µ and her un-
certainty takes the form of a Normal distribution with mean, m, and
variance, σ2/ν. Here, σ2 is the same parameter that governs the vari-
ance of yt. That it also appears in the prior distribution is done for
notational convenience, and obviously is done without loss of general-
ity. Note that the bigger ν is, the more precise is the analyst’s prior
information about µ. For this reason, ν is referred to as the ‘precision’
of the analyst’s prior. In this example, we can derive a simple easy-
to-interpret expression for p (µ|y) , the posterior distribution of µ given
the data, y = y1, ..., yT . No MCMC algorithm or other such method is
required because the derivations are analytic.

(a) Write out the expression for the likelihood of the data, conditional
on a value for the one unknown parameter:

p (y|µ) .

Show that one can write

p (y|µ) =
1

(2πσ2)T/2
exp

{
−1

2

T σ̂2

σ2
− 1

2

(ȳ − µ)2

σ2/T

}
,

where ȳ and σ̂2 denote the sample mean and variance of yt :

ȳ =
1

T

T∑
t=1

yt, σ̂
2 =

1

T

T∑
t=1

(yt − ȳ)2 .

Hint:
T∑
t=1

(yt − µ)2 = T σ̂2 + T (ȳ − µ)2 .
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(b) Show that

p (µ|y) ∝ exp

−1

2

(µ−m∗)2
σ2

T+ν

 ,
where ∝ means ‘is proportional to’, where the factor of propor-
tionality does not involve µ. Also,

m∗ = ȳ
(

T

T + ν

)
+m

(
ν

T + ν

)
.

Thus, the posterior is Normal with mean equal to a weighted
average of the sample mean of the data and the mean of the prior.
The relative weight on the prior is an increasing function of the
precision of the prior distribution.

Hint: note that

(ȳ − µ)2

σ2/T
+

(µ−m)2

σ2/ν
=

(µ2 − 2µȳ) σ2

ν
+ (µ2 − 2µm) σ2

T
σ2

T
σ2

ν

+X,

where X does not involve the unknown parameter, µ. With the
given definition of m∗, the latter reduces further to

1

σ2
(T + ν) (µ−m∗)2 + X̃,

where X̃ does not involve µ. In this way, the joint distribution
reduces to:

f (y, θ) ∝ exp

−1

2

(µ−m∗)2
σ2

T+ν


End of hint.

2. This question explores the MCMC algorithm and the Laplace approxi-
mation in a simple example. Technical details about both these objects
are discussed in lecture notes.

To understand the workings of the MCMC algorithm, it is useful to see
how it works when you know the function you are trying to approx-
imate. Thus, consider the Weibull probability distribution function
(pdf),

ba−bθb−1e−( θa)
b

, θ ≥ 0,
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where a, b are parameters and θ is the random variable. (For an expla-
nation of this pdf, see the MATLAB documentation for wblpdf(θ, a, b).)
Consider a = 10, b = 20. Graph this pdf over the grid, [7, 11.5] ,
with intervals 0.001 (i.e., graph g on the vertical axis, where g =
wblpdf(x, 10, 20), and x on the horizontal axis, where x = 7 : .001 :
11.5). Compute the mode of this pdf by finding the element in your
grid with the highest value of g. Let f denote the log of the Weibull
density function and compute the second derivative of f at the mode
point numerically, using the formula,

f ′′ (x) =
f (x+ 2ε)− 2f (x) + f (x− 2ε)

4ε2
,

for ε small (for example, you could set ε = 0.000001.) Here, x de-
notes θ∗ and f denotes the log of the output of the MATLAB function,
wblpdf. Set V = −f ′′ (θ∗)−1 .1

(a) Program up the MCMC algorithm in MATLAB (as indicated by
the handout, this is quite simple). Set M = 1, 000 (a very small
number!) and try k = 2, 4, 6. In each case, generate θ(1), ..., θ(M)

as discussed in class. Which value of k implies an acceptance
rate closest to the recommended value of around 0.23? Graph the
histogram of θ(1), ..., θ(M) and compare that to the actual density
function (careful, the density function has the property that the
area under the curve is unity and you should normalize the height
of the histogram so that it has the same property, otherwise the
density function and histogram will be off by an order of magni-
tude...also, it is best to graph the histogram as a curve rather than
bar chart). Note that the MCMC estimate of the distribution is
quite volatile (in practice, a device is used to smooth it out). Now,

1The strategy for computing the mode of the Weibull and f ′′ in the text are meant
to resemble what is done in practice, when the form of the density function is unknown.
In the case of the Weibull, these objects are straightforward to compute analytically. In
particular,

f ′ (θ) =
b− 1

θ
− b

(
θ

a

)b−1
1

a
, f ′′ (θ) = −b− 1

θ2
− (b− 1) b

(
θ

a

)b−2
1

a2
.

and the mode of f is θ∗ = ((b− 1) /b)
1/b

a.
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set M = 10, 000, 000. You should see that the MCMC estimate of
the Weibull and the actual Weibull roughly coincide. Does the
value of k make much difference?

Also, graph the Laplace approximation of the Weibull. How well
does that do?

(b) We subject the MCMC algorithm to a much tougher test if we
posit that the true distribution is bimodal, as in the case of a
mixture of two Normals. Suppose the ith Normal has mean and
variance, µi and σ2i , respectively, i = 1, 2. Suppose also that the
i = 1 Normal is selected with probability, π, and the i = 2 normal
is selected with probability 1− π. In addition, suppose

µ1 = −0.06, µ2 = 0.06, σ1 = 0.02, σ2 = 0.01, π = 1/2.

The mode of this distribution is the mode of the Normal with
i = 2. Graph the mixture of Normals distribution and compare it
to what you get with the MCMC algorithm. How does the MCMC
algorithm work if you make the variance of the jump distribution,
V in the lecture, equal to unity? What if you start the algorithm
at θ(1) different from the mode? Graph the Laplace approximation
of the mixture of Normals.

3. Following are the equations of the Clarida-Gali-Gertler model.

πt = βEtπt+1 + κxt (Calvo pricing equation)

xt = − [rt − Etπt+1 − r∗t ] + Etxt+1 (intertemporal equation)

rt = αrt−1 + (1− α) [φππt + φxxt] (policy rule)

r∗t = ρ∆at +
1

1 + ϕ
(1− λ) τt (natural rate)

y∗t = at −
1

1 + ϕ
τt (natural output)

xt = yt − y∗t (output gap)

∆at = ρ∆at−1 + εat , τt = λτt−1 + ετt

Consider the following model parameterization:

β = 0.97, φx = 0.15, φπ = 1.5, α = 0.8, ρ = 0.9, λ = 0.5,

ϕ = 1, θ = 0.75, σa = στ = 0.02.
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Generate T = 5000 artificial observations on the ‘endogenous’ (in the
sense of Dynare) variables of the model. These are the variables in the
‘var’ list. Before doing the simulation, you should add the growth rate
of output to the equations of the model and to the var list (call it ‘dy’.)
That way, Dynare will also simulate output growth. The variables
simulated by Dynare are placed in the n× T matrix, oo .endo simul.2

The n rows of oo .endo simul correspond to the n = 7 variables in var,
listed in the order in which you have listed them in the var statement
from the first to the last row. To verify the order that Dynare puts
the variables in, see how they are ordered in Dynare-created structure,
M .endo names. Now do Bayesian estimation for the four parameters,
σa, στ , λ, ρ, using the inverted gamma distribution as the prior on the
two standard deviations and the beta distribution as the prior on the
two autocorrelations.

(a) Set the mean of the priors over the parameters to the correspond-
ing true values. Set the standard deviation of the inverted gamma
to 10 and of the beta to 0.04. (It’s hard to interpret these standard
deviations directly, but you will see graphs of the priors, which are
easier to interpret.) Use 30 observations in the estimation. Ad-
just the value of k, so that you get a reasonable acceptance rate. I
found that k = 1.5 works well. Have a look at the posteriors, and
notice how, with one exception, they are much tighter than the
priors. The exception is lambda, where the posterior and prior
are very similar. This is evidence that there is little information
in the data about lambda.

(b) Redo (a), but set the mean and standard deviation of the prior
on lambda equal to 0.95 and 0.04, respectively. Note how the
prior and posterior are again very similar. There is not much
information in the data about the value of lambda!

(c) Note how the priors on σa and ρ have faint ‘shoulders’ on the
right side. Redo (a), with M = 4, 000 (M is mh replic, which
controls the number of MCMC replications). Note that the pos-
teriors are now smoother. Actually, M = 4, 000 is a small number
of replications to use in practice.

2Here, endo simul is the matrix, which is a ‘field’ in the structure, oo .
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(d) Now set the mean of the priors on the standard deviations to 0.1,
far from the truth. Set the prior standard deviation on the in-
verted gamma distributions to 1. Keep the observations at 30, and
see how the posteriors compare with the priors. (Reset M = 1, 000
so that the computations go quickly.) Note that the posteriors
move sharply back into the neighborhood of 0.02. Evidently, there
is a lot of information in the data about these parameters.

(e) Repeat (a) with 4,000 observations. Compare the priors and pos-
teriors. Note how, with one exception, the posteriors are ‘spikes’.
The exception, of course, is lambda. Still, the difference between
the prior and posterior in this case indicates there is information
in the data about lambda.
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