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BVAR Exercise1

1. The following exercise is designed to illustrate some basic properties of BVARs and of

the Minnesota priors. The example is much simpler than the type of VAR you would

be working with in practice, but the question is not designed for realism. It works only

with artificial data that you are asked to generate. Suppose that a 2× 1 vector of data,

yt, has a V AR (1) representation:

yt = A1yt−1 + ut, ut ∼ N (0,Σ) , (1)

where

Σ =

 σ21 ρσ1σ2

ρσ1σ2 σ22

 ,
and

A1 =

 a c

c b

 .
Set σi = 0.01, for i = 1, 2 and ρ = 0.9. Also,with a = 0.8, b = 0.8 and c = 0.1. Generate

T = 100 observations, y1, ..., yT , setting y0 = 0. Before generating these data, include

the MATLAB command, rng (1) ; . This will ensure that everyone gets the same random

numbers and should therefore get the same results. In addition, each time you run your

program you will get the same random numbers, which will simplify things for you.

For this question, we adopt the Naive Minnesota Prior for Σ. By this is meant that Σ is

(i) treated as a known object and (ii) assumed to be equal to Σ̂, where the elements of

Σ̂ are estimated in a pre-sample. Let the pre-sample be composed of the first 50 of the

100 observations that you generated. In the pre-sample, estimate by OLS a first order

scalar autoregression for each variable in yt. Then, Σ̂ is the variance covariance matrix of

the resulting fitted disturbances. After Σ̂ is obtained in this way, the Naive Minnesota

Prior proceeds by dogmatically2 assuming Σ̂ is the true value of Σ. The priors about the

1Instructions for reporting results: the basic answer should be written in a wordprocessor. Save the results in
the form of a pdf file. Some of the results are produced by MATLAB. The easiest way to integrate the MATLAB
results with the material entered produced using the word processor is as follows. Print the MATLAB results
to the MATLAB command line and then copy that material into a MATLAB script file in the MATLAB editor.
You can type comments into that file explaining the output. Then, create a pdf of the MATLAB script and
insert that pdf into the appropriate location of the pdf file generated by the wordprocessor.

2The word, dogmatically, is frequently used in the Bayesian literature. It is an adjective for the word ‘belief’,
used to mean that the belief is held without any uncertainty.
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elements of A1 correspond to the usual Minnesota Priors. That is, they are given by:

βij ∼ N

(
φij,

Σ̂ii

λ21s
2
j

)
, (2)

for i, j = 1, 2 and φij = 1 for i = j and 0 otherwise. The priors are implemented using the

usual dummy variables procedure. For this, we require values for the hyperparameters,

λ1, sj. Initially, specify λ1 =)0.01)1/2 (this is smaller than usually specified in practice,

but useful for the present pedagogical purposes). The parameters, s1 and s2, are equated

to the standard deviation, respectively, of the disturbance in the pre-sample of the scalar

first order autoregression of the ith variable, i = 1, 2 (i.e., s2i = Σ̂ii, i = 1, 2). All analysis

should be done on the second set of 50 observations, taking y50 as given. The Minnesota

priors should be implemented using the dummy strategy discussed in class.

(a) Let v1 = (β11, β21) and v2 = (β12, β22) . Show that the dummy setup implies that

the vector, v1, is uncorrelated with the vector, v2. Explain why the prior correlation

between β11 and β21 and between β12 and β22 depend on Σ̂12 = 0, under the naive

Minnesota prior.

(b) Report the dummy matrices, X̄ and Ȳ , for this example. (Careful, the setup here is

a little different than in the lecture, because there is no constant term and A2 = 0.)

(c) Verify that the dummy approach to implementing the Minnesota prior ‘works’.

That is, verify that the prior mean of A1,
(
X̄ ′X̄

)−1
X̄ ′Ȳ , and the prior variance of,

vec (A) , Σ̂⊗ (X ′X)
−1
, coincide with the corresponding moments of the Minnesota

priors in (2) (careful: note the distinction between A and A1). Report your results

by constructing a table and displaying two columns corresponding to the two ways

of computing the prior mean of vec (A) . Report Σ̂ and Σ, where the latter denotes

the variance-covariance matrix in the data generating mechanism, (1).

(d) Increase the value of λ1 to 501/2. Report the mean and variance of the posterior

distribution of the four parameters in A1 for the two values of λ1. Also, in a third

column report the true values of these parameters (i.e., their values in the data

generating mechanism).

(e) Compute the impulse responses to a ‘Choleski shock’. That is, compute the lower

triangular matrix, C, such that CC ′ = Σ̂. Let Ci denote the ith column of C, i = 1, 2.

The impact effect of shock i is Ci. The period 1 effect is A1Ci and the period j effect

is Aj1Ci, for j = 2, 3, .., 10. Denote the response of variable i to shock j at lag l by
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p (l)ij , for i, j = 1, 2 and l = 0, 1, 2, ..., 10. Graph the posterior mode of p (l)ij in four

charts.3 Also include, in the i, j chart, a 60 percent probability interval for p (l)ij for

l = 0, 1, ..., 10. To do this, draw A1 1,000 times from the posterior distribution. This

results in 1,000 functions, p (l)ij . For each i, j, l sort the p (l)i,j’s from the smallest to

the largest. The lower and upper boundaries of the 60 percent probability interval

are given by the 200th and 800th elements in this sorted list. Do this for λ21 = 0.01

and λ21 = 500 and graph the results (the high value of λ1 is much higher in others

parts of this exercise). Also display the true impulse responses, i.e., the ones you

get when you use the parameters for the VAR used to generate the data.

• Explain why the impact effects of the shocks are the same for the two values of

λ1. Is this likely to be true when you use the sophisticated Minnesota prior?

• When comparing the posterior modes for the impulse responses with the true

impulse responses, there are two dimensions of interest: level and slope. Notice

that for the low value of λ1 (which corresponds closely to OLS), the slopes of

p (l)ii with respect to l are lower than the corresponding true slopes. Provide

intuition into this (hint: recall the Hurwicz bias).

• Why are the probability intervals around the impulse response functions nar-

rower for the high value of λ1? Provide intuition.

• In each of the four cases, p (l)i,j , i, j = 1, 2, is the prior pulling you in the right

direction relative to the true impulse response function. Explain in intuitive

terms.

(f) Compute a mean forecast for yt for l =1, 5 and 10 periods after the end of the

data set. Report the mean forecast under the two circumstances described in the

lecture notes: (i) using the stochastic simulation algorithm and (ii) using the non-

stochastic simulation algorithm. Do these things for λ21 = 0.01 and 50. Does it

make a difference to the mean forecast whether you do (i) or (ii)? Does the answer

depend on λ1? Provide intuition. (Interesting observation: the amount of shrinkage

in the probability interval of the forecast is not the same for different values of l.

This is to be expected because the distinct roles played by uncertainty in A1 versus

uncertainty in future εt’s changes with l.)

(g) Let ft (j) represent the mode of the forecast of yt+j computed using data available

at time t. Estimate the model repeatedly, starting with the sample period, 51 to 60,

3An alternative to graphs - which are not easy in this setting - you can report your results in tables generated
at the MATLAB command line.
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51 to 61, etc., until 51 to 96. This provides a sequence of forecasts,

f60 (j) , f61 (j) , ..., f96 (j) .

Compute these for j = 1, 2, 3, 4. The root mean square error of the forecast, RMSE,

is defined by:

RMSEj =

[
1

96− 60 + 1
diag

{
96∑
t=60

[ft (j)− yt+j] [ft (j)− yt+j]′
}]1/2

,

for j = 1, 2, 3, 4. Here, diag {Q} means the column vector formed from the diagonal

elements of the square matrix, Q.

Compute RMSEj for j = 1, 2, 3, 4 for each of λ21 = 0.01, 1, 5, 10. Do this again for

a = 0.3 and b = 0.3. Provide an intuitive explanation of the results.

2. Now do the Sophisticated version of the Minnesota Prior, which works with a Wishart

prior on Σ (see lecture notes). Redo 2(e). Would your results be different if you redid

2(g)? Assign values to the hyperparameters of the Wishart (i.e., the matrix S∗ and the

degrees of freedom, ν) as suggested in the lecture notes. Consider λ1 = 51/2 and 501/2.

Provide intuition for the difference in results.

3. Consider the quarterly dataset “dataVARmedium.mat,” which starts in 1959Q1 and

ends in 2008:Q8, and includes, in this order, (i) log-real GDP; (ii) log-GDP deflator;

(iii) the federal funds rate; (iv) log-real consumption; (v) log-real investment; (vi) log-

hours worked; (vii) log-nominal wages. Estimate a 5-lag VAR using flat priors and

conditioning on the initial 5 observations (note that no prior hyperparameters need to be

set in this case). Start with the estimation sample that ranges from 1959Q1 to 1974Q4,

and then iterate the same procedure updating the estimation sample, one quarter at

a time, until the end of the sample, i.e. 2008Q4. For each estimation sample, set

the VAR coeffi cients at their posterior mode and generate the 1—quarter and 4-quarter

ahead forecasts of log-real GDP and log-GDP deflator (i.e., non-stochastic method (ii)

in question 2(f)). Denote the out-of-sample forecasts by fi,t (h), where h = 1 and 4,

for i = 1 or 2 (i.e., GDP and deflator). Compute the root mean square forecast error,

RMSE, for i = 1, 2.

4. Repeat the exercise in question 4 by estimating the VAR with the four sets of dummy

priors described in the lecture notes, and using the invertedWishart prior for the variance-
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covariance matrix of the disturbances in the VAR. Set

λ2 = 1, λ3 = 2, λ4 = 5.

These settings are taken from Lubik and Schorfheide’s 2005 NBER Macro Annual paper.

The other hyper parameters are set as in the lecture notes, based on the standard devi-

ation of univariate, lag one autoregressions fit to the 7 variables in the dataset. What

value of λ1 (limit yourself to integer values of λ1) makes the one-quarter-ahead RMSE

on GDP smallest?
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