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1 Introduction

One of the goals of macroeconometric analysis is to provide quantitative answers to

substantive macroeconomic questions. Answers to some questions, such as whether

gross domestic product (GDP) will decline over the next two quarters, can be ob-

tained with univariate time-series models by simply exploiting serial correlations.

Other questions, such as what are the main driving forces of business cycles, re-

quire at least a minimal set of restrictions, obtained from theoretical considerations,

that allow the identification of structural disturbances in a multivariate time-series

model. Finally, macroeconometricians might be confronted with questions demand-

ing a sophisticated theoretical model that is able to predict how agents adjust their

behavior in response to new economic policies, such as changes in monetary or fiscal

policy.

1.1 Challenges for Inference and Decision Making

Unfortunately, macroeconometricians often face a shortage of observations necessary

for providing precise answers. Some questions require high-dimensional empirical

models. For instance, the analysis of domestic business cycles might involve process-

ing information from a large cross section of macroeconomic and financial variables.

The study of international comovements is often based on highly parameterized mul-

ticountry vector autoregressive models. High-dimensional models are also necessary

in applications in which it is reasonable to believe that parameters evolve over time,

for instance, because of changes in economic policies. Thus, sample information

alone is often insu�cient to enable sharp inference about model parameters and im-

plications. Other questions do not necessarily require a very densely parameterized

empirical model, but they do demand identification restrictions that are not self-

evident and that are highly contested in the empirical literature. For instance, an

unambiguous measurement of the quantitative response of output and inflation to

an unexpected reduction in the federal funds rate remains elusive. Thus, document-

ing the uncertainty associated with empirical findings or predictions is of first-order

importance for scientific reporting.

Many macroeconomists have a strong preference for models with a high degree of

theoretical coherence such as dynamic stochastic general equilibrium (DSGE) mod-

els. In these models, decision rules of economic agents are derived from assumptions
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about agents’ preferences and production technologies and some fundamental prin-

ciples such as intertemporal optimization, rational expectations, and competitive

equilibrium. In practice, this means that the functional forms and parameters of

equations that describe the behavior of economic agents are tightly restricted by op-

timality and equilibrium conditions. Thus, likelihood functions for empirical models

with a strong degree of theoretical coherence tend to be more restrictive than like-

lihood functions associated with atheoretical models. A challenge arises if the data

favor the atheoretical model and the atheoretical model generates more accurate

forecasts, but a theoretically coherent model is required for the analysis of a partic-

ular economic policy.

1.2 How Can Bayesian Analysis Help?

In Bayesian inference, a prior distribution is updated by sample information con-

tained in the likelihood function to form a posterior distribution. Thus, to the extent

that the prior is based on nonsample information, it provides the ideal framework

for combining di↵erent sources of information and thereby sharpening inference in

macroeconometric analysis. This combination of information sets is prominently

used in the context of DSGE model inference in Section 4. Through informative

prior distributions, Bayesian DSGE model inference can draw from a wide range of

data sources that are (at least approximately) independent of the sample informa-

tion. These sources might include microeconometric panel studies that are infor-

mative about aggregate elasticities or long-run averages of macroeconomic variables

that are not included in the likelihood function because the DSGE model under

consideration is too stylized to be able to explain their cyclical fluctuations.

Many macroeconometric models are richly parameterized. Examples include the

vector autoregressions (VARs) with time-varying coe�cients in Section 5 and the

multicountry VARs considered in Section 6. In any sample of realistic size, there

will be a shortage of information for determining the model coe�cients, leading

to very imprecise inference and di↵use predictive distributions. In the context of

time-varying coe�cient models, it is often appealing to conduct inference under the

assumption that either coe�cient change only infrequently, but by a potentially

large amount, or that they change frequently, but only gradually. Such assumptions

can be conveniently imposed by treating the sequence of model parameters as a
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stochastic process, which is of course nothing but a prior distribution that can be

updated with the likelihood function.

To reduce the number of parameters in a high-dimensional VAR, one could of

course set many coe�cients equal to zero or impose the condition that the same co-

e�cient interacts with multiple regressors. Unfortunately, such hard restrictions rule

out the existence of certain spillover e↵ects, which might be undesirable. Conceptu-

ally more appealing is the use of soft restrictions, which can be easily incorporated

through probability distributions for those coe�cients that are “centered” at the

desired restrictions but that have a small, yet nonzero, variance. An important and

empirically successful example of such a prior is the Minnesota prior discussed in

Section 2.

An extreme version of lack of sample information arises in the context of struc-

tural VARs, which are studied in Section 2. Structural VARs can be parameterized

in terms of reduced-form parameters, which enter the likelihood function, and an

orthogonal matrix ⌦, which does not enter the likelihood function. Thus, ⌦ is not

identifiable based on the sample information. In this case, the conditional distri-

bution of ⌦ given the reduced-form parameters will not be updated, and its condi-

tional posterior is identical to the conditional prior. Identification issues also arise

in the context of DSGE models. In general, as long as the joint prior distribution

of reduced-form and nonidentifiable parameters is proper, meaning that the total

probability mass is one, so is the joint posterior distribution. In this sense, the lack

of identification poses no conceptual problem in a Bayesian framework. However, it

does pose a challenge: it becomes more important to document which aspects of the

prior distribution are not updated by the likelihood function and to recognize the

extreme sensitivity of those aspects to the specification of the prior distribution.

Predictive distributions of future observations such as aggregate output, inflation,

and interest rates are important for macroeconomic forecasts and policy decisions.

These distributions need to account for uncertainty about realizations of structural

shocks as well as uncertainty associated with parameter estimates. Since shocks

and parameters are treated symmetrically in a Bayesian framework, namely as ran-

dom variables, accounting for these two sources of uncertainty simultaneously is

conceptually straightforward. To the extent that the substantive analysis requires a

researcher to consider multiple theoretical and empirical frameworks, Bayesian anal-

ysis allows the researcher to assign probabilities to competing model specifications
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and update these probabilities in view of the data. Throughout this chapter, we will

encounter a large number of variants of VARs (sections 2 and 3) and DSGE models

(section 4) that potentially di↵er in their economic implications. With posterior

model probabilities in hand, inference and decisions can be based on model averages

(section 7).

Predictions of how economic agents would behave under counterfactual economic

policies never previously observed require empirical models with a large degree of

theoretical coherence. The DSGE models discussed in Section 4 provide an example.

As mentioned earlier, in practice posterior model probabilities often favor more

flexible, nonstructural time-series models such as VARs. Nonetheless, Bayesian

methods o↵er a rich tool kit for linking structural econometric models to more

densely parameterized reference models. For instance, one could use the restrictions

associated with the theoretically coherent DSGE model only loosely, to center a

prior distribution on a more flexible reference model. This idea is explored in more

detail in Section 4.

1.3 Outline of this Chapter

Throughout this chapter, we will emphasize multivariate models that can capture

comovements of macroeconomic time series. We will begin with a discussion of

vector autoregressive models in Section 2, distinguishing between reduced-form and

structural VARs. Reduced-form VARs essentially summarize autocovariance prop-

erties of vector time series and can also be used to generate multivariate forecasts.

More useful for substantive empirical work in macroeconomics are so-called struc-

tural VARs, in which the innovations do not correspond to one-step-ahead forecast

errors but instead are interpreted as structural shocks. Much of the structural VAR

literature has focused on studying the propagation of monetary policy shocks, that

is, changes in monetary policy unanticipated by the public. After discussing various

identification schemes and their implementation, we devote the remainder of Sec-

tion 2 is devoted to a discussion of advanced topics such as inference in restricted

or overidentified VARs. As an empirical illustration, we measure the e↵ects of an

unanticipated change in monetary policy using a four-variable VAR.

Section 3 is devoted to VARs with explicit restrictions on the long-run dynam-

ics. While many macroeconomic time series are well described by stochastic trend
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models, these stochastic trends are often common to several time series. For exam-

ple, in many countries the ratio (or log di↵erence) of aggregate consumption and

investment is stationary. This observation is consistent with a widely used version

of the neoclassical growth model (King, Plosser, and Rebelo (1988)), in which the

exogenous technology process follows a random walk. One can impose such common

trends in a VAR by restricting some of the eigenvalues of the characteristic polyno-

mial to unity. VARs with eigenvalue restrictions, written as so-called vector error

correction models (VECM), have been widely used in applied work after Engle and

Granger (1987) popularized the concept of cointegration. While frequentist analysis

of nonstationary time-series models requires a di↵erent set of statistical tools, the

shape of the likelihood function is largely una↵ected by the presence of unit roots

in autoregressive models, as pointed out by Sims and Uhlig (1991). Nonetheless,

the Bayesian literature has experienced a lively debate about how to best analyze

VECMs. Most of the controversies are related to the specification of prior distribu-

tions. We will focus on the use of informative priors in the context of an empirical

model for U.S. output and investment data. Our prior is based on the balanced-

growth-path implications of a neoclassical growth model. However, we also discuss

an important strand of the literature that, instead of using priors as a tool to in-

corporate additional information, uses them to regularize or smooth the likelihood

function of a cointegration model in areas of the parameter space in which it is very

nonelliptical.

Modern dynamic macroeconomic theory implies fairly tight cross-equation restric-

tions for vector autoregressive processes, and in Section 4 we turn to Bayesian infer-

ence with DSGE models. The term DSGE model is typically used to refer to a broad

class that spans the standard neoclassical growth model discussed in King, Plosser,

and Rebelo (1988) as well as the monetary model with numerous real and nomi-

nal frictions developed by Christiano, Eichenbaum, and Evans (2005). A common

feature of these models is that the solution of intertemporal optimization problems

determines the decision rules, given the specification of preferences and technology.

Moreover, agents potentially face uncertainty with respect to total factor productiv-

ity, for instance, or the nominal interest rate set by a central bank. This uncertainty

is generated by exogenous stochastic processes or shocks that shift technology or

generate unanticipated deviations from a central bank’s interest-rate feedback rule.

Conditional on the specified distribution of the exogenous shocks, the DSGE model

generates a joint probability distribution for the endogenous model variables such
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as output, consumption, investment, and inflation. Much of the empirical work

with DSGE models employs Bayesian methods. Section 4 discusses inference with

linearized as well as nonlinear DSGE models and reviews various approaches for

evaluating the empirical fit of DSGE models. As an illustration, we conduct infer-

ence with a simple stochastic growth model based on U.S. output and hours worked

data.

The dynamics of macroeconomic variables tend to change over time. These

changes might be a reflection of inherent nonlinearities of the business cycle, or

they might be caused by the introduction of new economic policies or the forma-

tion of new institutions. Such changes can be captured by econometric models

with time-varying parameters (TVP), discussed in Section 5. Thus, we augment

the VAR models of Section 2 and the DSGE models of Section 4 with time-varying

parameters. We distinguish between models in which parameters evolve according

to a potentially nonstationary autoregressive law of motion and models in which

parameters evolve according to a finite-state Markov-switching (MS) process. If

time-varying coe�cients are introduced in a DSGE model, an additional layer of

complication arises. When solving for the equilibrium law of motion, one has to

take into account that agents are aware that parameters are not constant over time

and hence adjust their decision rules accordingly.

Because of the rapid advances in information technologies, macroeconomists now

have access to and the ability to process data sets with a large cross-sectional as well

as a large time-series dimension. The key challenge for econometric modeling is to

avoid a proliferation of parameters. Parsimonious empirical models for large data

sets can be obtained in several ways. We consider restricted large-dimensional vector

autoregressive models as well as dynamic factor models (DFMs). The latter class

of models assumes that the comovement between variables is due to a relatively

small number of common factors, which in the context of a DSGE model could

be interpreted as the most important economic state variables. These factors are

typically unobserved and follow some vector autoregressive law of motion. We study

empirical models for so-called data-rich environments in Section 6.

Throughout the various sections of the chapter, we will encounter uncertainty

about model specifications, such as the number of lags in a VAR, the importance

of certain types of propagation mechanisms in DSGE models, the presence of time-

variation in coe�cients, or the number of factors in a dynamic factor model. A
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treatment of Bayesian model selection and, more generally, decision making under

model uncertainty is provided in Section 7.

Finally, a word on notation. We use Y
t0:t1 to denote the sequence of observa-

tions or random variables {y
t0 , . . . , yt1}. If no ambiguity arises, we sometimes drop

the time subscripts and abbreviate Y1:T by Y . ✓ often serves as generic parame-

ter vector, p(✓) is the density associated with the prior distribution, p(Y |✓) is the

likelihood function, and p(✓|Y ) the posterior density. With respect to notation for

probability distributions, we follow the Appendix of this Handbook. We use iid to

abbreviate independently and identically distributed. If X|⌃ ⇠ MN
p⇥q

(M,⌃⌦ P )

is matricvariate Normal and ⌃ ⇠ IW
q

(S, ⌫) has an Inverted Wishart distribution,

we say that (X,⌃) ⇠ MNIW (M,P, S, ⌫). Here ⌦ is the Kronecker product. We

use I to denote the identity matrix and use a subscript indicating the dimension

if necessary. tr[A] is the trace of the square matrix A, |A| is its determinant, and

vec(A) stacks the columns of A. Moreover, we let kAk =
p

tr[A0A]. If A is a vector,

then kAk =
p

A0A is its length. We use A(.j) (A(j.)) to denote the j’th column (row)

of a matrix A. Finally, I{x � a} is the indicator function equal to one if x � a and

equal to zero otherwise.

2 Vector Autoregressions

At first glance, VARs appear to be straightforward multivariate generalizations of

univariate autoregressive models. At second sight, they turn out to be one of the

key empirical tools in modern macroeconomics. Sims (1980) proposed that VARs

should replace large-scale macroeconometric models inherited from the 1960s, be-

cause the latter imposed incredible restrictions, which were largely inconsistent with

the notion that economic agents take the e↵ect of today’s choices on tomorrow’s

utility into account. Since then, VARs have been used for macroeconomic forecast-

ing and policy analysis to investigate the sources of business-cycle fluctuations and

to provide a benchmark against which modern dynamic macroeconomic theories can

be evaluated. In fact, in Section 4 it will become evident that the equilibrium law of

motion of many dynamic stochastic equilibrium models can be well approximated

by a VAR. The remainder of this section is organized as follows. We derive the

likelihood function of a reduced-form VAR in Section 2.1. Section 2.2 discusses how

to use dummy observations to construct prior distributions and reviews the widely
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used Minnesota prior. In Section 2.3, we consider a reduced-form VAR that is ex-

pressed in terms of deviations from a deterministic trend. Section 2.4 is devoted to

structural VARs in which innovations are expressed as functions of structural shocks

with a particular economic interpretation, for example, an unanticipated change in

monetary policy. Finally, Section 2.5 provides some suggestions for further reading.

Insert Figure 1 Here

2.1 A Reduced-Form VAR

Vector autoregressions are linear time-series models, designed to capture the joint

dynamics of multiple time series. Figure 1 depicts the evolution of three important

quarterly macroeconomic time series for the U.S. over the period from 1964:Q1 to

2006:Q4: percentage deviations of real GDP from a linear time trend, annualized

inflation rates computed from the GDP deflator, and the e↵ective federal funds

rate. These series are obtained from the FRED database maintained by the Federal

Reserve Bank of St. Louis. We will subsequently illustrate the VAR analysis using

the three series plotted in Figure 1. Let y
t

be an n ⇥ 1 random vector that takes

values in Rn, where n = 3 in our empirical illustration. The evolution of y
t

is

described by the p’th order di↵erence equation:

y
t

= �1yt�1 + . . . + �
p

y
t�p

+ �
c

+ u
t

. (1)

We refer to (1) as the reduced-form representation of a VAR(p), because the u
t

’s

are simply one-step-ahead forecast errors and do not have a specific economic inter-

pretation.

To characterize the conditional distribution of y
t

given its history, one has to make

a distributional assumption for u
t

. We shall proceed under the assumption that the

conditional distribution of y
t

is Normal:

u
t

⇠ iidN(0,⌃). (2)

We are now in a position to characterize the joint distribution of a sequence of obser-

vations y1, . . . , yT

. Let k = np+1 and define the k⇥n matrix � = [�1, . . . ,�p

,�
c

]0.

The joint density of Y1:T , conditional on Y1�p:0 and the coe�cient matrices � and
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⌃, is called (conditional) likelihood function when it is viewed as function of the

parameters. It can be factorized as

p(Y1:T |�,⌃, Y1�p:0) =
TY

t=1

p(y
t

|�,⌃, Y1�p:t�1). (3)

The conditional likelihood function can be conveniently expressed if the VAR is

written as a multivariate linear regression model in matrix notation:

Y = X�+ U. (4)

Here, the T ⇥ n matrices Y and U and the T ⇥ k matrix X are defined as

Y =

2

664

y01
...

y0
T

3

775 , X =

2

664

x01
...

x0
T

3

775 , x0
t

= [y0
t�1, . . . , y

0
t�p

, 1], U =

2

664

u01
...

u0
T

3

775 . (5)

In a slight abuse of notation, we abbreviate p(Y1:T |�,⌃, Y1�p:0) by p(Y |�,⌃):

p(Y |�,⌃) / |⌃|�T/2 exp
⇢
�1

2
tr[⌃�1Ŝ]

�
(6)

⇥ exp
⇢
�1

2
tr[⌃�1(�� �̂)0X 0X(�� �̂)]

�
,

where

�̂ = (X 0X)�1X 0Y, Ŝ = (Y �X�̂)0(Y �X�̂). (7)

�̂ is the maximum-likelihood estimator (MLE) of �, and Ŝ is a matrix with sums

of squared residuals. If we combine the likelihood function with the improper prior

p(�,⌃) / |⌃|�(n+1)/2, we can deduce immediately that the posterior distribution is

of the form

(�,⌃)|Y ⇠MNIW

✓
�̂, (X 0X)�1, Ŝ, T � k

◆
. (8)

Detailed derivations for the multivariate Gaussian linear regression model can be

found in Zellner (1971). Draws from this posterior can be easily obtained by direct

Monte Carlo sampling.

Algorithm 2.1: Direct Monte Carlo Sampling from Posterior of VAR

Parameters

For s = 1, . . . , n
sim

:

1. Draw ⌃(s) from an IW (Ŝ, T � k) distribution.
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2. Draw �(s) from the conditional distribution MN(�̂,⌃(s) ⌦ (X 0X)�1). ⇤

An important challenge in practice is to cope with the dimensionality of the pa-

rameter matrix �. Consider the data depicted in Figure 1. Our sample consists of

172 observations, and each equation of a VAR with p = 4 lags has 13 coe�cients.

If the sample is restricted to the post-1982 period, after the disinflation under Fed

Chairman Paul Volcker, the sample size shrinks to 96 observations. Now imagine

estimating a two-country VAR for the U.S. and the Euro Area on post-1982 data,

which doubles the number of parameters. Informative prior distributions can com-

pensate for lack of sample information, and we will subsequently discuss alternatives

to the improper prior used so far.

2.2 Dummy Observations and the Minnesota Prior

Prior distributions can be conveniently represented by dummy observations. This

insight dates back at least to Theil and Goldberger (1961). These dummy observa-

tions might be actual observations from other countries, observations generated by

simulating a macroeconomic model, or observations generated from introspection.

Suppose T ⇤ dummy observations are collected in matrices Y ⇤ and X⇤, and we use

the likelihood function associated with the VAR to relate the dummy observations

to the parameters � and ⌃. Using the same arguments that lead to (8), we deduce

that up to a constant the product p(Y ⇤|�,⌃) · |⌃|�(n+1)/2 can be interpreted as a

MNIW (�, (X⇤0X⇤)�1, S, T ⇤ � k) prior for � and ⌃, where � and S are obtained

from �̂ and Ŝ in (7) by replacing Y and X with Y ⇤ and X⇤. Provided that T ⇤ > k+n

and X⇤0X⇤ is invertible, the prior distribution is proper. Now let T̄ = T + T ⇤,

Ȳ = [Y ⇤0 , Y 0]0, X̄ = [X⇤0 , X 0]0, and let �̄ and S̄ be the analogue of �̂ and Ŝ in (7);

then we deduce that the posterior of (�,⌃) is MNIW (�̄, (X̄ 0X̄)�1, S̄, T̄ �k). Thus,

the use of dummy observations leads to a conjugate prior. Prior and likelihood

are conjugate if the posterior belongs to the same distributional family as the prior

distribution.

A widely used prior in the VAR literature is the so-called Minnesota prior, which

dates back to Litterman (1980) and Doan, Litterman, and Sims (1984). Our exposi-

tion follows the more recent description in Sims and Zha (1998), with the exception

that for now we focus on a reduced-form rather than on a structural VAR. Consider

our lead example, in which y
t

is composed of output deviations, inflation, and inter-

est rates, depicted in Figure 1. Notice that all three series are fairly persistent. In

Lawrence Christiano
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fact, the univariate behavior of these series, possibly with the exception of post-1982

inflation rates, would be fairly well described by a random-walk model of the form

y
i,t

= y
i,t�1 + ⌘

i,t

. The idea behind the Minnesota prior is to center the distribution

of � at a value that implies a random-walk behavior for each of the components of

y
t

. The random-walk approximation is taken for convenience and could be replaced

by other representations. For instance, if some series have very little serial correla-

tion because they have been transformed to induce stationarity – for example log

output has been converted into output growth – then an iid approximation might

be preferable. In Section 4, we will discuss how DSGE model restrictions could be

used to construct a prior.

The Minnesota prior can be implemented either by directly specifying a distri-

bution for � or, alternatively, through dummy observations. We will pursue the

latter route for the following reason. While it is fairly straightforward to choose

prior means and variances for the elements of �, it tends to be di�cult to elicit

beliefs about the correlation between elements of the � matrix. After all, there

are nk(nk + 1)/2 of them. At the same time, setting all these correlations to zero

potentially leads to a prior that assigns a lot of probability mass to parameter

combinations that imply quite unreasonable dynamics for the endogenous variables

y
t

. The use of dummy observations provides a parsimonious way of introducing

plausible correlations between parameters.

The Minnesota prior is typically specified conditional on several hyperparameters.

Let Y�⌧ :0 be a presample, and let y and s be n ⇥ 1 vectors of means and standard

deviations. The remaining hyperparameters are stacked in the 5 ⇥ 1 vector � with

elements �
i

. In turn, we will specify the rows of the matrices Y ⇤ and X⇤. To

simplify the exposition, suppose that n = 2 and p = 2. The dummy observations

are interpreted as observations from the regression model (4). We begin with dummy

observations that generate a prior distribution for �1. For illustrative purposes, the

dummy observations are plugged into (4):
"

�1s1 0

0 �1s2

#
=

"
�1s1 0 0 0 0

0 �1s2 0 0 0

#
�+

"
u11 u12

u21 u22

#
. (9)

According to the distributional assumption in (2), the rows of U are normally dis-

tributed. Thus, we can rewrite the first row of (9) as

�1s1 = �1s1�11 + u11, 0 = �1s1�21 + u12
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and interpret it as

�11 ⇠ N (1,⌃11/(�2
1s

2
1)), �21 ⇠ N (0,⌃22/(�2

1s
2
1)).

�
ij

denotes the element i, j of the matrix �, and ⌃
ij

corresponds to element i, j of

⌃. The hyperparameter �1 controls the tightness of the prior.1

The prior for �2 is implemented with the dummy observations
"

0 0

0 0

#
=

"
0 0 �1s12�2 0 0

0 0 0 �1s22�2 0

#
�+ U, (10)

where the hyperparameter �2 is used to scale the prior standard deviations for

coe�cients associated with y
t�l

according to l��2 . A prior for the covariance matrix

⌃, centered at a matrix that is diagonal with elements equal to the presample

variance of y
t

, can be obtained by stacking the observations
"

s1 0

0 s2

#
=

"
0 0 0 0 0

0 0 0 0 0

#
�+ U (11)

�3 times.

The remaining sets of dummy observations provide a prior for the intercept �
c

and will generate some a priori correlation between the coe�cients. They favor

unit roots and cointegration, which is consistent with the beliefs of many applied

macroeconomists, and they tend to improve VAR forecasting performance. The

sums-of-coe�cients dummy observations, introduced in Doan, Litterman, and Sims

(1984), capture the view that when lagged values of a variable y
i,t

are at the level

y
i

, the same value y
i

is likely to be a good forecast of y
i,t

, regardless of the value of

other variables:
"

�4y1
0

0 �4y2

#
=

"
�4y1

0 �4y1
0 0

0 �4y2
0 �4y2

0

#
�+ U. (12)

The co-persistence dummy observations, proposed by Sims (1993) reflect the belief

that when all lagged y
t

’s are at the level y, y
t

tends to persist at that level:
h

�5y1
�5y2

i
=
h

�5y1
�5y2

�5y1
�5y2

�5

i
�+ U. (13)

1Consider the regression yt = �1x1,t+�2x2,t+ut, ut ⇠ iidN(0, 1), and suppose that the standard

deviation of xj,t is sj . If we define �̃j = �jsj and x̃j,t = xj,t/sj , then the transformed parameters

interact with regressors that have the same scale. Suppose we assume that �̃j ⇠ N (0, �

2), then

�j ⇠ N (0, �

2
/s

2
j ). The sj terms that appear in the definition of the dummy observations achieve

this scale adjustment.
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The strength of these beliefs is controlled by �4 and �5. These two sets of dummy

observations introduce correlations in prior beliefs about all coe�cients, including

the intercept, in a given equation.

VAR inference tends to be sensitive to the choice of hyperparameters. If � =

0, then all the dummy observations are zero, and the VAR is estimated under

an improper prior. The larger the elements of �, the more weight is placed on

various components of the Minnesota prior vis-á-vis the likelihood function. From a

practitioner’s view, an empirical Bayes approach of choosing � based on the marginal

likelihood function

p
�

(Y ) =
Z

p(Y |�,⌃)p(�,⌃|�)d(�,⌃) (14)

tends to work well for inference as well as for forecasting purposes. If the prior

distribution is constructed based on T ⇤ dummy observations, then an analytical

expression for the marginal likelihood can be obtained by using the normalization

constants for the MNIW distribution (see Zellner (1971)):

p
�

(Y ) = (2⇡)�nT/2 |X̄ 0X̄|�
n
2 |S̄|�

T̄�k
2

|X⇤0X⇤|�
n
2 |S⇤|�

T⇤�k
2

2
n(T̄�k)

2
Q

n

i=1 �[(T̄ � k + 1� i)/2]

2
n(T⇤�k)

2
Q

n

i=1 �[(T ⇤ � k + 1� i)/2]
. (15)

As before, we let T̄ = T ⇤ + T , Ȳ = [Y ⇤0 , Y 0]0, and X̄ = [X⇤0 , X 0]0. The hyper-

parameters (ȳ, s̄,�) enter through the dummy observations X⇤ and Y ⇤. S⇤ (S̄) is

obtained from Ŝ in (7) by replacing Y and X with Y ⇤ and X⇤ (Ȳ and X̄). We

will provide an empirical illustration of this hyperparameter selection approach in

Section 2.4. Instead of conditioning on the value of � that maximizes the marginal

likelihood function p
�

(Y ), one could specify a prior distribution for � and integrate

out the hyperparameter, which is commonly done in hierarchical Bayes models. A

more detailed discussion of selection versus averaging is provided in Section 7.

A potential drawback of the dummy-observation prior is that one is forced to

treat all equations symmetrically when specifying a prior. In other words, the prior

covariance matrix for the coe�cients in all equations has to be proportional to

(X⇤0X⇤)�1. For instance, if the prior variance for the lagged inflation terms in the

output equation is 10 times larger than the prior variance for the coe�cients on

lagged interest rate terms, then it also has to be 10 times larger in the inflation

equation and the interest rate equation. Methods for relaxing this restriction and

alternative approaches of implementing the Minnesota prior (as well as other VAR

priors) are discussed in Kadiyala and Karlsson (1997).

Lawrence Christiano
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2.3 A Second Reduced-Form VAR

The reduced-form VAR in (1) is specified with an intercept term that determines

the unconditional mean of y
t

if the VAR is stationary. However, this unconditional

mean also depends on the autoregressive coe�cients �1, . . . ,�p

. Alternatively, one

can use the following representation, studied, for instance, in Villani (2009):

y
t

= �0 + �1t + ey
t

, ey
t

= �1eyt�1 + . . . + �
p

ey
t�p

+ u
t

, u
t

⇠ iidN(0,⌃). (16)

Here �0 and �1 are n⇥1 vectors. The first term, �0+�1t, captures the deterministic

trend of y
t

, whereas the second part, the law of motion of ey
t

, captures stochastic

fluctuations around the deterministic trend. These fluctuations could either be

stationary or nonstationary. This alternative specification makes it straightforward

to separate beliefs about the deterministic trend component from beliefs about the

persistence of fluctuations around this trend.

Suppose we define � = [�1, . . . ,�p

]0 and � = [�01,�02]0. Moreover, let eY (�) be the

T ⇥n matrix with rows (y
t

��0��1t)0 and eX(�) be the T ⇥ (pn) matrix with rows

[(y
t�1��0��1(t�1))0, . . . , (y

t�p

��0��1(t�p))0]; then the conditional likelihood

function associated with (16) is

p(Y1:T |�,⌃,�, Y1�p:0) (17)

/ |⌃|�T/2 exp
⇢
�1

2
tr


⌃�1(eY (�)� eX(�)�)0(eY (�)� eX(�)�)

��
.

Thus, as long as the prior for � and ⌃ conditional on � is MNIW , the posterior of

(�,⌃)|� is of the MNIW form.

Let L denote the temporal lag operator such that Ljy
t

= y
t�j

. Using this operator,

one can rewrite (16) as
✓

I �
pX

j=1

�
j

Lj

◆
(y

t

� �0 � �1t) = u
t

.

Now define

z
t

(�) =
✓

I �
pX

j=1

�
j

Lj

◆
y

t

, W
t

(�) =
✓

I �
pX

j=1

�
j

◆
,

✓
I �

pX

j=1

�
j

Lj

◆
t

�

with the understanding that Ljt = t � j. Thus, z
t

(�) = W
t

(�)� + u
t

and the

likelihood function can be rewritten as

p(Y1:T |�,⌃,�, Y1�p:0) (18)

/ exp

(
�1

2

TX

t=1

(z
t

(�)�W
t

(�)�)0⌃�1(z
t

(�)�W
t

(�)�)

)
.



Del Negro, Schorfheide – Bayesian Macroeconometrics: April 18, 2010 15

Thus, it is straightforward to verify that as long as the prior distribution of � condi-

tional on � and ⌃ is matricvariate Normal, the (conditional) posterior distribution of

� is also Normal. Posterior inference can then be implemented via Gibbs sampling,

which is an example of a so-called Markov chain Monte Carlo (MCMC) algorithm

discussed in detail in Chib (This Volume):

Algorithm 2.2: Gibbs Sampling from Posterior of VAR Parameters

For s = 1, . . . , n
sim

:

1. Draw (�(s),⌃(s)) from the MNIW distribution of (�,⌃)|(�(s�1), Y ).

2. Draw �(s) from the Normal distribution of �|(�(s),⌃(s), Y ). ⇤

To illustrate the subtle di↵erence between the VAR in (1) and the VAR in (16),

we consider the special case of two univariate AR(1) processes:

y
t

= �1yt�1 + �
c

+ u
t

, u
t

⇠ iidN(0, 1), (19)

y
t

= �0 + �1t + ey
t

, ey
t

= �1eyt�1 + u
t

, u
t

⇠ iidN(0, 1). (20)

If |�1| < 1 both AR(1) processes are stationary. The second process, characterized

by (20), allows for stationary fluctuations around a linear time trend, whereas the

first allows only for fluctuations around a constant mean. If �1 = 1, the interpre-

tation of �
c

in model (19) changes drastically, as the parameter is now capturing

the drift in a unit-root process instead of determining the long-run mean of y
t

.

Schotman and van Dijk (1991) make the case that the representation (20) is more

appealing, if the goal of the empirical analysis is to determine the evidence in favor

of the hypothesis that �1 = 1.2 Since the initial level of the latent process ỹ0 is

unobserved, �0 in (20) is nonidentifiable if �1 = 1. Thus, in practice it is advisable

to specify a proper prior for �0 in (20).

In empirical work researchers often treat parameters as independent and might

combine (19) with a prior distribution that implies �1 ⇠ U [0, 1 � ⇠] and �
c

⇠
N(�

c

,�2). For the subsequent argument, it is assumed that ⇠ > 0 to impose sta-

tionarity. Since the expected value of IE[y
t

] = �
c

/(1� �1), this prior for �1 and �
c

has the following implication. Conditional on �
c

, the prior mean and variance of

the population mean IE[y
t

] increases (in absolute value) as �1 �! 1 � ⇠. In turn,
2Giordani, Pitt, and Kohn (This Volume) discuss evidence that in many instances the so-called

centered parameterization of (20) can increase the e�ciency of MCMC algorithms.
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this prior generates a fairly di↵use distribution of y
t

that might place little mass on

values of y
t

that appear a priori plausible.

Treating the parameters of Model (20) as independent – for example, �1 ⇠
U [0, 1 � ⇠], �0 ⇠ N(�

0
,�2), and �1 = 0 – avoids the problem of an overly dif-

fuse data distribution. In this case IE[y
t

] has a priori mean �
0

and variance �2 for

every value of �1. For researchers who do prefer to work with Model (19) but are

concerned about a priori implausible data distributions, the co-persistence dummy

observations discussed in Section 2.2 are useful. With these dummy observations,

the implied prior distribution of the population mean of y
t

conditional on �1 takes

the form IE[y
t

]|�1 ⇠ N(y, (�5(1 � �1))�2). While the scale of the distribution of

IE[y
t

] is still dependent on the autoregressive coe�cient, at least the location re-

mains centered at y regardless of �1.

2.4 Structural VARs

Reduced-form VARs summarize the autocovariance properties of the data and pro-

vide a useful forecasting tool, but they lack economic interpretability. We will

consider two ways of adding economic content to the VAR specified in (1). First,

one can turn (1) into a dynamic simultaneous equations model by premultiplying

it with a matrix A0, such that the equations could be interpreted as, for instance,

monetary policy rule, money demand equation, aggregate supply equation, and ag-

gregate demand equation. Shocks to these equations can in turn be interpreted as

monetary policy shocks or as innovations to aggregate supply and demand. To the

extent that the monetary policy rule captures the central bank’s systematic reaction

to the state of the economy, it is natural to assume that the monetary policy shocks

are orthogonal to the other innovations. More generally, researchers often assume

that shocks to the aggregate supply and demand equations are independent of each

other.

A second way of adding economic content to VARs exploits the close connection

between VARs and modern dynamic stochastic general equilibrium models. In the

context of a DSGE model, a monetary policy rule might be well defined, but the

notion of an aggregate demand or supply function is obscure. As we will see in

Section 4, these models are specified in terms of preferences of economic agents

and production technologies. The optimal solution of agents’ decision problems

combined with an equilibrium concept leads to an autoregressive law of motion for
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the endogenous model variables. Economic fluctuations are generated by shocks to

technology, preferences, monetary policy, or fiscal policy. These shocks are typi-

cally assumed to be independent of each other. One reason for this independence

assumption is that many researchers view the purpose of DSGE models as that

of generating the observed comovements between macroeconomic variables through

well-specified economic propagation mechanisms, rather than from correlated ex-

ogenous shocks. Thus, these kinds of dynamic macroeconomic theories suggest that

the one-step-ahead forecast errors u
t

in (1) are functions of orthogonal fundamental

innovations in technology, preferences, or policies.

To summarize, one can think of a structural VAR either as a dynamic simultaneous

equations model, in which each equation has a particular structural interpretation,

or as an autoregressive model, in which the forecast errors are explicitly linked

to such fundamental innovations. We adopt the latter view in Section 2.4.1 and

consider the former interpretation in Section 2.4.2.

2.4.1 Reduced-Form Innovations and Structural Shocks

A straightforward calculation shows that we need to impose additional restrictions

to identify a structural VAR. Let ✏
t

be a vector of orthogonal structural shocks

with unit variances. We now express the one-step-ahead forecast errors as a linear

combination of structural shocks

u
t

= �
✏

✏
t

= ⌃
tr

⌦✏
t

. (21)

Here, ⌃
tr

refers to the unique lower-triangular Cholesky factor of ⌃ with nonnegative

diagonal elements, and ⌦ is an n⇥n orthogonal matrix. The second equality ensures

that the covariance matrix of u
t

is preserved; that is, �
✏

has to satisfy the restriction

⌃ = �
✏

�0
✏

. Thus, our structural VAR is parameterized in terms of the reduced-form

parameters � and ⌃ (or its Cholesky factor ⌃
tr

) and the orthogonal matrix ⌦. The

joint distribution of data and parameters is given by

p(Y,�,⌃,⌦) = p(Y |�,⌃)p(�,⌃)p(⌦|�,⌃). (22)

Since the distribution of Y depends only on the covariance matrix ⌃ and not on its

factorization ⌃
tr

⌦⌦0⌃0
tr

, the likelihood function here is the same as the likelihood

function of the reduced-form VAR in (6), denoted by p(Y |�,⌃). The identification

problem arises precisely from the absence of ⌦ in this likelihood function.
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We proceed by examining the e↵ect of the identification problem on the calculation

of posterior distributions. Integrating the joint density with respect to ⌦ yields

p(Y,�,⌃) = p(Y |�,⌃)p(�,⌃). (23)

Thus, the calculation of the posterior distribution of the reduced-form parameters

is not a↵ected by the presence of the nonidentifiable matrix ⌦. The conditional

posterior density of ⌦ can be calculated as follows:

p(⌦|Y,�,⌃) =
p(Y,�,⌃)p(⌦|�,⌃)R
p(Y,�,⌃)p(⌦|�,⌃)d⌦

= p(⌦|�,⌃). (24)

The conditional distribution of the nonidentifiable parameter ⌦ does not get updated

in view of the data. This is a well-known property of Bayesian inference in partially

identified models; see, for instance, Kadane (1974), Poirier (1998), and Moon and

Schorfheide (2009). We can deduce immediately that draws from the joint posterior

distribution p(�,⌃,⌦|Y ) can in principle be obtained in two steps.

Algorithm 2.3: Posterior Sampler for Structural VARs

For s = 1, . . . , n
sim

:

1. Draw (�(s),⌃(s)) from the posterior p(�,⌃|Y ).

2. Draw ⌦(s) from the conditional prior distribution p(⌦|�(s),⌃(s)). ⇤

Not surprisingly, much of the literature on structural VARs reduces to arguments

about the appropriate choice of p(⌦|�,⌃). Most authors use dogmatic priors for

⌦ such that the conditional distribution of ⌦, given the reduced-form parameters,

reduces to a point mass. Priors for ⌦ are typically referred to as identification

schemes because, conditional on ⌦, the relationship between the forecast errors u
t

and the structural shocks ✏
t

is uniquely determined. Cochrane (1994), Christiano,

Eichenbaum, and Evans (1999), and Stock and Watson (2001) provide detailed

surveys.

To present various identification schemes that have been employed in the litera-

ture, we consider a simple bivariate VAR(1) without intercept; that is, we set n = 2,

p = 1, and �
c

= 0. For the remainder of this subsection, it is assumed that the

eigenvalues of �1 are all less than one in absolute value. This eigenvalue restriction

guarantees that the VAR can be written as infinite-order moving average (MA(1)):

y
t

=
1X

j=0

�j

1⌃tr

⌦✏
t

. (25)
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We will refer to the sequence of partial derivatives

@y
t+j

@✏
t

= �j

1⌃tr

⌦, j = 0, 1, . . . (26)

as the impulse-response function. In addition, macroeconomists are often inter-

ested in so-called variance decompositions. A variance decomposition measures the

fraction that each of the structural shocks contributes to the overall variance of a

particular element of y
t

. In the stationary bivariate VAR(1), the (unconditional)

covariance matrix is given by

�
yy

=
1X

j=0

�j

1⌃tr

⌦⌦0⌃0
tr

(�j)0.

Let Ii be the matrix for which element i, i is equal to one and all other elements

are equal to zero. Then we can define the contribution of the i’th structural shock

to the variance of y
t

as

�(i)
yy

=
1X

j=0

�j

1⌃tr

⌦I(i)⌦0⌃0
tr

(�j)0. (27)

Thus, the fraction of the variance of y
j,t

explained by shock i is [�(i)
yy,0](jj)/[�

yy,0](jj).

Variance decompositions based on h-step-ahead forecast error covariance matrices
P

h

j=0�
j

1⌃(�j)0 can be constructed in the same manner. Handling these nonlinear

transformations of the VAR parameters in a Bayesian framework is straightforward,

because one can simply postprocess the output of the posterior sampler (Algo-

rithm 2.3). Using (26) or (27), each triplet (�(s),⌃(s),⌦(s)), s = 1, . . . , n
sim

, can

be converted into a draw from the posterior distribution of impulse responses or

variance decompositions. Based on these draws, it is straightforward to compute

posterior moments and credible sets.

For n = 2, the set of orthogonal matrices ⌦ can be conveniently characterized by

an angle ' and a parameter ⇠ 2 {�1, 1}:

⌦(', ⇠) =

"
cos ' �⇠ sin'

sin' ⇠ cos '

#
(28)

where ' 2 (�⇡,⇡]. Each column represents a vector of unit length in R2, and the

two vectors are orthogonal. The determinant of ⌦ equals ⇠. Notice that ⌦(') =

�⌦(' + ⇡). Thus, rotating the two vectors by 180 degrees simply changes the sign

of the impulse responses to both shocks. Switching from ⇠ = 1 to ⇠ = �1 changes
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the sign of the impulse responses to the second shock. We will now consider three

di↵erent identification schemes that restrict ⌦ conditional on � and ⌃.

Example 2.1 (Short-Run Identification): Suppose that y
t

is composed of out-

put deviations from trend, ỹ
t

, and that the federal funds rate, R
t

, and the vector

✏
t

consists of innovations to technology, ✏
z,t

, and monetary policy, ✏
R,t

. That is,

y
t

= [ỹ
t

, R
t

]0 and ✏
t

= [✏
z,t

, ✏
R,t

]0. Identification can be achieved by imposing restric-

tions on the informational structure. For instance, following an earlier literature,

Boivin and Giannoni (2006b) assume in a slightly richer setting that the private

sector does not respond to monetary policy shocks contemporaneously. This as-

sumption can be formalized by considering the following choices of ' and ⇠ in (28):

(i) ' = 0 and ⇠ = 1; (ii) ' = 0 and ⇠ = �1; (iii) ' = ⇡ and ⇠ = 1; and (iv) ' = ⇡

and ⇠ = �1. It is common in the literature to normalize the direction of the impulse

response by, for instance, considering responses to expansionary monetary policy

and technology shocks. The former could be defined as shocks that lower interest

rates upon impact. Since by construction ⌃tr

22 � 0, interest rates fall in response

to a monetary policy shock in cases (ii) and (iii). Likewise, since ⌃tr

11 � 0, output

increases in response to ✏
z,t

in cases (i) and (ii). Thus, after imposing the identi-

fication and normalization restrictions, the prior p(⌦|�,⌃) assigns probability one

to the matrix ⌦ that is diagonal with elements 1 and -1. Such a restriction on ⌦ is

typically referred to as a short-run identification scheme. A short-run identification

scheme was used in the seminal work by Sims (1980). ⇤

Example 2.2 (Long-Run Identification): Now suppose y
t

is composed of in-

flation, ⇡
t

, and output growth: y
t

= [⇡
t

,� ln ỹ
t

]0. As in the previous example, we

maintain the assumption that business-cycle fluctuations are generated by monetary

policy and technology shocks, but now reverse the ordering: ✏
t

= [✏
R,t

, ✏
z,t

]0. We

now use the following identification restriction: unanticipated changes in monetary

policy shocks do not raise output in the long run. The long-run response of the log-

level of output to a monetary policy shock can be obtained from the infinite sum

of growth-rate responses
P1

j=0 @� ln ỹ
t+j

/@✏
R,t

. Since the stationarity assumption

implies that
P1

j=0�
j

1 = (I � �1)�1, the desired long-run response is given by

[(I � �1)�1⌃
tr

](2.)⌦(.1)(', ⇠), (29)

where A(.j) (A(j.)) is the j’th column (row) of a matrix A. This identification

scheme has been used, for instance, by Nason and Cogley (1994) and Schorfheide

(2000). To obtain the orthogonal matrix ⌦, we need to determine the ' and ⇠
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such that the expression in (29) equals zero. Since the columns of ⌦(', ⇠) are

composed of orthonormal vectors, we need to find a unit length vector ⌦(.1)(', ⇠)

that is perpendicular to [(I � �1)�1⌃
tr

]0(2.). Notice that ⇠ does not a↵ect the first

column of ⌦; it only changes the sign of the response to the second shock. Suppose

that (29) equals zero for '̃. By rotating the vector ⌦(.1)('̃, ⇠) by 180 degrees, we

can find a second angle ' such that the long-run response in (29) equals zero.

Thus, similar to Example 2.1, we can find four pairs (', ⇠) such that the long-run

e↵ect (29) of a monetary policy shock on output is zero. While the shapes of the

response functions are the same for each of these pairs, the sign will be di↵erent.

We could use the same normalization as in Example 2.1 by considering the e↵ects

of expansionary technology shocks (the level of output rises in the long run) and

expansionary monetary policy shocks (interest rates fall in the short run). To im-

plement this normalization, one has to choose one of the four (', ⇠) pairs. Unlike

in Example 2.1, where we used ' = 0 and ⇠ = �1 regardless of � and ⌃, here the

choice depends on � and ⌃. However, once the normalization has been imposed,

p(⌦|�,⌃) remains a point mass. A long-run identification scheme was initially used

by Blanchard and Quah (1989) to identify supply and demand disturbances in a

bivariate VAR. Since long-run e↵ects of shocks in dynamic systems are intrinsically

di�cult to measure, structural VARs identified with long-run schemes often lead to

imprecise estimates of the impulse response function and to inference that is very

sensitive to lag length choice and prefiltering of the observations. This point dates

back to Sims (1972) and a detailed discussion in the structural VAR context can be

found in Leeper and Faust (1997). More recently, the usefulness of long-run restric-

tions has been debated in the papers by Christiano, Eichenbaum, and Vigfusson

(2007) and Chari, Kehoe, and McGrattan (2008).

Example 2.3 (Sign-Restrictions): As before, let y
t

= [⇡
t

,� ln ỹ
t

]0 and ✏
t

=

[✏
R,t

, ✏
z,t

]0. The priors for ⌦|(�,⌃) in the two preceding examples were degenerate.

Faust (1998), Canova and De Nicoló (2002), and Uhlig (2005) propose to be more

agnostic in the choice of ⌦. Suppose we restrict only the direction of impulse re-

sponses by assuming that monetary policy shocks move inflation and output in the

same direction upon impact. In addition, we normalize the monetary policy shock to

be expansionary; that is, output rises. Formally, this implies that ⌃
tr

⌦(.1)(', ⇠) � 0

and is referred to as a sign-restriction identification scheme. It will become clear sub-

sequently that sign restrictions only partially identify impulse responses in the sense

that they deliver (nonsingleton) sets. Since by construction ⌃tr

11 � 0, we can deduce
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from (28) and the sign restriction on the inflation response that ' 2 (�⇡/2,⇡/2].

Since ⌃tr

22 � 0 as well, the inequality restriction for the output response can be used

to sharpen the lower bound:

⌃tr

21 cos ' + ⌃22 sin' � 0 implies ' � '(⌃) = arctan
�
� ⌃21/⌃22

�
.

The parameter ⇠ can be determined conditional on ⌃ and ' by normalizing the tech-

nology shock to be expansionary. To implement Bayesian inference, a researcher now

has to specify a prior distribution for '|⌃ with support on the interval ['(⌃),⇡/2]

and a prior for ⇠|(',⌃). In practice, researchers have often chosen a uniform distri-

bution for '|⌃ as we will discuss in more detail below. ⇤

For short- and long-run identification schemes, it is straightforward to implement

Bayesian inference. One can use a simplified version of Algorithm 2.3, in which ⌦(s)

is calculated directly as function of (�(s),⌃(s)). For each triplet (�,⌃,⌦), suitable

generalizations of (26) and (27) can be used to convert parameter draws into draws

of impulse responses or variance decompositions. With these draws in hand, one can

approximate features of marginal posterior distributions such as means, medians,

standard deviations, or credible sets. In many applications, including the empirical

illustration provided below, researchers are interested only in the response of an

n-dimensional vector y
t

to one particular shock, say a monetary policy shock. In

this case, one can simply replace ⌦ in the previous expressions by its first column

⌦(.1), which is a unit-length vector.

Credible sets for impulse responses are typically plotted as error bands around

mean or median responses. It is important to keep in mind that impulse-response

functions are multidimensional objects. However, the error bands typically reported

in the literature have to be interpreted point-wise, that is, they delimit the credible

set for the response of a particular variable at a particular horizon to a particular

shock. In an e↵ort to account for the correlation between responses at di↵erent

horizons, Sims and Zha (1999) propose a method for computing credible bands that

relies on the first few principal components of the covariance matrix of the responses.

Bayesian inference in sign-restricted structural VARs is more complicated because

one has to sample from the conditional distribution of p(⌦|�,⌃). Some authors,

like Uhlig (2005), restrict their attention to one particular shock and parameterize

only one column of the matrix ⌦. Other authors, like Peersman (2005), construct

responses for the full set of n shocks. In practice, sign restrictions are imposed not
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just on impact but also over longer horizons j > 0. Most authors use a conditional

prior distribution of ⌦|(�,⌃) that is uniform. Any r columns of ⌦ can be interpreted

as an orthonormal basis for an r-dimensional subspace of Rn. The set of these

subspaces is called Grassmann manifold and denoted by G
r,n�r

. Thus, specifying a

prior distribution for (the columns of) ⌦ can be viewed as placing probabilities on a

Grassmann manifold. A similar problem arises when placing prior probabilities on

cointegration spaces, and we will provide a more extensive discussion in Section 3.3.

A uniform distribution can be defined as the unique distribution that is invariant

to transformations induced by orthonormal transformations of Rn (James (1954)).

For n = 2, this uniform distribution is obtained by letting ' ⇠ U(�⇡,⇡] in (28)

and, in case of Example 2.3, restricting it to the interval [�'(⌃),⇡/2]. Detailed

descriptions of algorithms for Bayesian inference in sign-restricted structural VARs

for n > 2 can be found, for instance, in Uhlig (2005) and Rubio-Ramı́rez, Waggoner,

and Zha (2010).

Illustration 2.1: We consider a VAR(4) based on output, inflation, interest rates,

and real money balances. The data are obtained from the FRED database of the

Federal Reserve Bank of St. Louis. Database identifiers are provided in parenthe-

ses. Per capita output is defined as real GDP (GDPC96) divided by the civilian

noninstitutionalized population (CNP16OV). We take the natural log of per capita

output and extract a deterministic trend by OLS regression over the period 1959:I

to 2006:IV.3 The deviations from the linear trend are scaled by 100 to convert

them into percentages. Inflation is defined as the log di↵erence of the GDP deflator

(GDPDEF), scaled by 400 to obtain annualized percentage rates. Our measure of

nominal interest rates corresponds to the average federal funds rate (FEDFUNDS)

within a quarter. We divide sweep-adjusted M2 money balances by quarterly nomi-

nal GDP to obtain inverse velocity. We then remove a linear trend from log inverse

velocity and scale the deviations from trend by 100. Finally, we add our measure of

detrended per capita real GDP to obtain real money balances. The sample used for

posterior inference is restricted to the period from 1965:I to 2005:I.

We use the dummy-observation version of the Minnesota prior described in Sec-

tion 2.2 with the hyperparameters �2 = 4, �3 = 1, �4 = 1, and �5 = 1. We consider
3This deterministic trend could also be incorporated into the specification of the VAR. However,

in this illustration we wanted (i) to only remove a deterministic trend from output and not from

the other variables and (ii) to use Algorithm 2.1 and the marginal likelihood formula (15) which do

not allow for equation-specific parameter restrictions.
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Table 1: Hyperparameter Choice for Minnesota Prior

�1 0.01 0.10 0.50 1.00 2.00

⇡
i,0 0.20 0.20 0.20 0.20 0.20

ln p
�

(Y ) -914.35 -868.71 -888.32 -898.18 -902.43

⇡
i,T

0.00 1.00 0.00 0.00 0.00

five possible values for �1, which controls the overall variance of the prior. We as-

sign equal prior probability to each of these values and use (15) to compute the

marginal likelihoods p
�

(Y ). Results are reported in Table 1. The posterior prob-

abilites of the hyperparameter values are essentially degenerate, with a weight of

approximately one on �1 = 0.1. The subsequent analysis is conducted conditional

on this hyperparameter setting.

Draws from the posterior distribution of the reduced-form parameters � and ⌃

can be generated with Algorithm 2.1, using the appropriate modification of Ŝ, �̂

and X, described at the beginning of Section 2.2. To identify the dynamic response

to a monetary policy shock, we use the sign-restriction approach described in Exam-

ple 2.3. In particular, we assume that a contractionary monetary policy shock raises

the nominal interest rate upon impact and for one period after the impact. During

these two periods, the shock also lowers inflation and real money balances. Since

we are identifying only one shock, we focus on the first column of the orthogonal

matrix ⌦. We specify a prior for ⌦(.1) that implies that the space spanned by this

vector is uniformly distributed on the relevant Grassman manifold. This uniform

distribution is truncated to enforce the sign restrictions given (�,⌃). Thus, the sec-

ond step of Algorithm 2.3 is implemented with an acceptance sampler that rejects

proposed draws of ⌦ for which the sign restrictions are not satisfied. Proposal draws

⌦̃ are obtained by sampling Z ⇠ N(0, I) and letting ⌦̃ = Z/kZk.

Posterior means and credible sets for the impulse responses are plotted in Figure 2.

According to the posterior mean estimates, a one-standard deviation shock raises

interest rates by 40 basis points upon impact. In response, the (annualized) inflation

rate drops by 30 basis points, and real money balances fall by 0.4 percent. The

posterior mean of the output response is slightly positive, but the 90% credible set

ranges from -50 to about 60 basis points, indicating substantial uncertainty about

the sign and magnitude of the real e↵ect of unanticipated changes in monetary policy
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under our fairly agnostic prior for the vector ⌦(.1). ⇤

Insert Figure 2 Here

2.4.2 An Alternative Structural VAR Parameterization

We introduced structural VARs by expressing the one-step-ahead forecast errors of a

reduced-form VAR as a linear function of orthogonal structural shocks. Suppose we

now premultiply both sides of (1) by ⌦0⌃�1
tr

and define A0
0 = ⌦0⌃�1

tr

, A
j

= ⌦0⌃�1
tr

�
j

,

j = 1, . . . , p, and A
c

= ⌦0⌃�1
tr

�
c

; then we obtain

A0
0yt

= A1yt�1 + . . . A
p

y
t�p

+ A
c

+ ✏
t

, ✏
t

⇠ iidN(0, I). (30)

Much of the empirical analysis in the Bayesian SVAR literature is based on this al-

ternative parameterization (see, for instance, Sims and Zha (1998)). The advantage

of (30) is that the coe�cients have direct behaviorial interpretations. For instance,

one could impose identifying restrictions on A0 such that the first equation in (30)

corresponds to the monetary policy rule of the central bank. Accordingly, ✏1,t

would

correspond to unanticipated deviations from the expected policy.

A detailed discussion of the Bayesian analysis of (30) is provided in Sims and

Zha (1998). As in (5), let x0
t

= [y0
t�1, . . . , y

0
t�p

, 1] and Y and X be matrices with

rows y0
t

, x0
t

, respectively. Moreover, we use E to denote the T ⇥ n matrix with

rows ✏0
t

. Finally, define A = [A1, . . . , Ap

, A
c

]0 such that (30) can be expressed as a

multivariate regression of the form

Y A0 = XA + E (31)

with likelihood function

p(Y |A0, A) / |A0|T exp
⇢
�1

2
tr[(Y A0 �XA)0(Y A0 �XA)]

�
. (32)

The term |A0|T is the determinant of the Jacobian associated with the transfor-

mation of E into Y . Notice that, conditional on A0, the likelihood function is

quadratic in A, meaning that under a suitable choice of prior, the posterior of A is

matricvariate Normal.

Sims and Zha (1998) propose prior distributions that share the Kronecker struc-

ture of the likelihood function and hence lead to posterior distributions that can
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be evaluated with a high degree of numerical e�ciency, that is, without having to

invert matrices of the dimension nk ⇥ nk. Specifically, it is convenient to factorize

the joint prior density as p(A0)p(A|A0) and to assume that the conditional prior

distribution of A takes the form

A|A0 ⇠MN

✓
A(A0),��1I ⌦ V (A0)

◆
, (33)

where the matrix of means A(A0) and the covariance matrix V (A0) are potentially

functions of A0 and � is a hyperparameter that scales the prior covariance matrix.

The matrices A(A0) and V (A0) can, for instance, be constructed from the dummy

observations presented in Section 2.2:

A(A0) = (X⇤0X⇤)�1X⇤0Y ⇤A0, V (A0) = (X⇤0X⇤)�1.

Combining the likelihood function (32) with the prior (33) leads to a posterior for

A that is conditionally matricvariate Normal:

A|A0, Y ⇠MN

✓
Ā(A0), I ⌦ V̄ (A0)

◆
, (34)

where

Ā(A0) =
✓

�V �1(A0) + X 0X

◆�1✓
�V �1(A0)A(A0) + X 0Y A0

◆

V̄ (A0) =
✓

�V �1(A0) + X 0X

◆�1

.

The specific form of the posterior for A0 depends on the form of the prior density

p(A0). The prior distribution typically includes normalization and identification

restrictions. An example of such restrictions, based on a structural VAR analyzed

by Robertson and Tallman (2001), is provided next.

Example 2.4: Suppose y
t

is composed of a price index for industrial commodi-

ties (PCOM), M2, the federal funds rate (R), real GDP interpolated to monthly

frequency (ỹ), the consumer price index (CPI), and the unemployment rate (U).

The exclusion restrictions on the matrix A0
0 used by Robertson and Tallman (2001)

are summarized in Table 2.4.2. Each row in the table corresponds to a behavioral

equation labeled on the left-hand side of the row. The first equation represents

an information market, the second equation is the monetary policy rule, the third

equation describes money demand, and the remaining three equations character-

ize the production sector of the economy. The entries in the table imply that the
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Table 2: Identification Restrictions for A0
0

Pcom M2 R Y CPI U

Inform X X X X X X

MP 0 X X 0 0 0

MD 0 X X X X 0

Prod 0 0 0 X 0 0

Prod 0 0 0 X X 0

Prod 0 0 0 X X X

Notes: Each row in the table represents a behavioral equation labeled on the left-

hand side of the row: information market (Inform), monetary policy rule (MP),

money demand (MD), and three equations that characterize the production sector

of the economy (Prod). The column labels reflect the observables: commodity prices

(Pcom), monetary aggregate (M2), federal funds rate (R), real GDP (Y), consumer

price index (CPI), and unemployment (U). A 0 entry denotes a coe�cient set to

zero. ⇤

only variables that enter contemporaneously into the monetary policy rule (MP)

are the federal funds rate (R) and M2. The structural VAR here is overidentified,

because the covariance matrix of the one-step-ahead forecast errors of a VAR with

n = 6 has in principle 21 free elements, whereas the matrix A0 has only 18 free ele-

ments. Despite the fact that overidentifying restrictions were imposed, the system

requires a further normalization. One can multiply the coe�cients for each equation

i = 1, . . . , n by �1, without changing the distribution of the endogenous variables.

A common normalization scheme is to require that the diagonal elements of A0 all

be nonnegative. In practice, this normalization can be imposed by postprocessing

the output of the posterior sampler: for all draws (A0
0, A1, . . . , Ap

, A
c

) multiply the

i’th row of each matrix by �1 if A0,ii

< 0. This normalization works well if the

posterior support of each diagonal element of A0 is well away from zero. Otherwise,

this normalization may induce bimodality in distributions of other parameters. ⇤

Waggoner and Zha (2003) developed an e�cient MCMC algorithm to generate

draws from a restricted A0 matrix. For expositional purposes, assume that the

prior for A|A0 takes the form (33), with the restriction that A(A0) = MA0 for

some matrix M and that V (A0) = V does not depend on A0, as is the case for our
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dummy-observation prior. Then the marginal likelihood function for A0 is of the

form

p(Y |A0) =
Z

p(Y |A0, A)p(A|A0)dA / |A0|T exp
⇢
�1

2
tr[A0

0S̄A0]
�

, (35)

where S̄ is a function of the data as well as M and V . Waggoner and Zha (2003)

write the restricted columns of A0 as A0(.i) = U
i

b
i

where b
i

is a q
i

⇥ 1 vector,

q
i

is the number of unrestricted elements of A0(.i), and U
i

is an n ⇥ q
i

matrix,

composed of orthonormal column vectors. Under the assumption that b
i

⇠ N(b
i

,⌦
i

),

independently across i, we obtain

p(b1, . . . , bn

|Y ) / |[U1b1, . . . , Un

b
n

]|T exp

(
�T

2

nX

i=1

b0
i

S
i

b
i

)
, (36)

where S
i

= U 0
i

(S̄ +⌦�1
i

)U
i

and A0 can be recovered from the b
i

’s. Now consider the

conditional density of b
i

|(b1, . . . , bi�1, bi+1, . . . , bn

):

p(b
i

|Y, b1, . . . , bi�1, bi+1, . . . , bn

) / |[U1b1, . . . , Un

b
n

]|T exp
⇢
�T

2
b0
i

S
i

b
i

�
.

Since b
i

also appears in the determinant, its distribution is not Normal. Character-

izing the distribution of b
i

requires a few additional steps. Let V
i

be a q
i

⇥ q
i

matrix

such that V 0
i

S
i

V
i

= I. Moreover, let w be an n ⇥ 1 vector perpendicular to each

vector U
j

b
j

, j 6= i and define w1 = V 0
i

U 0
i

w/kV 0
i

U 0
i

wk. Choose w2, . . . , wqi such that

w1, . . . , wqi form an orthonormal basis for Rqi and we can introduce the parameters

�1, . . . ,�qi and reparameterize the vector b
i

as a linear combination of the w
j

’s:

b
i

= V
i

qiX

j=1

�
j

w
j

. (37)

By the orthonormal property of the w
j

’s, we can verify that the conditional posterior

of the �
j

’s is given by

p(�1, . . . ,�qi |Y, b1, . . . , bi�1, bi+1, . . . , bn

) (38)

/

0

@
qiX

j=1

|[U1b1, . . . ,�j

V
i

w
j

, . . . , U
n

b
n

]|

1

A
T

exp

8
<

:�
T

2

qiX

j=1

�2
j

9
=

;

/ |�1|T exp

8
<

:�
T

2

qiX

j=1

�2
j

9
=

; .

The last line follows because w2, . . . , wqi by construction falls in the space spanned

by U
j

b
j

, j 6= i. Thus, all �
j

’s are independent of each other, �1 has a Gamma
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distribution, and �
j

, 2  j  q
i

, are normally distributed. Draws from the posterior

of A0 can be obtained by Gibbs sampling.

Algorithm 2.4: Gibbs Sampler for Structural VARs

For s = 1, . . . , n
sim

:

1. Draw A
(s)
0 conditional on (A(s�1), Y ) as follows. For i = 1, . . . , n generate

�1, . . . ,�qi from (38) conditional on (b(s)
1 , . . . , b

(s)
i�1, b

(s�1)
i+1 , . . . , b

(s�1)
n

), define b
(s)
i

according to (37), and let A
(s)
0(.i) = U

i

b
(s)
i

.

2. Draw A(s) conditional on (A(s)
0 , Y ) from the matricvariate Normal distribution

in (34). ⇤

2.5 Further VAR Topics

The literature on Bayesian analysis of VARs is by now extensive, and our presen-

tation is by no means exhaustive. A complementary survey of Bayesian analysis of

VARs including VARs with time-varying coe�cients and factor-augmented VARs

can be found in Koop and Korobilis (2010). Readers who are interested in using

VARs for forecasting purposes can find algorithms to compute such predictions e�-

ciently, possibly conditional on the future path of a subset of variables, in Waggoner

and Zha (1999). Rubio-Ramı́rez, Waggoner, and Zha (2010) provide conditions for

the global identification of VARs of the form (30). Our exposition was based on the

assumption that the VAR innovations are homoskedastic. Extensions to GARCH-

type heteroskedasticity can be found, for instance, in Pelloni and Polasek (2003).

Uhlig (1997) proposes a Bayesian approach to VARs with stochastic volatility. We

will discuss VAR models with stochastic volatility in Section 5.

3 VARs with Reduced-Rank Restrictions

It is well documented that many economic time series such as aggregate output, con-

sumption, and investment exhibit clear trends and tend to be very persistent. At the

same time, it has long been recognized that linear combinations of macroeconomic

time series (potentially after a logarithmic transformation) appear to be station-

ary. Examples are the so-called Great Ratios, such as the consumption-output or

investment-output ratio (see Klein and Kosobud (1961)). The left panel of Figure 3
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depicts log nominal GDP and nominal aggregate investment for the United States

over the period 1965-2006 (obtained from the FRED database of the Federal Re-

serve Bank of St. Louis) and the right panel shows the log of the investment-output

ratio. While the ratio is far from constant, it exhibits no apparent trend, and the

fluctuations look at first glance mean-reverting. The observation that particular

linear combinations of nonstationary economic time series appear to be stationary

has triggered a large literature on cointegration starting in the mid 1980’s; see, for

example, Engle and Granger (1987), Johansen (1988), Johansen (1991), and Phillips

(1991).

Insert Figure 3 Here

More formally, the dynamic behavior of a univariate autoregressive process �(L)y
t

=

u
t

, where �(L) = 1 �
P

p

j=1 �
j

Lp and L is the lag operator, crucially depends on

the roots of the characteristic polynomial �(z). If the smallest root is unity and all

other roots are outside the unit circle, then y
t

is nonstationary. Unit-root processes

are often called integrated of order one, I(1), because stationarity can be induced

by taking first di↵erences �y
t

= (1�L)y
t

. If a linear combination of univariate I(1)

time series is stationary, then these series are said to be cointegrated. Cointegration

implies that the series have common stochastic trends that can be eliminated by

taking suitable linear combinations. In Section 4, we will discuss how such cointe-

gration relationships arise in a dynamic stochastic general equilibrium framework.

For now, we will show in Section 3.1 that one can impose cotrending restrictions in a

VAR by restricting some of the eigenvalues of its characteristic polynomial to unity.

This leads to the so-called vector error correction model, which takes the form of

a reduced-rank regression. Such restricted VARs have become a useful and empiri-

cally successful tool in applied macroeconomics. In Section 3.2, we discuss Bayesian

inference in cointegration systems under various types of prior distributions.

3.1 Cointegration Restrictions

Consider the reduced-form VAR specified in (1). Subtracting y
t�1 from both sides

of the equality leads to

�y
t

= (�1 � I)y
t�1 + �2yt�2 + . . . + �

p

y
t�p

+ �
c

+ u
t

, u
t

⇠ iidN(0,⌃). (39)
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For j = 1, . . . , p�1 define ⇧
j

= �
P

p

i=j+1�p

and ⇧
c

= �
c

. Then we can rewrite (39)

as

�y
t

= ⇧⇤yt�1 +⇧1�y
t�1 + . . . +⇧

p�1�y
t�p+1 +⇧

c

+ u
t

, (40)

where

⇧⇤ = ��(1) and �(z) = I �
pX

j=1

�
j

zj .

�(z) is the characteristic polynomial of the VAR. If the VAR has unit roots, – that

is, |�(1)| = 0 – then the matrix ⇧⇤ is of reduced rank. If the rank of ⇧⇤ equals

r < n, we can reparameterize the matrix as ⇧⇤ = ↵�0, where ↵ and � are n ⇥ r

matrices of full column rank. This reparameterization leads to the so-called vector

error correction or vector equilibrium correction (VECM) representation:

�y
t

= ↵�0y
t�1 +⇧1�y

t�1 + . . . +⇧
p�1�y

t�p+1 +⇧
c

+ u
t

, (41)

studied by Engle and Granger (1987).

A few remarks are in order. It can be easily verified that the parameterization

of ⇧⇤ in terms of ↵ and � is not unique: for any nonsingular r ⇥ r matrix A, we

can define ↵̃ and �̃ such that ⇧⇤ = ↵AA�1�0 = ↵̃�̃0. In addition to the matrices ↵

and �, it is useful to define a matrix ↵? and �? of full column rank and dimension

n ⇥ (n � r) such that ↵0↵? = 0 and �0�? = 0. If no root of �(z) = 0 lies inside

the unit circle and ↵0?�? has full rank, then (41) implies that y
t

can be expressed

as (Granger’s Representation Theorem):

y
t

= �?(↵0?��?)�1↵0?

tX

⌧=1

(u
t

+⇧
c

) + (L)(u
t

+⇧
c

) + P
�?y0. (42)

� = I �
P

p�1
j=1 ⇧j

, P
�? is the matrix that projects onto the space spanned by �?,

and  (L)u
t

=
P1

j=0 j

u
t�j

is a stationary linear process. It follows immediately

that the r linear combinations �0y
t

are stationary. The columns of � are called

cointegration vectors. Moreover, y
t

has n � r common stochastic trends given by

(↵0?��?)�1↵0?
P

t

⌧=1(ut

+ ⇧
c

). A detailed exposition can be found, for instance, in

the monograph by Johansen (1995).

If y
t

is composed of log GDP and investment, a visual inspection of Figure 3

suggests that the cointegration vector � is close to [1,�1]0. Thus, according to (41)

the growth rates of output and investment should be modeled as functions of lagged

growth rates as well as the log investment-output ratio. Since in this example �? is
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2⇥ 1 and the term (↵0?��?)�1↵0?
P

t

⌧=1(ut

+⇧
c

) is scalar, Equation (42) highlights

the fact that output and investment have a common stochastic trend. The remainder

of Section 3 focuses on the formal Bayesian analysis of the vector error correction

model. We will examine various approaches to specifying a prior distribution for

⇧⇤ and discuss Gibbs samplers to implement posterior inference. In practice, the

researcher faces uncertainty about the number of cointegration relationships as well

as the number of lags that should be included. A discussion of model selection and

averaging approaches is deferred to Section 7.

3.2 Bayesian Inference with Gaussian Prior for �

Define ⇧ = [⇧1, . . . ,⇧p�1,⇧c

]0 and let u
t

⇠ N(0,⌃). Inspection of (41) suggests

that conditional on ↵ and �, the VECM reduces to a multivariate linear Gaussian

regression model. In particular, if (⇧,⌃)|(↵, �) is MNIW, then we can deduce imme-

diately that the posterior (⇧,⌃)|(Y, ↵,�) is also of the MNIW form and can easily be

derived following the calculations in Section 2. A Gibbs sampler to generate draws

from the posterior distribution of the VECM typically has the following structure:

Algorithm 3.1: Gibbs Sampler for VECM

For s = 1, . . . , n
sim

:

1. Draw (⇧(s),⌃(s)) from the posterior p(⇧,⌃|⇧(s�1)
⇤ , Y ).

2. Draw ⇧(s)
⇤ from the posterior p(⇧⇤|⇧(s),⌃(s), Y ). ⇤

To simplify the subsequent exposition, we will focus on inference for ⇧⇤ = ↵�0

conditional on ⇧ and ⌃ for the remainder of this section (Step 2 of Algorithm 3.1).

To do so, we study the simplified model

�y
t

= ⇧⇤yt�1 + u
t

, ⇧⇤ = ↵�0, u
t

⇠ iidN(0,⌃), (43)

and treat ⌃ as known. As before, it is convenient to write the regression in matrix

form. Let �Y , X, and U denote the T ⇥ n matrices with rows �y0
t

, y0
t�1, and u0

t

,

respectively, such that �Y = X⇧0⇤ + U .

In this section, we consider independent priors p(↵) and p(�) that are either flat

or Gaussian. Geweke (1996) used such priors to study inference in the reduced-rank

regression model. Throughout this subsection we normalize �0 = [I
r⇥r

, B0
r⇥(n�r)]
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The prior distribution for � is induced by a prior distribution for B. This normal-

ization requires that the elements of y
t

be ordered such that each of these variables

appears in at least one cointegration relationship. We will discuss the consequences

of this normalization later on.

In the context of our output-investment illustration, one might find it attractive to

center the prior for the cointegration coe�cient B at �1, reflecting either presample

evidence on the stability of the investment-output ratio or the belief in an economic

theory that implies that industrialized economies evolve along a balanced-growth

path along which consumption and output grow at the same rate. We will encounter

a DSGE model with such a balanced-growth-path property in Section 4. For brevity,

we refer to this class of priors as balanced-growth-path priors. An informative prior

for ↵ could be constructed from beliefs about the speed at which the economy returns

to its balanced-growth path in the absence of shocks.

Conditional on an initial observation and the covariance matrix ⌃ (both subse-

quently omitted from our notation), the likelihood function is of the form

p(Y |↵, �) / |⌃|�T/2 exp
⇢
� 1

2
tr[⌃�1(�Y �X�↵0)0(�Y �X�↵0)]

�
. (44)

In turn, we will derive conditional posterior distributions for ↵ and � based on the

likelihood (44). We begin with the posterior of ↵. Define X̃ = X�. Then

p(↵|Y, �) / p(↵) exp
⇢
� 1

2
tr[⌃�1(↵X̃ 0X̃↵0 � 2↵X̃ 0�Y )]

�
. (45)

Thus, as long as the prior of vec(↵0) is Gaussian, the posterior of vec(↵0) is mul-

tivariate Normal. If the prior has the same Kronecker structure as the likelihood

function, then the posterior is matricvariate Normal.

The derivation of the conditional posterior of � is more tedious. Partition X =

[X1, X2] such that the partitions of X conform to the partitions of �0 = [I, B0] and

rewrite the reduced-rank regression as

�Y = X1↵
0 + X2B↵0 + U.

Now define Z = �Y �X1↵
0 and write

Z = X2B↵0 + U. (46)

The fact that B is right-multiplied by ↵0 complicates the analysis. The following

steps are designed to eliminate the ↵0 term. Post-multiplying (46) by the matrix
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C = [↵(↵0↵)�1,↵?] yields the seemingly unrelated regression

⇥
Z̃1, Z̃2

⇤
= X2

⇥
B, 0

⇤
+
⇥
Ũ1, Ũ2

⇤
, (47)

where

Z̃1 = Z↵(↵0↵)�1, Z̃2 = Z↵?, Ũ1 = U↵(↵0↵)�1, Ũ2 = U↵?.

Notice that we cannot simply drop the Z̃2 equations. Through Z̃2, we obtain

information about Ũ2 and hence indirectly information about Ũ1, which sharp-

ens the inference for B. Formally, let ⌃̃ = C 0⌃C and partition ⌃̃ conforming

with Ũ = [Ũ1, Ũ2]. The mean and variance of Z̃1 conditional on Z̃2 are given

by (⌃̃12⌃̃�1
22 Z̃2 + X2B) and ⌃̃1|2 = ⌃̃11 � ⌃̃12⌃̃�1

22 ⌃̃21, respectively. Define Z̃1|2 =

Z̃1 � ⌃̃12⌃̃�1
22 Z̃2. Then we can deduce

p(B|Y, ↵) / p(�(B)) exp
⇢
� 1

2
tr


⌃̃�1

1|2(Z̃1|2 �X2B)0(Z̃1|2 �X2B)
��

. (48)

Thus, if the prior distribution for B is either flat or Normal, then the conditional

posterior of B given ↵ is Normal.

Algorithm 3.2: Gibbs Sampler for Simple VECM with Gaussian Priors

For s = 1, . . . , n
sim

:

1. Draw ↵(s) from p(↵|�(s�1), Y ) given in (45).

2. Draw B(s) from p(B|↵(s), Y ) given in (48) and let �(s) = [I, B(s)0 ]0. ⇤

Illustration 3.1: We use the VECM in (41) with p = 4 and the associated moving-

average representation (42) to extract a common trend from the U.S. investment

and GDP data depicted in Figure 3. We use an improper prior of the form

p(⇧,⌃,↵, B) / |⌃|�(n+1)/2 exp
⇢
� 1

2�
(B � (�1))2

�
,

where � 2 {0.01, 0.1, 1}. The prior distribution for the cointegration vector � =

[1, B]0 is centered at the balanced-growth-path values [1,�1]0. Draws from the pos-

terior distribution are generated through a Gibbs sampler in which Step 2 of Algo-

rithm 3.1 is replaced by the two steps described in Algorithm 3.2. The posterior

density for B is plotted in Figure 4 for the three parameterizations of the prior vari-

ance �. The posterior is similar for all three choices of �, indicating that the data
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are quite informative about the cointegration relationship. For each prior, the pos-

terior mean of B is about �1.07, with most of the mass of the distributions placed

on values less than �1, indicating a slight violation of the balanced-growth-path

restriction. Using posterior draws based on � = 0.10, Figure 5 plots the decom-

positions of log nominal aggregate investment and log nominal GDP into common

trends and stationary fluctuations around those trends. The plots in the left column

of the Figure display the common trend �?(↵0?��?)�1↵0?
P

t

⌧=1(ut

+ ⇧
c

) for each

series, while the plots in the right column show the demeaned stationary compo-

nent  (L)u
t

. National Bureau of Economic Research (NBER) recession dates are

overlayed in gray. ⇤

Insert Figure 4 Here

Insert Figure 5 Here

3.3 Further Research on Bayesian Cointegration Models

The Bayesian analysis of cointegration systems has been an active area of research,

and a detailed survey is provided by Koop, Strachan, van Dijk, and Villani (2006).

Subsequently, we consider two strands of this literature. The first strand points

out that the columns of � in (41) should be interpreted as a characterization of

a subspace of Rn and that priors for � are priors over subspaces. The second

strand uses prior distributions to regularize or smooth the likelihood function of a

cointegration model in areas of the parameter space in which it is very nonelliptical.

We begin by reviewing the first strand. Strachan and Inder (2004) and Villani

(2005) emphasize that specifying a prior distribution for � amounts to placing a

prior probability on the set of r-dimensional subspaces of Rn (Grassmann manifold

G
r,n�r

), which we previously encountered in the context of structural VARs in Sec-

tion 2.4.1. Our discussion focuses on the output-investment example with n = 2 and

r = 1. In this case the Grassmann manifold consists of all the lines in R2 that pass

through the origin. Rather than normalizing one of the ordinates of the cointegra-

tion vector � to one, we can alternatively normalize its length to one and express it

in terms of polar coordinates. For reasons that will become apparent subsequently,

we let

�(') = [cos(�⇡/4 + ⇡('� 1/2)), sin(�⇡/4 + ⇡('� 1/2))]0, ' 2 (0, 1].
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The one-dimensional subspace associated with �(') is given by ��('), where � 2 R.

In our empirical illustration, we used a balanced-growth-path prior that was centered

at the cointegration vector [1,�1]0. This vector lies in the space spanned by �(1/2).

Thus, to generate prior distributions that are centered at the balanced-growth-path

restriction, we can choose a Beta distribution for ' and let ' ⇠ B(�, �). If � >> 1,

then the prior is fairly dogmatic.

As � approaches 1 from above it becomes more di↵use. In fact, if � = 1, then

' ⇠ U(0, 1], and it turns out that the subspaces associated with �(') are uniformly

distributed on the Grassmann manifold (see James (1954)). This uniform distribu-

tion is defined to be the unique distribution that is invariant under the group of

orthonormal transformations of Rn. For n = 2, this group is given by the set of

orthogonal matrices specified in (28), which rotate the subspace spanned by �(')

around the origin. Villani (2005) proposes to use the uniform distribution on the

Grassman manifold as a reference prior for the analysis of cointegration systems

and, for general n and r, derives the posterior distribution for ↵ and � using the

ordinal normalization �0 = [I, B0].

Strachan and Inder (2004) are very critical of the ordinal normalization, because

a flat and apparently noninformative prior on B in �0 = [I, B0] favors the cointe-

gration spaces near the region where the linear normalization is invalid, meaning

that some of the first r variables do not appear in any cointegration vector. Instead,

these authors propose to normalize � according to �0� = I and develop methods of

constructing informative and di↵use priors on the Grassmann manifold associated

with �.

We now turn to the literature on regularization. Kleibergen and van Dijk (1994)

and Kleibergen and Paap (2002) use prior distributions to correct irregularities

in the likelihood function of the VECM, caused by local nonidentifiability of ↵

and B under the ordinal normalization �0 = [I,B0]. As the loadings ↵ for the

cointegration relationships �0y
t�1 approach zero, B becomes nonidentifiable. If the

highly informative balanced-growth-path prior discussed previously were replaced

by a flat prior for B – that is p(B) / constant – to express di↵use prior beliefs

about cointegration relationships, then the conditional posterior of B given ↵ = 0

is improper, and its density integrates to infinity. Under this prior, the marginal

posterior density of ↵ can be written as

p(↵|Y ) / p(↵)
Z

p(Y |↵, B)dB.
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Since
R

p(Y |B,↵ = 0)dB determines the marginal density at ↵ = 0, the posterior

of ↵ tends to favor near-zero values for which the cointegration relationships are

poorly identified.

Kleibergen and Paap (2002) propose the following alternative. The starting point

is a singular-value decomposition of a (for now) unrestricted n⇥n matrix ⇧0⇤, which

takes the form:

⇧0⇤ = V DW 0 =

"
V11 V12

V21 V22

#"
D11 0

0 D22

#"
W 0

11 W 0
21

W 0
12 W 0

22

#
. (49)

V and W are orthogonal n ⇥ n matrices, and D is a diagonal n ⇥ n matrix. The

partitions V11, D11, and W11 are of dimension r⇥r, and all other partitions conform.

Regardless of the rank of ⇧0⇤, it can be verified that the matrix can be decomposed

as follows:

⇧0⇤ =

"
V11

V21

#
D11

h
W 0

11 W 0
21

i
+

"
V12

V22

#
D22

h
W 0

12 W 0
22

i

= �↵0 + �?⇤↵0?, (50)

where

� =

"
I

B

#
, B = V21V

�1
11 , and ↵0 = V11D11[W 0

11,W
0
21].

The matrix ⇤ is chosen to obtain a convenient functional form for the prior density

below:

⇤ = (V 0
22V22)�1/2V22D22W

0
22(W22W

0
22)

�1/2.

Finally, the matrices �0? and ↵0? take the form �0? = M 0
�

[V 0
12 V 0

22] and ↵0? =

M 0
↵

[W 0
12 W 0

22], respectively. Here M
↵

and M
�

are chosen such that the second

equality in (50) holds. For ⇤ = 0 the rank of the unrestricted ⇧0⇤ in (50) reduces to

r and we obtain the familiar expression ⇧0⇤ = �↵0.

The authors start from a flat prior on ⇧⇤: that is, p(⇧⇤) / constant, ignoring

the rank reduction generated by the r cointegration relationships. They proceed by

deriving a conditional distribution for ⇧⇤ given ⇤ = 0, and finally use a change of

variables to obtain a distribution for the parameters of interest, ↵ and B. Thus,

p(↵, B) / |J⇤=0(⇧⇤(↵, B,⇤))| / |�0�|(n�r)/2|↵↵0|(n�r)/2. (51)

Here, J⇤=0(⇧⇤(↵, B,⇤)) is the Jacobian associated with the mapping between ⇧⇤
and (↵, B,⇤). This prior has the property that as ↵ �! 0 its density vanishes and

counteracts the divergence of
R

p(Y |↵, B)dB. Details of the implementation of a

posterior simulator are provided in Kleibergen and Paap (2002).
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4 Dynamic Stochastic General Equilibrium Models

The term DSGE model is typically used to refer to a broad class of dynamic macroe-

conomic models that spans the standard neoclassical growth model discussed in

King, Plosser, and Rebelo (1988) as well as the monetary model with numerous real

and nominal frictions developed by Christiano, Eichenbaum, and Evans (2005). A

common feature of these models is that decision rules of economic agents are derived

from assumptions about preferences and technologies by solving intertemporal op-

timization problems. Moreover, agents potentially face uncertainty with respect to

total factor productivity, for instance, or the nominal interest rate set by a central

bank. This uncertainty is generated by exogenous stochastic processes that shift

technology, for example, or generate unanticipated deviations from a central bank’s

interest-rate feedback rule.

Conditional on distributional assumptions for the exogenous shocks, the DSGE

model generates a joint probability distribution for the endogenous model variables

such as output, consumption, investment, and inflation. In a Bayesian framework,

this likelihood function can be used to transform a prior distribution for the struc-

tural parameters of the DSGE model into a posterior distribution. This posterior

is the basis for substantive inference and decision making. DSGE models can be

used for numerous tasks, such as studying the sources of business-cycle fluctuations

and the propagation of shocks to the macroeconomy, generating predictive distribu-

tions for key macroeconomic variables, and analyzing the welfare e↵ects of economic

policies, taking both parameter and model uncertainty into account.

The remainder of this section is organized as follows. We present a prototypical

DSGE model in Section 4.1. The model solution and state-space representation

are discussed in Section 4.2. Bayesian inference on the parameters of a linearized

DSGE model is discussed in Section 4.3. Extensions to models with indeterminacies

or stochastic volatility, and to models solved with nonlinear techniques are discussed

in Sections 4.4, 4.5, and 4.6, respectively. Section 4.7 discusses numerous methods of

documenting the performance of DSGE models and comparing them to less restric-

tive models such as vector autoregressions. Finally, we provide a brief discussion

of some empirical applications in Section 4.8. A detailed survey of Bayesian tech-

niques for the estimation and evaluation of DSGE models is provided in An and

Schorfheide (2007a).
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Insert Figure 6 Here

4.1 A Prototypical DSGE Model

Figure 6 depicts postwar aggregate log output, hours worked, and log labor produc-

tivity for the US. Precise data definitions are provided in Ŕıos-Rull, Schorfheide,

Fuentes-Albero, Kryshko, and Santaeulalia-Llopis (2009). Both output and labor

productivity are plotted in terms of percentage deviations from a linear trend. The

simplest DSGE model that tries to capture the dynamics of these series is the neo-

classical stochastic growth model. According to this model, an important source

of the observed fluctuations in the three series is exogenous changes in total factor

productivity. We will illustrate the techniques discussed in this section with the

estimation of a stochastic growth model based on observations on aggregate output

and hours worked.

The model consists of a representative household and perfectly competitive firms.

The representative household maximizes the expected discounted lifetime utility

from consumption C
t

and hours worked H
t

:

IE
t

" 1X

s=0

�t+s

 
lnC

t+s

� (H
t+s

/B
t+s

)1+1/⌫

1 + 1/⌫

!#
(52)

subject to a sequence of budget constraints

C
t

+ I
t

W
t

H
t

+ R
t

K
t

.

The household receives the labor income W
t

H
t

, where W
t

is the hourly wage. It owns

the capital stock K
t

and rents it to the firms at the rate R
t

. Capital accumulates

according to

K
t+1 = (1� �)K

t

+ I
t

, (53)

where I
t

is investment and � is the depreciation rate. The household uses the

discount rate �, and B
t

is an exogenous preference shifter that can be interpreted

as a labor supply shock. If B
t

increases, then the disutility associated with hours

worked falls. Finally, ⌫ is the aggregate labor supply elasticity. The first-order

conditions associated with the household’s optimization problem are given by a

consumption Euler equation and a labor supply condition:

1
C

t

= �IE


1

C
t+1

(R
t+1 + (1� �))

�
and

1
C

t

W
t

=
1
B

t

✓
H

t

B
t

◆1/⌫

. (54)
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Firms rent capital, hire labor services, and produce final goods according to the

following Cobb-Douglas technology:

Y
t

= (A
t

H
t

)↵K1�↵

t

. (55)

The stochastic process A
t

represents the exogenous labor augmenting technological

progress. Firms solve a static profit maximization problem and choose labor and

capital to equate marginal products of labor and capital with the wage and rental

rate of capital, respectively:

W
t

= ↵
Y

t

H
t

, R
t

= (1� ↵)
Y

t

K
t

. (56)

An equilibrium is a sequence of prices and quantities such that (i) the representative

household maximizes utility and firms maximize profits taking the prices as given,

and (ii) markets clear, implying that

Y
t

= C
t

+ I
t

. (57)

To close the model, we specify a law of motion for the two exogenous processes.

Log technology evolves according to

lnA
t

= ln A0+(ln �)t+ln eA
t

, ln eA
t

= ⇢
a

ln eA
t�1+�

a

✏
a,t

, ✏
a,t

⇠ iidN(0, 1), (58)

where ⇢
a

2 [0, 1]. If 0  ⇢
a

< 1, the technology process is trend stationary. If

⇢
a

= 1, then lnA
t

is a random-walk process with drift. Exogenous labor supply

shifts are assumed to follow a stationary AR(1) process:

lnB
t

= (1� ⇢
b

) ln B⇤ + ⇢
b

lnB
t�1 + �

b

✏
b,t

, ✏
b,t

⇠ iidN(0, 1), (59)

and 0  ⇢
b

< 1. To initialize the exogenous processes, we assume

ln eA�⌧

= 0 and lnB�⌧

= 0.

The solution to the rational expectations di↵erence equations (53) to (59) determines

the law of motion for the endogenous variables Y
t

, C
t

, I
t

, K
t

, H
t

, W
t

, and R
t

.

The technology process lnA
t

induces a common trend in output, consumption,

investment, capital, and wages. Since we will subsequently solve the model by

constructing a local approximation of its dynamics near a steady state, it is useful

to detrend the model variables as follows:

eY
t

=
Y

t

A
t

, eC
t

=
C

t

A
t

, eI
t

=
I
t

A
t

, eK
t+1 =

K
t+1

A
t

, fW
t

=
W

t

A
t

. (60)
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The detrended variables are mean reverting. This bounds the probability of ex-

periencing large deviations from the log-linearization point for which the approxi-

mate solution becomes inaccurate. According to our timing convention, K
t+1 refers

to capital at the end of period t/beginning of t + 1, and is a function of shocks

dated t and earlier. Hence, we are detrending K
t+1 by A

t

. It is straightforward to

rewrite (53) to (57) in terms of the detrended variables:

1
eC

t

= �IE

"
1
eC

t+1

e�at+1(R
t+1 + (1� �))

#
,

1
eC

t

fW
t

=
1
B

t

✓
H

t

B
t

◆1/⌫

(61)

fW
t

= ↵
eY
t

H
t

, R
t

= (1� ↵)
eY
t

eK
t

eat

eY
t

= H↵

t

⇣
eK

t

e�at

⌘1�↵

, eY
t

= eC
t

+ eI
t

, eK
t+1 = (1� �) eK

t

e�at + eI
t

.

The process a
t

is defined as

a
t

= ln
A

t

A
t�1

= ln � + (⇢
a

� 1) ln eA
t�1 + �

a

✏
a,t

. (62)

This log ratio is always stationary, because if ⇢
a

= 1 the ln eA
t�1 term drops out.

Finally, we stack the parameters of the DSGE model in the vector ✓:

✓ = [↵, �, �, �, ⌫, lnA0, ⇢a

,�
a

, lnB⇤, ⇢
b

,�
b

]0. (63)

If we set the standard deviations of the innovations ✏
a,t

and ✏
b,t

to zero, the model

economy becomes deterministic and has a steady state in terms of the detrended

variables. This steady state is a function of ✓. For instance, the rental rate of

capital, the capital-output, and the investment-output ratios are given by

R⇤ =
�

�
� (1� �),

eK⇤
eY⇤

=
(1� ↵)�

R⇤
,

eI⇤
eY⇤

=
✓

1� 1� �

�

◆ eK⇤
eY⇤

. (64)

In a stochastic environment, the detrended variables follow a stationary law of mo-

tion, even if the underlying technology shock is nonstationary. Moreover, if ⇢
a

= 1,

the model generates a number of cointegration relationships, which according to (60)

are obtained by taking pairwise di↵erences of lnY
t

, lnC
t

, ln I
t

, lnK
t+1, and ln W

t

.

4.2 Model Solution and State-Space Form

The solution to the equilibrium conditions (59), (61), and (62) leads to a probability

distribution for the endogenous model variables, indexed by the vector of structural
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parameters ✓. This likelihood function can be used for Bayesian inference. Before

turning to the Bayesian analysis of DSGE models, a few remarks about the model

solution are in order. In most DSGE models, the intertemporal optimization prob-

lems of economic agents can be written recursively, using Bellman equations. In

general, the value and policy functions associated with the optimization problems

are nonlinear in terms of both the state and the control variables, and the solution

of the optimization problems requires numerical techniques. The solution of the

DSGE model can be written as

s
t

= �(s
t�1, ✏t

; ✓), (65)

where s
t

is a vector of suitably defined state variables and ✏
t

is a vector that stacks

the innovations for the structural shocks.

For now, we proceed under the assumption that the DSGE model’s equilibrium

law of motion is approximated by log-linearization techniques, ignoring the discrep-

ancy between the nonlinear model solution and the first-order approximation. We

adopt the convention that if a variable X
t

( eX
t

) has a steady state X⇤ ( eX⇤), then
bX

t

= ln X
t

� lnX⇤ ( bX
t

= ln eX
t

� ln eX⇤). The log-linearized equilibrium conditions

of the neoclassical growth model (61) are given by the following system of linear

expectational di↵erence equations:

bC
t

= IE
t


bC

t+1 + ba
t+1 �

R⇤
R⇤ + (1� �)

bR
t+1

�
(66)

bH
t

= ⌫cW
t

� ⌫ bC
t

+ (1 + ⌫) bB
t

, cW
t

= bY
t

� bH
t

,

bR
t

= bY
t

� bK
t

+ ba
t

, bK
t+1 =

1� �

�
bK

t

+
eI⇤
eK⇤

bI
t

� 1� �

�
ba

t

,

bY
t

= ↵ bH
t

+ (1� ↵) bK
t

� (1� ↵)ba
t

, bY
t

=
eC⇤
eY⇤
bC

t

+
eI⇤
eY⇤
bI
t

,

bA
t

= ⇢
a

bA
t�1 + �

a

✏
a,t

, ba
t

= bA
t

� bA
t�1, bB

t

= ⇢
b

bB
t�1 + �

b

✏
b,t

.

A multitude of techniques are available for solving linear rational expectations mod-

els (see, for instance, Sims (2002b)). Economists focus on solutions that guarantee

a nonexplosive law of motion for the endogenous variables that appear in (66), with

the loose justification that any explosive solution would violate the transversality

conditions associated with the underlying dynamic optimization problems. For the

neoclassical growth model, the solution takes the form

s
t

= �1(✓)st�1 + �
✏

(✓)✏
t

. (67)
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The system matrices �1 and �
✏

are functions of the DSGE model parameters ✓, and

s
t

is composed of three elements: the capital stock at the end of period t, bK
t+1, as

well as the two exogenous processes bA
t

and bB
t

. The other endogenous variables, bY
t

,
bC

t

, bI
t

, bH
t

, cW
t

, and bR
t

can be expressed as linear functions of s
t

.

Like all DSGE models, the linearized neoclassical growth model has some appar-

ent counterfactual implications. Since fluctuations are generated by two exogenous

disturbances, bA
t

and bB
t

, the likelihood function for more than two variables is de-

generate. The model predicts that certain linear combinations of variables, such as

the labor share clsh = bH
t

+cW
t

� bY
t

, are constant, which is clearly at odds with the

data. To cope with this problem authors have added either so-called measurement

errors, Sargent (1989), Altug (1989), and Ireland (2004), or additional shocks as

in Leeper and Sims (1995) and more recently Smets and Wouters (2003). In the

subsequent illustration, we restrict the dimension of the vector of observables y
t

to n = 2, so that it matches the number of exogenous shocks. Our measurement

equation takes the form

y
t

=  0(✓) + 1(✓)t + 2(✓)st

. (68)

Equations (67) and (68) provide a state-space representation for the linearized DSGE

model. If the innovations ✏
t

are Gaussian, then the likelihood function can be

obtained from the Kalman filter, which is described in detail in Giordani, Pitt, and

Kohn (This Volume).

In the subsequent empirical illustration, we let y
t

consist of log GDP and log hours

worked. In this case, Equation (68) becomes
"

lnGDP
t

lnH
t

#
=

"
lnY0

lnH⇤

#
+

"
ln �

0

#
t +

"
bY
t

+ bA
t

bH
t

#
,

where H⇤ is the steady state of hours worked and the variables bA
t

, bY
t

, and bH
t

are

linear functions of s
t

. Notice that even though the DSGE model was solved in terms

of the detrended model variable bY
t

, the trend generated by technology (ln �)t + bA
t

is added in the measurement equation. Thus, we are able to use nondetrended log

real GDP as an observable and to learn about the technology growth rate � and its

persistence ⇢
a

from the available information about the level of output.

Although we focus on the dynamics of output and hours in this section, it is

instructive to examine the measurement equations that the model yields for output
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and investment. Suppose we use the GDP deflator to convert the two series depicted

in Figure 3 from nominal into real terms. Then, we can write
"

lnGDP
t

ln I
t

#
=

"
lnY0

lnY0 + (ln eI⇤ � ln eY⇤)

#
+

"
ln �

ln �

#
t +

"
bA

t

+ bY
t

bA
t

+ bI
t

#
.

This representation highlights the common trend in output and investment gener-

ated by the technology process bA
t

. If ⇢
a

= 1 then the last line of (66) implies that
bA

t

follows a random-walk process and hence induces nonstationary dynamics. In

this case, the model implies the following cointegration relationship:

h
�1 1

i " lnGDP
t

ln I
t

#
= ln


(1� ↵)(� � 1 + �)

�/� � 1 + �

�
+ bI

t

� bY
t

.

Recall that both bY
t

and bI
t

are stationary, even if ⇢
a

= 1. We used this model

implication in Section 3.2 as justification of our informative prior for the cointegra-

tion vector. In contrast, the posterior estimates of the cointegration vector reported

in Illustration 3.1 suggest that the balanced-growth-path implication of the DSGE

model is overly restrictive. In practice, such a model deficiency may lead to poste-

rior distributions of the autoregressive coe�cients associated with shocks other than

technology that concentrate near unity.

4.3 Bayesian Inference

Although most of the literature on Bayesian estimation of DSGE models uses fairly

informative prior distributions, this should not be interpreted as “cooking up” de-

sired results based on almost dogmatic priors. To the contrary, the spirit behind

the prior elicitation is to use other sources of information that do not directly enter

the likelihood function. To the extent that this information is indeed precise, the

use of a tight prior distribution is desirable. If the information is vague, it should

translate into a more dispersed prior distribution. Most important, the choice of

prior should be properly documented.

For concreteness, suppose the neoclassical growth model is estimated based on

aggregate output and hours data over the period 1955 to 2006. There are three

important sources of information that are approximately independent of the data

that enter the likelihood function and therefore could be used for the elicitation

of prior distribution: (i) information from macroeconomic time series other than
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output and hours during the period 1955 to 2006; (ii) micro-level observations that

are, for instance, informative about labor-supply decisions; and (iii) macroeconomic

data, including observations on output and hours worked, prior to 1955. Consider

source (i). It is apparent from (64) that long-run averages of real interest rates,

capital-output ratios, and investment-output ratios are informative about ↵, �, and

�. Moreover, the parameter ↵ equals the labor share of income in our model. Since

none of these variables directly enters the likelihood function, it is sensible to incor-

porate this information through the prior distribution. The parameters ⇢
a

, ⇢
b

, �
a

,

and �
b

implicitly a↵ect the persistence and volatility of output and hours worked.

Hence, prior distributions for these parameters can be chosen such that the implied

dynamics of output and hours are broadly in line with presample evidence, that is,

information from source (iii). Del Negro and Schorfheide (2008) provide an approach

for automating this type of prior elicitation. Finally, microeconometric estimates

of labor supply elasticities – an example of source (ii) – could be used to specify a

prior for the Frisch elasticity ⌫, accounting for the fact that most of the variation

in hours worked at the aggregate level is due to the extensive margin, that is, to

individuals moving in and out of unemployment.

Because of the nonlinear relationship between the DSGE model parameters ✓

and the system matrices  0,  1,  2, �1 and �
✏

in (67) and (68), the marginal

and conditional distributions of the elements of ✓ do not fall into the well-known

families of probability distributions. Up to now, the most commonly used procedures

for generating draws from the posterior distribution of ✓ are the Random-Walk

Metropolis (RWM) Algorithm described in Schorfheide (2000) and Otrok (2001) or

the Importance Sampler proposed in DeJong, Ingram, and Whiteman (2000). The

basic RWM Algorithm takes the following form

Algorithm 4.1: Random-Walk Metropolis (RWM) Algorithm for DSGE

Model

1. Use a numerical optimization routine to maximize the log posterior, which up

to a constant is given by ln p(Y |✓) + ln p(✓). Denote the posterior mode by ✓̃.

2. Let ⌃̃ be the inverse of the (negative) Hessian computed at the posterior mode

✓̃, which can be computed numerically.

3. Draw ✓(0) from N(✓̃, c2
0⌃̃) or directly specify a starting value.
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4. For s = 1, . . . , n
sim

: draw # from the proposal distribution N(✓(s�1), c2⌃̃). The

jump from ✓(s�1) is accepted (✓(s) = #) with probability min {1, r(✓(s�1),#|Y )}
and rejected (✓(s) = ✓(s�1)) otherwise. Here,

r(✓(s�1),#|Y ) =
p(Y |#)p(#)

p(Y |✓(s�1))p(✓(s�1))
. ⇤

If the likelihood can be evaluated with a high degree of precision, then the maxi-

mization in Step 1 can be implemented with a gradient-based numerical optimization

routine. The optimization is often not straightforward as the posterior density is

typically not globally concave. Thus, it is advisable to start the optimization routine

from multiple starting values, which could be drawn from the prior distribution, and

then set ✓̃ to the value that attains the highest posterior density across optimization

runs.

The evaluation of the likelihood typically involves three steps: (i) the computation

of the steady state; (ii) the solution of the linear rational expectations system; and

(iii) the evaluation of the likelihood function of a linear state-space model with the

Kalman filter. While the computation of the steady states is trivial in our neoclas-

sical stochastic growth model, it might require the use of numerical equation solvers

for more complicated DSGE models. Any inaccuracy in the computation of the

steady states will translate into an inaccurate evaluation of the likelihood function

that makes use of gradient-based optimization methods impractical. Chib and Ra-

mamurthy (2010) recommend using a simulated annealing algorithm for Step 1. In

some applications we found it useful to skip Steps 1 to 3 by choosing a reasonable

starting value, such as the mean of the prior distribution, and replacing ⌃̃ in Step 4

with a matrix whose diagonal elements are equal to the prior variances of the DSGE

model parameters and whose o↵-diagonal elements are zero.

Based on practitioners’ experience, Algorithm 4.1 tends to work well if the poste-

rior density is unimodal. The scale factor c0 controls the expected distance between

the mode and the starting point of the Markov chain. The tuning parameter c is

typically chosen to obtain a rejection rate of about 50%. In this case, reasonable

perturbations of the starting points lead to chains that after 100,000 to 1,000,000

iterations provide very similar approximations of the objects of interest, for ex-

ample posterior means, medians, standard deviations, and credible sets. An and

Schorfheide (2007b) describe a hybrid MCMC algorithm with transition mixture to

deal with a bimodal posterior distribution. Most recently, Chib and Ramamurthy
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(2010) have developed a multiblock Metropolis-within-Gibbs algorithm that ran-

domly groups parameters in blocks and thereby dramatically reduces the persistence

of the resulting Markov chain and improves the e�ciency of the posterior sampler

compared to a single-block RWM algorithm. A detailed discussion can be found in

Chib (This Volume).

Illustration 4.1: The prior distribution for our empirical illustration is summarized

in the first five columns of Table 3. Based on National Income and Product Account

(NIPA) data, published by the Bureau of Economic Analysis, we choose the prior

means for ↵, �, and � to be consistent with a labor share of 0.66, an investment-

to-output ratio of about 25%, and an annual interest rate of 4%. These choices

yield values of ↵ = 0.66, � = 0.99, and � = 0.025 in quarterly terms. As is quite

common in the literature, we decided to use dogmatic priors for � and �. Fixing

these parameters is typically justified as follows. Conditional on the adoption of

a particular data definition, the relevant long-run averages computed from NIPA

data appear to deliver fairly precise measurements of steady-state relationships that

can be used to extract information about parameters such as � and �, resulting in

small prior variances. The use of a dogmatic prior can then be viewed as a (fairly

good) approximation of a low-variance prior. For illustrative purpose, we use such a

low-variance prior for ↵. We assume that ↵ has a Beta distribution with a standard

deviation of 0.02.

An important parameter for the behavior of the model is the labor supply elastic-

ity. As discussed in Ŕıos-Rull, Schorfheide, Fuentes-Albero, Kryshko, and Santaeulalia-

Llopis (2009), a priori plausible values vary considerably. Micro-level estimates

based on middle-age white males yield a value of 0.2, balanced-growth consider-

ations under slightly di↵erent household preferences suggest a value of 2.0, and

Rogerson (1988) model of hours’ variation along the extensive margin would lead to

⌫ =1. We use a Gamma distribution with parameters that imply a prior mean of

2 and a standard deviation of 1. Our prior for the technology shock parameters is

fairly di↵use with respect to the average growth rate; it implies that the total factor

productivity has a serial correlation between 0.91 and 0.99, and that the standard

deviation of the shocks is about 1% each quarter. Our prior implies that the pref-

erence shock is slightly less persistent than the technology shock. Finally, we define

lnY0 = lnY⇤ + lnA0 and use fairly agnostic priors on the location parameters lnY0

and lnH⇤.
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The distributions specified in the first columns of Table 3 are marginal distribu-

tions. A joint prior is typically obtained by taking the product of the marginals for

all elements of ✓, which is what we will do in the empirical illustration. Alterna-

tively, one could replace a subset of the structural parameters by, for instance, R⇤,

lsh⇤, eI⇤/ eK⇤, and eK⇤/eY⇤, and then regard beliefs about these various steady states as

independent. Del Negro and Schorfheide (2008) propose to multiply an initial prior

p̃(✓) constructed from marginal distributions for the individual elements of ✓ by a

function f(✓) that reflects beliefs about steady-state relationships and autocovari-

ances. This function is generated by interpreting long-run averages of variables that

do not appear in the model and presample autocovariances of y
t

as noisy measures

of steady states and population autocovariances. For example, let lsh⇤(✓) be the

model-implied labor share as a function of ✓ and clsh a sample average of postwar

U.S. labor shares. Then ln f(✓) could be defined as �(lsh⇤(✓) � clsh)2/(2�), where

� reflects the strength of the belief about the labor share. The overall prior then

takes the form p(✓) / p̃(✓)f(✓).

The prior distribution is updated based on quarterly data on aggregate output

and hours worked ranging from 1955 to 2006. Unlike in Figure 6, we do not remove

a deterministic trend from the output series. We apply the RWM Algorithm to

generate 100,000 draws from the posterior distribution of the parameters of the

stochastic growth model. The scale parameter in the proposal density is chosen

to be c = 0.5, which leads to a rejection rate of about 50%. Posterior means and

90% credible intervals, computed from the output of the posterior simulator, are

summarized in the last four columns of Table 3. We consider two versions of the

model. In the deterministic trend version, the autocorrelation parameter of the

technology shock is estimated subject to the restriction that it lie in the interval

[0, 1), whereas it is fixed at 1 in the stochastic trend version. Due to the fairly

tight prior, the distribution of ↵ is essentially not updated in view of the data. The

posterior means of the labor supply elasticity are 0.42 and 0.70, respectively, which

is in line with the range of estimates reported in Ŕıos-Rull, Schorfheide, Fuentes-

Albero, Kryshko, and Santaeulalia-Llopis (2009). These relatively small values of

⌫ imply that most of the fluctuations in hours worked are due to the labor supply

shock. The estimated shock autocorrelations are around 0.97, and the innovation

standard deviations of the shocks are 1.1% for the technology shock and 0.7% for

the preference shock. We used a logarithmic transformation of �, which can be

interpreted as the average quarterly growth rate of the economy and is estimated
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to be 0.3% to 0.4%. The estimates of lnH⇤ and lnY0 capture the level of the two

series. Once draws from the posterior distribution have been generated, they can

be converted into other objects of interest such as responses to structural shocks. ⇤

4.4 Extensions I: Indeterminacy

Linear rational expectations systems can have multiple stable solutions, and this is

referred to as indeterminacy. DSGE models that allow for indeterminate equilibrium

solutions have received a lot of attention in the literature, because this indeterminacy

might arise if a central bank does not react forcefully enough to counteract deviations

of inflation from its long-run target value. In an influential paper, Clarida, Gali, and

Gertler (2000) estimated interest rate feedback rules based on U.S. postwar data and

found that the policy rule estimated for pre-1979 data would lead to indeterminate

equilibrium dynamics in a DSGE model with nominal price rigidities. The presence

of indeterminacies raises a few complications for Bayesian inference, described in

detail in Lubik and Schorfheide (2004).

Consider the following simple example. Suppose that y
t

is scalar and satisfies the

expectational di↵erence equation

y
t

=
1
✓
IE

t

[y
t+1] + ✏

t

, ✏
t

⇠ iidN(0, 1), ✓ 2 (0, 2]. (69)

Here, ✓ should be interpreted as the structural parameter, which is scalar. It can be

verified that if, on the one hand, ✓ > 1, the unique stable equilibrium law of motion

of the endogenous variable y
t

is given by

y
t

= ✏
t

. (70)

If, on the other hand, ✓  1, one obtains a much larger class of solutions that can

be characterized by the ARMA(1,1) process

y
t

= ✓y
t�1 + (1 + M)✏

t

� ✓✏
t�1. (71)

Here, the scalar parameter M 2 R is used to characterize all stationary solutions

of (69). M is completely unrelated to the agents’ tastes and technologies character-

ized by ✓, but it does a↵ect the law of motion of y
t

if ✓  1. From a macroeconomist’s

perspective, M captures an indeterminacy: based on ✓ alone, the law of motion of

y
t

is not uniquely determined.
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From an econometrician’s perspective, one needs to introduce this auxiliary pa-

rameter M to construct the likelihood function. The likelihood function has the

following features. According to (70), the likelihood function is completely flat (does

not vary with ✓ and M) for ✓ > 1 because all parameters drop from the equilibrium

law of motion. If ✓  1 and M = 0 the likelihood function does not vary with ✓

because the roots of the autoregressive and the moving-average polynomial in the

ARMA(1,1) process (71) cancel. If ✓  1 and M 6= 0, then the likelihood function

exhibits curvature. In a Bayesian framework, this irregular shape of the likelihood

function does not pose any conceptual challenge. In principle, one can combine

proper priors for ✓ and M and obtain a posterior distribution. However, in more

realistic applications the implementation of posterior simulation procedures require

extra care. Lubik and Schorfheide (2004) divided the parameter space into ⇥
D

and

⇥
I

(for model (69) ⇥
D

= (1, 2] and ⇥
D

= [0, 1]) along the lines of the determinacy-

indeterminacy boundary, treated the subspaces as separate models, generated pos-

terior draws for each subspace separately, and used marginal likelihoods to obtain

posterior probabilities for ⇥
D

and ⇥
I

.

4.5 Extensions II: Stochastic Volatility

One of the most striking features of postwar U.S. GDP data is the reduction in the

volatility of output growth around 1984. This phenomenon has been termed the

Great Moderation and is also observable in many other industrialized countries. To

investigate the sources of this volatility reduction, Justiniano and Primiceri (2008)

allow the volatility of the structural shocks ✏
t

in (67) to vary stochastically over time.

The authors adopt a specification in which log standard deviations evolve according

to an autoregressive process. An alternative approach would be to capture the Great

Moderation with Markov-switching shock standard deviations (see Section 5).

In the context of the stochastic growth model, consider for instance the technology

shock ✏
a,t

. We previously assumed in (58) that ✏
a,t

⇠ N(0, 1). Alternatively, suppose

that

✏
a,t

⇠ N(0, v2
t

), ln v
t

= ⇢
v

ln v
t�1 + ⌘

t

, ⌘
t

⇠ iidN(0,!2). (72)

Justiniano and Primiceri (2008) solved the linear rational expectational system ob-

tained from the log-linearized equilibrium conditions of their DSGE model and then

augmented the linear solution by equations that characterize the stochastic volatil-

ity of the exogenous structural shocks. Their approach amounts to using (67) and
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assuming that the element ✏
a,t

in the shock vector ✏
t

evolves according to (72). The

following Gibbs sampler can be used to generate draws from the posterior distribu-

tion.

Algorithm 4.2: Metropolis-within-Gibbs Sampler for DSGE Model with

Stochastic Volatility

For s = 1, . . . , n
sim

:

1. Draw ✓(s) conditional on (✓|v(s�1)
1:T , Y ). Given the sequence v

(s�1)
1:T the likeli-

hood function of the state-space model can be evaluated with the Kalman

filter. Consequently, the RWM step described in Algorithm 4.1 can be used

to generate a draw ✓(s).

2. Draw ✏
(s)
a,1:T conditional on (✓(s), v

(s�1)
1:T , Y ) using the simulation smoother of

Carter and Kohn (1994), described in Giordani, Pitt, and Kohn (This Volume).

3. Draw (⇢(s)
v

,!(s)) conditional on (v(s�1)
1:T , Y ) from the Normal-Inverse Gamma

posterior obtained from the AR(1) law of motion for ln v
t

in (72).

4. Draw v
(s)
1:T conditional on (✏(s)

a,1:T , ⇢
(s)
v

,!(s), Y ). Notice that (72) can be inter-

preted as a nonlinear state-space model, where ✏
a,t

is the observable and v
t

is

the latent state. Smoothing algorithms that generate draws of the sequence

of stochastic volatilities have been developed by Jacquier, Polson, and Rossi

(1994) and Kim, Shephard, and Chib (1998) and are discussed in Jacquier and

Polson (This Volume) and Giordani, Pitt, and Kohn (This Volume). ⇤

The empirical model of Justiniano and Primiceri (2008) ignores any higher-order

dynamics generated from the nonlinearities of the DSGE model itself on grounds

of computational ease. As we will see in the next subsection, Bayesian inference is

more di�cult to implement for DSGE models solved with nonlinear techniques.

4.6 Extension III: General Nonlinear DSGE Models

DSGE models are inherently nonlinear, as can be seen from the equilibrium con-

ditions (61) associated with our stochastic growth model. Nonetheless, given the

magnitude of the business-cycle fluctuations of a country like the United States or

the Euro area, many researchers take the stand that the equilibrium dynamics are
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well approximated by a linear state-space system. However, this linear approxima-

tion becomes unreliable if economies are hit by large shocks, as is often the case for

emerging market economies, or if the goal of the analysis is to study asset-pricing im-

plications or consumer welfare. It can be easily shown that for any asset j, yielding

a gross return R
j,t

, the linearized consumption Euler equation takes the form

bC
t

= IE
t

h
bC

t+1 + ba
t+1 � bR

j,t+1

i
, (73)

implying that all assets yield the same expected return. Thus, log-linear approxima-

tions have the undesirable feature (for asset-pricing applications) that risk premiums

disappear.

The use of nonlinear model solution techniques complicates the implementation of

Bayesian estimation for two reasons. First, it is computationally more demanding to

obtain the nonlinear solution. The most common approach in the literature on esti-

mated DSGE models is to use second-order perturbation methods. A comparison of

solution methods for DSGE models can be found in Aruoba, Fernández-Villaverde,

and Rubio-Ramı́rez (2004). Second, the evaluation of the likelihood function be-

comes more costly because both the state transition equation and the measurement

equation of the state-space model are nonlinear. Thus, (67) and (68) are replaced

by (65) and

y
t

=  (s
t

; ✓). (74)

Fernández-Villaverde and Rubio-Ramı́rez (2007) and Fernández-Villaverde and Rubio-

Ramı́rez (2008) show how a particle filter can be used to evaluate the likelihood

function associated with a DSGE model. A detailed description of the particle filter

is provided in Giordani, Pitt, and Kohn (This Volume).

Bayesian analysis of nonlinear DSGE models is currently an active area of research

and faces a number of di�culties that have not yet been fully resolved. For the par-

ticle filter to work in the context of the stochastic growth model described above, the

researcher has to introduce measurement errors in (74). Suppose that {s(i)
t�1}N

i=1 is

a collection of particles whose empirical distribution approximates p(s
t�1|Y1:t�1, ✓).

Without errors in the measurement equation, a proposed particle s̃
(i)
t

has to satisfy

the following two equations:

y
t

=  (s̃(i)
t

; ✓) (75)

s̃
(i)
t

= �(s(i)
t�1, ✏

(i)
t

; ✓). (76)
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If s̃
(i)
t

is sampled from a continuous distribution, the probability that (75) is satisfied

is zero. Thus, in the absence of measurement errors, s̃
(i)
t

needs to be sampled from a

discrete distribution. One can plug (76) into (75), eliminating s̃
(i)
t

, and then find all

real solutions ✏̃ of ✏ for the equation y
t

=  (�(s(i)
t�1, ✏; ✓); ✓). Based on the ✏̃0s, one

can obtain the support points for the distribution of s̃
(i)
t

as �(s(i)
t�1, ✏̃; ✓). In practice,

this calculation is di�cult if not infeasible to implement, because the nonlinear

equation might have multiple solutions.

If errors ⌘
t

⇠ N(0,⌃
⌘

) are added to the measurement equation (74), which in

the context of our stochastic growth model amounts to a modification of the DSGE

model, then (75) turns into

y
t

=  (s̃(i)
t

; ✓) + ⌘
t

. (77)

This equation can be solved for any s̃
(i)
t

by setting ⌘
t

= y
t

� (s̃(i)
t

; ✓). An e�cient

implementation of the particle filter is one for which a large fraction of the N s̃
(i)
t

’s

are associated with values of ⌘
t

that are small relative to ⌃
⌘

. Some authors –

referring to earlier work by Sargent (1989), Altug (1989), or Ireland (2004) – make

measurement errors part of the specification of their empirical model. In this case, it

is important to realize that one needs to bound the magnitude of the measurement

error standard deviations from below to avoid a deterioration of the particle filter

performance as these standard deviations approach zero.

4.7 DSGE Model Evaluation

An important aspect of empirical work with DSGE models is the evaluation of fit.

We will distinguish three approaches. First, a researcher might be interested in

assessing whether the fit of a stochastic growth model improves if one allows for

convex investment adjustment costs. Posterior odds of a model with adjustment

costs versus a model without are useful for such an assessment. Second, one could

examine to what extent a DSGE model is able to capture salient features of the

data. For instance, in the context of the stochastic growth model we could examine

whether the model is able to capture the correlation between output and hours

worked that we observe in the data. This type of evaluation can be implemented

with predictive checks. Finally, a researcher might want to compare one or more

DSGE models to a more flexible reference model such as a VAR. We consider three

methods of doing so. Such comparisons can be used to examine whether a particular
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DSGE model captures certain important features of the data. Alternatively, they

can be used to rank di↵erent DSGE model specifications.

4.7.1 Posterior Odds

The Bayesian framework allows researchers to assign probabilities to various com-

peting models. These probabilities are updated through marginal likelihood ratios

according to
⇡

i,T

⇡
j,T

=
⇡

i,0

⇡
j,0
⇥ p(Y |M

i

)
p(Y |M

j

)
. (78)

Here, ⇡
i,0 (⇡

i,T

) is the prior (posterior) probability of model M
i

and

p(Y |M
i

) =
Z

p(Y |✓(i),Mi

)p(✓(i))d✓(i) (79)

is the marginal likelihood function. The key challenge in posterior odds compar-

isons is the computation of the marginal likelihood that involves a high-dimensional

integral. If posterior draws for the DSGE model parameters are generated with the

RWM algorithm, the methods proposed by Geweke (1999) and Chib and Jeliazkov

(2001) can be used to obtain numerical approximations of the marginal likelihood.

Posterior odds-based model comparisons are fairly popular in the DSGE model lit-

erature. For instance, Rabanal and Rubio-Ramı́rez (2005) use posterior odds to

assess the importance of price and wage stickiness in the context of a small-scale

New Keynesian DSGE model, and Smets and Wouters (2007) use odds to deter-

mine the importance of a variety of real and nominal frictions in a medium-scale

New Keynesian DSGE model. Section 7 provides a more detailed discussion of

model selection and model averaging based on posterior probabilities.

Illustration 4.2: We previously estimated two versions of the neoclassical stochas-

tic growth model: a version with a trend-stationary technology process and a version

with a di↵erence-stationary exogenous productivity process. The log-marginal data

densities ln p(Y |M
i

) are 1392.8 and 1395.2, respectively. If the prior probabilities

for the two specifications are identical, these marginal data densities imply that the

posterior probability of the di↵erence-stationary specification is approximately 90%.

⇤

4.7.2 Predictive Checks

A general discussion of the role of predictive checks in Bayesian analysis can be

found in Lancaster (2004), Geweke (2005), and Geweke (2007). Predictive checks
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can be implemented based on either the prior or the posterior distribution of the

DSGE model parameters ✓. Let Y ⇤
1:T be a hypothetical sample of length T . The

predictive distribution for Y ⇤
1:T based on the time t information set F

t

is

p(Y ⇤
1:T |Ft

) =
Z

p(Y ⇤
1:T |✓)p(✓|F

t

)d✓. (80)

We can then use F0 to denote the prior information and F
T

to denote the posterior

information set that includes the sample Y1:T . Draws from the predictive distribu-

tion can be obtained in two steps. First, generate a parameter draw ✓̃ from p(✓|F
t

).

Second, simulate a trajectory of observations Y ⇤
1:T from the DSGE model conditional

on ✓̃. The simulated trajectories can be converted into sample statistics of interest,

S(Y ⇤
1:T ), such as the sample correlation between output and hours worked, to obtain

an approximation for predictive distributions of sample moments. Finally, one can

compute the value of the statistic S(Y1:T ) based on the actual data and assess how

far it lies in the tails of its predictive distribution. If S(Y1:T ) is located far in the

tails, one concludes that the model has di�culties explaining the observed patterns

in the data.

The goal of prior predictive checks is to determine whether the model is able

to capture salient features of the data. Because the prior predictive distribution

conveys the implications of models without having to develop methods for formal

posterior inference, prior predictive checks can be very useful at an early stage of

model development. Canova (1994) was the first author to use prior predictive checks

to assess implications of a stochastic growth model driven solely by a technology

shock. Prior predictive distributions are closely related to marginal likelihoods. A

comparison of (79) and (80) for t = 0 indicates that the two expressions are identical.

In its implementation, the prior predictive check replaces Y ⇤
1:T in (80) with Y1:T and

tries to measure whether the density that the Bayesian model assigns a priori to the

observed data is high or low. One can make the procedure more easily interpretable

by replacing the high-dimensional data matrix Y with a low-dimensional statistic

S(Y ).

In posterior predictive checks, the distribution of the parameters, p(✓|F
T

), is

conditioned on the observed data Y1:T . In its core, the posterior predictive check

works like a frequentist specification test. If S(Y1:T ) falls into the tails (or low-

density region) of the predictive distribution derived from the estimated model,

then the model is discredited. Chang, Doh, and Schorfheide (2007) use posterior

predictive checks to determine whether a stochastic growth model, similar to the
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one analyzed in this section, is able to capture the observed persistence of hours

worked.

4.7.3 VARs as Reference Models

Vector autoregressions play an important role in the assessment of DSGE mod-

els, since they provide a more richly parameterized benchmark. We consider three

approaches to using VARs for the assessment of DSGE models.

Models of Moments: Geweke (2010) points out that many DSGE models are too

stylized to deliver a realistic distribution for the data Y that is usable for likelihood-

based inference. Instead, these models are designed to capture certain underlying

population moments, such as the volatilities of output growth, hours worked, and

the correlation between these two variables. Suppose we collect these population

moments in the vector ', which in turn is a function of the DSGE model parameters

✓. Thus, a prior distribution for ✓ induces a model-specific distribution for the

population characteristics, denoted by p('|M
i

). At the same time, the researcher

considers a VAR as reference model M0 that is meant to describe the data and at

the same time delivers predictions about '. Let p('|Y,M0) denote the posterior

distribution of population characteristics as obtained from the VAR. Geweke (2010)

shows that
⇡1,0

R
p('|M1)p('|Y,M0)d'

⇡2,0
R

p('|M2)p('|Y,M0)d'
(81)

can be interpreted as odds ratio of M1 versus M2 conditional on the reference

model M0. The numerator in (81) is large, if there is a strong overlap between

the predictive densities for ' between DSGE model M1 and VAR M0. The ratio

formalizes the confidence interval overlap criterion proposed by DeJong, Ingram,

and Whiteman (1996) and has been used, for instance, to examine asset-pricing

implications of DSGE models. In practice, the densities p('|M
i

) and p('|Y,M0)

can be approximated by Kernel density estimates based on draws of '. Draws of '

can be obtained by transforming draws of the DSGE model and VAR parameters,

respectively.

Loss-Function-Based Evaluation: Schorfheide (2000) proposes a Bayesian frame-

work for a loss function-based evaluation of DSGE models. As in Geweke (2010)’s

framework, the researcher is interested in the relative ability of two DSGE models to

capture a certain set of population moments ', which are transformations of model
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parameters ✓. Unlike in Geweke (2010), the DSGE models are assumed to deliver

a probability distribution for the data Y . Suppose there are two DSGE models,

M1 and M2, and a VAR that serves as a reference model M0. The first step of

the analysis consists of computing model-specific posterior predictive distributions

p('|Y,M
i

) and posterior model probabilities ⇡
i,T

, i = 0, 1, 2. Second, one can form

a predictive density for ' by averaging across the three models

p('|Y ) =
X

i=0,1,2

⇡
i,T

p('|Y,M
i

). (82)

If, say, DSGE model M1 is well specified and attains a high posterior probability,

then the predictive distribution is dominated by M1. If, however, none of the DSGE

models fits well, then the predictive density is dominated by the VAR. Third, one

specifies a loss function L('̂, '), for example L('̂, ') = k'̂ � 'k2, under which a

point prediction '̂ of ' is to be evaluated. For each DSGE model, the prediction

'̂(i) is computed by minimizing the expected loss under the DSGE model-specific

posterior:

'̂(i) = argmin
'̃

Z
L('̃, ')p('|Y,M

i

)d', i = 1, 2.

Finally one can compare DSGE models M1 and M2 based on the posterior expected

loss
R

L('̂(i),')p('|Y )d', computed under the overall posterior distribution (82)

that averages the predictions of the reference model and all DSGE models. In this

procedure, if the DSGE models are poorly specified, the evaluation is loss-function

dependent, whereas the model ranking becomes e↵ectively loss-function independent

if one of the DSGE models has a posterior probability that is close to one.

DSGE-VARs: Building on work by Ingram and Whiteman (1994), Del Negro

and Schorfheide (2004) link DSGE models and VARs by constructing families of

prior distributions that are more or less tightly concentrated in the vicinity of the

restrictions that a DSGE model implies for the coe�cients of a VAR. We will refer to

such a model as DSGE-VAR. The starting point is the VAR specified in Equation (1).

Assuming that the data have been transformed such that y
t

is stationary, let IED

✓

[·]
be the expectation under the DSGE model conditional on parameterization ✓ and

define the autocovariance matrices

�
XX

(✓) = IED

✓

[x
t

x0
t

], �
XY

(✓) = IED

✓

[x
t

y0
t

].

A VAR approximation of the DSGE model can be obtained from the following re-

striction functions that relate the DSGE model parameters to the VAR parameters:

�⇤(✓) = ��1
XX

(✓)�
XY

(✓), ⌃⇤(✓) = �
Y Y

(✓)� �
Y X

(✓)��1
XX

(✓)�
XY

(✓). (83)
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To account for potential misspecification of the DSGE model, we now use a prior

distribution that, while centered at �⇤(✓) and ⌃⇤(✓), allows for deviations of � and

⌃ from the restriction functions:

�,⌃|✓ ⇠MNIW

✓
�⇤(✓), [�T�

XX

(✓)]�1,�T⌃⇤(✓),�T � k

◆
. (84)

This prior distribution can be interpreted as a posterior calculated from a sample of

T ⇤ = �T artificial observations generated from the DSGE model with parameters

✓. Here, � is a hyperparameter, and T denotes the actual sample size.

The next step is to turn the reduced-form VAR into a structural VAR. According

to the DSGE model, the one-step-ahead forecast errors u
t

are functions of the struc-

tural shocks ✏
t

, that is u
t

= ⌃
tr

⌦✏
t

, see (21). Let A0(✓) be the contemporaneous

impact of ✏
t

on y
t

according to the DSGE model. With a QR factorization, the

initial response of y
t

to the structural shocks can be uniquely decomposed into
✓

@y
t

@✏0
t

◆

DSGE

= A0(✓) = ⌃⇤
tr

(✓)⌦⇤(✓), (85)

where ⌃⇤
tr

(✓) is lower-triangular and ⌦⇤(✓) is an orthogonal matrix. The initial

impact of ✏
t

on y
t

in the VAR, in contrast, is given by
✓

@y
t

@✏0
t

◆

V AR

= ⌃
tr

⌦. (86)

To identify the DSGE-VAR, we maintain the triangularization of its covariance ma-

trix ⌃ and replace the rotation ⌦ in (86) with the function ⌦⇤(✓) that appears

in (85). The rotation matrix is chosen such that, in absence of misspecification,

the DSGE’s and the DSGE-VAR’s impulse responses to all shocks approximately

coincide. To the extent that misspecification is mainly in the dynamics, as opposed

to the covariance matrix of innovations, the identification procedure can be inter-

preted as matching, at least qualitatively, the posterior short-run responses of the

VAR with those from the DSGE model.

The final step is to specify a prior distribution for the DSGE model parameters

✓, which can follow the same elicitation procedure that was used when the DSGE

model was estimated directly. Thus, we obtain the hierarchical model

p
�

(Y,�,⌃, ✓) = p(Y |�,⌃)p
�

(�,⌃|✓)p(⌦|✓)p(✓), (87)

with the understanding that the distribution of ⌦|✓ is a point mass at ⌦⇤(✓). Since

� and ⌃ can be conveniently integrated out, we can first draw from the marginal
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posterior of ✓ and then from the conditional distribution of (�,⌃) given ✓. This

leads to the following algorithm.

Algorithm 4.3: Posterior Draws for DSGE-VAR

1. Use Algorithm 4.1 to generate a sequence of draws ✓(s), s = 1, . . . , n
sim

, from

the posterior distribution of ✓, given by p
�

(✓|Y ) / p
�

(Y |✓)p(✓). The marginal

likelihood p
�

(Y |✓) is obtained by straightforward modification of (15). More-

over, compute ⌦(s) = ⌦⇤(✓(s)).

2. For s = 1, . . . , n
sim

: draw a pair (�(s),⌃(s)) from its conditional MNIW pos-

terior distribution given ✓(s). The MNIW distribution can be obtained by the

modification of (8) described in Section 2.2. ⇤

Since the empirical performance of the DSGE-VAR procedure crucially depends

on the weight placed on the DSGE model restrictions, it is useful to consider a data-

driven procedure to select �. As in the context of the Minnesota prior, a natural

criterion for the choice of � is the marginal data density

p
�

(Y ) =
Z

p
�

(Y |✓)p(✓)d✓. (88)

For computational reasons, it is convenient to restrict the hyperparameter to a finite

grid ⇤. If one assigns equal prior probability to each grid point, then the normalized

p
�

(Y )’s can be interpreted as posterior probabilities for �. Del Negro, Schorfheide,

Smets, and Wouters (2007) emphasize that the posterior of � provides a measure of

fit for the DSGE model: high posterior probabilities for large values of � indicate

that the model is well specified and that a lot of weight should be placed on its

implied restrictions. Define

�̂ = argmax
�2⇤ p

�

(Y ). (89)

If p
�

(Y ) peaks at an intermediate value of �, say, between 0.5 and 2, then a com-

parison between DSGE-VAR(�̂) and DSGE model impulse responses can potentially

yield important insights about the misspecification of the DSGE model. The DSGE-

VAR approach was designed to improve forecasting and monetary policy analysis

with VARs. The framework has also been used as a tool for model evaluation and

comparison in Del Negro, Schorfheide, Smets, and Wouters (2007) and for policy

analysis with potentially misspecified DSGE models in Del Negro and Schorfheide

(2009).
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4.8 DSGE Models in Applied Work

Much of the empirical analysis with DSGE models is conducted with Bayesian meth-

ods. Since the literature is fairly extensive and rapidly growing, we do not attempt

to provide a survey of the empirical work. Instead, we will highlight a few important

contributions and discuss how Bayesian analysis has contributed to the prolifera-

tion of estimated DSGE models. The first published papers that conduct Bayesian

inference in DSGE models are DeJong, Ingram, and Whiteman (2000), Schorfheide

(2000), and Otrok (2001). Smets and Wouters (2003) document that a DSGE model

that is built around the neoclassical growth model presented previously and enriched

by habit formation in consumption, capital adjustment costs, variable factor utiliza-

tion, nominal price and wage stickiness, behavioral rules for government spending

and monetary policy, and numerous exogenous shocks could deliver a time-series

fit and forecasting performance for a vector of key macroeconomic variables that is

comparable to a VAR. Even though posterior odds comparison, literally taken, often

favor VARs, the theoretical coherence and the ease with which model implications

can be interpreted make DSGE models an attractive competitor.

One reason for the rapid adoption of Bayesian methods is the ability to incorporate

nonsample information, meaning data that do not enter the likelihood function,

through the use of prior distributions. Many of the priors used by Smets and Wouters

(2003) as well as in subsequent work are fairly informative, and over the past five

years the literature has become more careful about systematically documenting the

specification of prior distributions in view of the available nonsample information.

From a purely computational perspective, this kind of prior information often tends

to smooth out the shape of the posterior density, which improves the performance

of posterior simulators. Once parameter draws have been obtained, they can be

easily converted into objects of interest. For instance, Justiniano, Primiceri, and

Tambalotti (2009) study the relative importance of investment-specific technology

shocks and thereby provide posterior distributions of the fraction of the business-

cycle variation of key macroeconomic variables explained by these shocks.

A large part of the literature tries to assess the importance of various propaga-

tion mechanisms that are useful for explaining observed business-cycle fluctuations.

Bayesian posterior model probabilities are widely employed to compare competing

model specifications. For instance, Rabanal and Rubio-Ramı́rez (2005) compare the

relative importance of wage and price rigidities. Unlike standard frequentist likeli-
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hood ratio tests, posterior odds remain applicable, even if the model specifications

under consideration are nonnested, for example, a DSGE model with sticky wages

versus a DSGE model with sticky prices.

DSGE models with nominal rigidities are widely used to analyze monetary pol-

icy. This analysis might consist of determining the range of policy rule coe�cients

that guarantees a unique stable rational expectations solution and suppresses self-

fulfilling expectations, of choosing interest-rate feedback rule parameters that max-

imize the welfare of a representative agent or minimizes a convex combination of

inflation and output-gap volatility, or in finding a welfare-maximizing mapping be-

tween the underlying state variables of the economy and the policy instruments.

The solution of these optimal policy problems always depends on the unknown

taste and technology parameters. The Bayesian framework enables researchers and

policy makers to take this parameter uncertainty into account by maximizing pos-

terior expected welfare. A good example of this line of work is the paper by Levin,

Onatski, Williams, and Williams (2006). Several central banks have adopted DSGE

models as tools for macroeconomic forecasting, for example, Adolfson, Lindé, and

Villani (2007) and Edge, Kiley, and Laforte (2009). An important advantage of the

Bayesian methods described in this section is that they deliver predictive distribu-

tions for the future path of macroeconomic variables that reflect both parameter

uncertainty and uncertainty about the realization of future exogenous shocks.

5 Time-Varying Parameters Models

The parameters of the models presented in the preceding sections were assumed to

be time-invariant, implying that economic relationships are stable. In Figure 7, we

plot quarterly U.S. GDP-deflator inflation from 1960 to 2006. Suppose one adopts

the view that the inflation rate can be decomposed into a target inflation, set by the

central bank, and some stochastic fluctuations around this target. The figure o↵ers

three views of U.S. monetary history. First, it is conceivable that the target rate

was essentially constant between 1960 and 2006, but there were times, for instance,

the 1970s, when the central bank let the actual inflation deviate substantially from

the target. An alternative interpretation is that throughout the 1970s the Fed tried

to exploit an apparent trade-o↵ between unemployment and inflation and gradually

revised its target upward. In the early 1980s, however, it realized that the long-run
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Phillips curve is essentially vertical and that the high inflation had led to a significant

distortion of the economy. Under the chairmanship of Paul Volcker, the Fed decided

to disinflate, that is, to reduce the target inflation rate. This time-variation in the

target rate could be captured either by a slowly-varying autoregressive process or

through a regime-switching process that shifts from a 2.5% target to a 7% target

and back.

This section considers models that can capture structural changes in the economy.

Model parameters either vary gradually over time according to a multivariate au-

toregressive process (section 5.1), or they change abruptly as in Markov-switching

or structural-break models (section 5.2). The models discussed subsequently can

be written in state-space form, and much of the technical apparatus needed for

Bayesian inference can be found in Giordani, Pitt, and Kohn (This Volume). We

focus on placing the TVP models in the context of the empirical macroeconomics

literature and discuss specific applications in Section 5.3. There are other important

classes of nonlinear time-series models such as threshold vector autoregressive mod-

els, Geweke and Terui (1993) and Koop and Potter (1999), for instance, in which

the parameter change is linked directly to observables rather than to latent state

variables. Due to space constraints, we are unable to discuss these models in this

chapter.

5.1 Models with Autoregressive Coe�cients

Most of the subsequent discussion is devoted to VARs with parameters that follow

an autoregressive law of motion (section 5.1.1). Whenever time-varying parameters

are introduced into a DSGE model, an additional complication arises. For the

model to be theoretically coherent, one should assume that the agents in the model

are aware of the time-variation, say, in the coe�cients of a monetary policy rule,

and form their expectations and decision rules accordingly. Hence, the presence of

time-varying parameters significantly complicates the solution of the DSGE model’s

equilibrium law of motion and requires the estimation of a nonlinear state-space

model (section 5.1.2).

5.1.1 Vector Autoregressions

While VARs with time-varying coe�cients were estimated with Bayesian methods

almost two decades ago, see, for instance, Sims (1993), their current popularity in
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empirical macroeconomics is largely due to Cogley and Sargent (2002), who took

advantage of the MCMC innovations in the 1990s. They estimated a VAR in which

the coe�cients follow unit-root autoregressive processes. The motivation for their

work, as well as for the competing Markov-switching approach of Sims and Zha

(2006) discussed in Section 5.2, arises from the interest in documenting time-varying

features of business cycles in the United States and other countries.

Cogley and Sargent (2002) set out to investigate time-variation in US inflation

persistence using a three-variable VAR with inflation, unemployment, and interest

rates. The rationale for their reduced-form specification is provided by models in

which the policy maker and/or agents in the private sector gradually learn about

the dynamics of the economy and consequently adapt their behavior (see Sargent

(1999)). The central bank might adjust its target inflation rate in view of changing

beliefs about the e↵ectiveness of monetary policy, and the agents might slowly learn

about the policy change. To the extent that this adjustment occurs gradually in

every period, it can be captured by models in which the coe�cients are allowed

to vary in each period. Cogley and Sargent (2002)’s work was criticized by Sims

(2002a), who pointed out that the lack of time-varying volatility in their VAR may

well bias the results in favor of finding changes in the dynamics. Cogley and Sargent

(2005b) address this criticism of their earlier work by adding time-varying volatility

to their model. Our subsequent exposition of a TVP VAR allows for drifts in both

the conditional mean and the variance parameters.

Consider the reduced-form VAR in Equation (1), which we are reproducing here

for convenience:

y
t

= �1yt�1 + . . . + �
p

y
t�p

+ �
c

+ u
t

.

We defined x
t

= [y0
t�1, . . . , y

0
t�p

, 1]0 and � = [�1, . . . ,�p

,�
c

]0. Now let X
t

= I
n

⌦ x
t

and � = vec(�). Then we can write the VAR as

y
t

= X 0
t

�
t

+ u
t

, (90)

where we replaced the vector of constant coe�cients, � with a vector of time-varying

coe�cients, �
t

. We let the parameters evolve according to the random-walk process:

�
t

= �
t�1 + ⌫

t

, ⌫
t

⇠ iidN(0, Q). (91)

We restrict the covariance matrix Q to be diagonal and the parameter innovations

⌫
t

to be uncorrelated with the VAR innovations u
t

. The u
t

innovations are also
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normally distributed, but unlike in Section 2, their variance now evolves over time:

u
t

⇠ N(0,⌃
t

), ⌃
t

= B�1H
t

(B�1)0. (92)

In the decomposition of ⌃
t

, the matrix B is a lower-triangular matrix with ones on

the diagonal, and H
t

is a diagonal matrix with elements h2
i,t

following a geometric

random walk:

lnh
i,t

= ln h
i,t�1 + ⌘

i,t

, ⌘
i,t

⇠ iidN(0,�2
i

). (93)

Notice that this form of stochastic volatility was also used in Section 4.5 to make

the innovation variances for shocks in DSGE models time varying.

The prior distributions for Q and the �
i

’s can be used to express beliefs about the

magnitude of the period-to-period drift in the VAR coe�cients and the changes in

the volatility of the VAR innovations. In practice these priors are chosen to ensure

that the shocks to (91) and (93) are small enough that the short- and medium-run

dynamics of y
t

are not swamped by the random-walk behavior of �
t

and H
t

. If the

prior distributions for �0, Q, B, and the �
i

’s are conjugate, then one can use the

following Gibbs sampler for posterior inference.

Algorithm 5.1: Gibbs Sampler for TVP VAR

For s = 1, . . . , n
sim

:

1. Draw �
(s)
1:T conditional on (B(s�1),H

(s�1)
1:T , Q(s�1),�

(s�1)
1 . . .�

(s�1)
n

, Y ). (90)

and (91) provide a state-space representation for y
t

. Thus, �1:T can be sam-

pled using the algorithm developed by Carter and Kohn (1994), described in

Giordani, Pitt, and Kohn (This Volume).

2. Draw B(s) conditional on (�(s)
1:T ,H

(s�1)
1:T , Q(s�1),�

(s�1)
1 . . .�

(s�1)
n

, Y ). Condi-

tional on the VAR parameters �
t

, the innovations to equation (90) are known.

According to (92), Bu
t

is normally distributed with variance H
t

:

Bu
t

= H
1
2
t

✏
t

, (94)

where ✏
t

is a vector of standard normals. Thus, the problem of sampling

from the posterior distribution of B under a conjugate prior is identical to the

problem of sampling from the posterior distribution of A0 in the structural

VAR specification (30) described in detail in Section 2.4.2.
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3. Draw H
(s)
1:T conditional on (�(s)

1:T , B(s), Q(s�1),�
(s�1)
1 . . .�

(s�1)
n

, Y ). Conditional

on �
t

and B, we can write the i’th equation of (94) as z
i,t

= B(i.)ut

⇠ N(0, h2
i,t

),

which is identical to (72). Thus, as in Section 4.5, one can use the algorithms

of Jacquier, Polson, and Rossi (1994) or Kim, Shephard, and Chib (1998) to

draw the sequences h
i,t:T .

4. Draw Q(s) conditional on (�(s)
1:T , B(s),H

(s)
1:T ,�

(s�1)
1 . . .�

(s�1)
n

, Y ) from the appro-

priate Inverted Wishart distribution derived from (91).

5. Draw �
(s)
1 . . .�s

n

conditional on (�(s)
1:T , B(s),H

(s)
1:T , Q(s), Y ) from the appropriate

Inverted Gamma distributions derived from (93). ⇤

For the initial vector of VAR coe�cients, �0, Cogley and Sargent (2002) and

Cogley and Sargent (2005b) use a prior of the form �0 ⇠ N(�
0
, V 0), where �

0
and V 0

are obtained by estimating a fixed-coe�cient VAR with a flat prior on a presample.

Del Negro (2003) advocates the use of a shrinkage prior with tighter variance than

Cogley and Sargent’s to partly overcome the problem of overfitting. Imposing the

restriction that for each t all roots of the characteristic polynomial associated with

the VAR coe�cients �
t

lie outside the unit circle introduces a complication that

we do not explore here. Koop and Potter (2008) discuss how to impose such a

restriction e�ciently.

Primiceri (2005) extends the above TVP VAR by also allowing the nonzero o↵-

diagonal elements of the contemporaneous covariance matrix B to evolve as random-

walk processes. If one is willing to assume that the lower-triangular B
t

’s identify

structural shocks, then this model generalizes the constant-coe�cient structural

SVAR discussed in Section 2.4 with ⌦ = I to a TVP environment. Primiceri (2005)

uses a structural TVP VAR for interest rates, inflation, and unemployment to esti-

mate a time-varying monetary policy rule for the postwar United States. Del Negro

(2003) suggests an alternative approach where time-variation is directly imposed

on the parameters of the structural model – that is, the parameters of the VAR

in equation (30). Finally, no cointegration restrictions are imposed on the VAR

specified in (90). A Bayesian analysis of a TVP cointegration model can be found

in Koop, Leon-Gonzalez, and Strachan (2008).
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5.1.2 DSGE Models with Drifting Parameters

Recall the stochastic growth model introduced in Section 4.1. Suppose that one

changes the objective function of the household to

IE
t

" 1X

s=0

�t+s

 
lnC

t+s

� (H
t+s

/B)1+1/⌫

1 + 1/⌫

!#
. (95)

We can interpret our original objective function (52) as a generalization of (95),

in which we have replaced the constant parameter B,which a↵ects the disutility

associated with working, by a time-varying parameter B
t

. But in our discussion of

the DSGE model in Section 4.1, we never mentioned time-varying parameters; we

simply referred to B
t

as a labor supply or preference shock. Thus, a time-varying

parameter is essentially just another shock.

If the DSGE model is log-linearized, as in (66), then all structural shocks (or time-

varying coe�cients) appear additively in the equilibrium conditions. For instance,

the preference shock appears in the labor supply function

bH
t

= ⌫cW
t

� ⌫ bC
t

+ (1 + ⌫) bB
t

. (96)

Now imagine replacing the constant Frisch elasticity ⌫ in (52) and (95) by a time-

varying process ⌫
t

. In a log-linear approximation of the equilibrium conditions,

the time-varying elasticity will appear as an additional additive shock in (96) and

therefore be indistinguishable in its dynamic e↵ects from B
t

; provided that the

steady-state ratio H⇤/B⇤ 6= 1. If H⇤/B⇤ = 1, then ⌫
t

has no e↵ects on the first-order

dynamics. Thus, for additional shocks or time-varying parameters to be identifiable,

it is important that the log-linear approximation be replaced by a nonlinear solution

technique. Fernández-Villaverde and Rubio-Ramı́rez (2008) take a version of the

constant-coe�cient DSGE model estimated by Smets and Wouters (2003) and allow

for time variation in the coe�cients that determine the interest-rate policy of the

central bank and the degree of price and wage stickiness in the economy. To capture

the di↵erent e↵ects of a typical monetary policy shock and a shock that changes

the central bank’s reaction to deviations from the inflation target, for instance, the

authors use a second-order perturbation method to solve the model and the particle

filter to approximate its likelihood function. Thus, the topic of DSGE models with

time-varying autoregressive parameters has essentially been covered in Section 4.6.
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5.2 Models with Markov-Switching Parameters

Markov-switching (MS) models represent an alternative to drifting autoregressive

coe�cients in time-series models with time-varying parameters. MS models are

able to capture sudden changes in time-series dynamics. Recall the two di↵erent

representations of a time-varying target inflation rate in Figure 7. The piecewise

constant path of the target can be generated by a MS model but not by the drifting-

parameter model of the previous subsection. We will begin with a discussion of MS

coe�cients in the context of a VAR (section 5.2.1) and then consider the estimation

of DSGE models with MS parameters (section 5.2.2).

5.2.1 Markov-Switching VARs

MS models have been popularized in economics by the work of Hamilton (1989),

who used them to allow for di↵erent GDP-growth-rate dynamics in recession and

expansion states. We will begin by adding regime-switching to the coe�cients of

the reduced-form VAR specified in (1), which we write in terms of a multivariate

linear regression model as

y0
t

= x0
t

�(K
t

) + u0
t

, u
t

⇠ iidN(0,⌃(K
t

)) (97)

using the same definitions of � and x
t

as in Section 2.1. Unlike before, the coe�cient

vector � is now a function of K
t

. Here, K
t

is a discrete M -state Markov process

with time-invariant transition probabilities

⇡
lm

= P [K
t

= l | K
t�1 = m], l,m 2 {1, . . . ,M}.

For simplicity, suppose that M = 2 and all elements of �(K
t

) and ⌃(K
t

) switch

simultaneously, without any restrictions. We denote the values of the VAR param-

eter matrices in state K
t

= l by �(l) and ⌃(l), l = 1, 2, respectively. If the prior

distributions of (�(l),⌃(l)) are MNIW and the priors for the regime-switching prob-

abilities ⇡11 and ⇡22 are independent Beta distributions, then posterior inference in

this simple MS VAR model can be implemented with the following Gibbs sampler

Algorithm 5.2: Gibbs Sampler for Unrestricted MS VARs

For s = 1, . . . , n
sim

:
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1. Draw (�(s)(l),⌃(s)(l)) conditional on (K(i�1)
1:T ,⇡

(i�1)
11 ,⇡

(i�1)
22 , Y ). Let T

l

be a

set that contains the time periods when K
t

= l, l = 1, 2. Under a conjugate

prior, the posterior of �(l) and ⌃(l) is MNIW, obtained from the regression

y0
t

= x0
t

�(l) + u
t

, u
t

⇠ N(0,⌃(l)), t 2 T
l

.

2. Draw K
(s)
1:T conditional on (�(s)(l),⌃(s)(l),⇡(i�1)

11 ,⇡
(i�1)
22 , Y ) using a variant of

the Carter and Kohn (1994) approach, described in detail in Giordani, Pitt,

and Kohn (This Volume).

3. Draw ⇡
(s)
11 and ⇡

(s)
22 conditional on (�(s)(s),⌃(s)(s),K(s)

1:T , Y ). If one ignores the

relationship between the transition probabilities and the distribution of K1,

then the posteriors of ⇡
(s)
11 and ⇡

(s)
22 take the form of Beta distributions. If K1 is

distributed according to the stationary distribution of the Markov chain, then

the Beta distributions can be used as proposal distributions in a Metropolis

step. ⇤

If one imposes the condition that ⇡22 = 1 and ⇡12 = 0, then model (97) becomes

a change-point model in which state 2 is the final state.4 Alternatively, such a

model can be viewed as a structural-break model in which at most one break can

occur, but the time of the break is unknown. Kim and Nelson (1999a) use a change-

point model to study whether there has been a structural break in postwar U.S.

GDP growth toward stabilization. By increasing the number of states and imposing

the appropriate restrictions on the transition probabilities, one can generalize the

change-point model to allow for several breaks. Chopin and Pelgrin (2004) consider

a setup that allows the joint estimation of the parameters and the number of regimes

that have actually occurred in the sample period. Koop and Potter (2007) and Koop

and Potter (2009) explore posterior inference in change-point models under various

types of prior distributions. Koop, Leon-Gonzalez, and Strachan (2009) consider

a modification of Primiceri (2005)’s framework where parameters evolve according

to a change-point model and study the evolution over time of the monetary policy

transmission mechanism in the United States.

In a multivariate setting, the unrestricted MS VAR in (97) with coe�cient ma-

trices that are a priori independent across states may involve a large number of
4More generally, for a process with M states one would impose the restrictions ⇡MM = 1 and

⇡j+1,j + ⇡jj = 1.
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coe�cients, and parameter restrictions can compensate for lack of sample informa-

tion. For instance, Paap and van Dijk (2003) start from the VAR specification used

in Section 2.3 that expresses y
t

as a deterministic trend and autoregressive devi-

ations from this trend. The authors impose the restriction that only the trend is

a↵ected by the MS process:

y
t

= y⇤
t

+ �0(Kt

) + ey
t

, ey
t

= �1eyt�1 + . . . + �
p

ey
t�p

+ u
t

, u
t

⇠ iidN(0,⌃), (98)

where

y⇤
t

= y⇤
t�1 + �1(Kt

).

This model captures growth-rate di↵erentials between recessions and expansions and

is used to capture the joint dynamics of U.S. aggregate output and consumption.

Thus far, we have focused on reduced-form VARs with MS parameters. Sims and

Zha (2006) extend the structural VAR given in (30) to a MS setting:

y0
t

A0(Kt

) = x0
t

A(K
t

) + ✏0
t

, ✏
t

⇠ iidN(0, I) (99)

where ✏
t

is a vector of orthogonal structural shocks and x
t

is defined as in Section 2.1.

The authors reparameterize the k⇥ n matrix A(K
t

) as D(K
t

) + GA0(Kt

), where S̄

is a k ⇥ n with the n ⇥ n identity matrix in the first n rows and zeros elsewhere.

Thus,

y0
t

A0(Kt

) = x0
t

(D(K
t

) + GA0(Kt

)) + ✏0
t

. (100)

If D(K
t

) = 0, then the reduced-form VAR coe�cients are given by � = A(K
t

)[A0(Kt

)]�1 =

G and the elements of y
t

follow random-walk processes, as implied by the mean of

the Minnesota prior (see Section 2.2). Loosely speaking, if the prior for D(K
t

) is

centered at zero, the prior for the reduced-form VAR is centered at a random-walk

representation.

To avoid a proliferation of parameters, Sims and Zha (2006) impose constraints

on the evolution of D(K
t

) across states. Let d
i,j,l

correspond to the coe�cient as-

sociated with lag l of variable i in equation j. The authors impose that d
i,j,l

(K
t

) =

�
i,j,l

�
i,j

(K
t

). This specification allows for shifts in D(K
t

) to be equation or variable

dependent but rules out lag dependency. The authors use their setup to estimate

MS VAR specifications in which (i) only the coe�cients of the monetary policy rule

change across Markov states, (ii) only the coe�cients of the private-sector equations

switch, and (iii) only coe�cients that implicitly control innovation variances (het-

eroskedasticity) change. The Gibbs sampler for the parameters of (100) is obtained
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by merging and generalizing Algorithms 2.4 and 5.2. Details are provided in Sims,

Waggoner, and Zha (2008).

5.2.2 DSGE Models with Markov-Switching Coe�cients

A growing number of papers incorporates Markov-switching e↵ects in DSGE models.

Consider the nonlinear equilibrium conditions of our stochastic growth model in (61).

The most rigorous and general treatment of Markov-switching coe�cients would

involve replacing the vector ✓ with a function of the latent state K
t

, ✓(K
t

), and

solving the nonlinear model while accounting for the time variation in ✓. Since the

implementation of the solution and the subsequent computation of the likelihood

function are very challenging, the literature has focused on various short-cuts, which

introduce Markov-switching in the coe�cients of the linearized model given by (66).

Following Sims (2002b), we write the linearized equilibrium conditions of the

DSGE model in the following canonical form:

�0(✓)xt

= C(✓) + �1(✓)xt�1 + (✓)✏
t

+⇧(✓)⌘
t

. (101)

For the stochastic growth model presented in Section 4, ✓ is defined in (63), and the

vector x
t

can be defined as follows:

x
t

=

bC

t

, bH
t

,cW
t

, bY
t

, bR
t

, bI
t

, bK
t+1, bAt

,ba
t

, bB
t

, IE
t

[ bC
t+1], IEt

[ba
t+1], IEt

[ bR
t+1]

�0
.

The vector ⌘
t

comprises the following one-step-ahead rational expectations forecast

errors:

⌘
t

=

( bC

t

� IE
t�1[ bCt

]), (ba
t

� IE
t�1[bat

]), ( bR
t

� IE
t�1[ bRt

])
�0

and ✏
t

stacks the innovations of the exogenous shocks: ✏
t

= [✏
a,t

, ✏
b,t

]0. With these

definitions, it is straightforward, albeit slightly tedious, to rewrite (66) in terms

of the canonical form (101). In most applications, including our stochastic growth

model, one can define the vector x
t

such that the observables y
t

can, as in Section 4.2,

be expressed simply as a linear function of x
t

; that is:

y
t

=  0(✓) + 1(✓)t + 2(✓)xt

. (102)

Markov-switching can be introduced into the linearized DSGE model by expressing

the DSGE model parameters ✓ as a function of a hidden Markov process K
t

, which

we denote by ✓(K
t

).
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Schorfheide (2005) considers a special case of this Markov-switching linear rational

expectations framework, because in his analysis the process K
t

a↵ects only the

target inflation rate of the central bank, which can be low or high. Using the same

notation as in Section 5.2.1, the number of states is M = 2, and the state transition

probabilities are denoted by ⇡
lm

. If we partition the parameter vector ✓(K
t

) into a

component ✓1 that is una↵ected by the hidden Markov process K
t

and a component

✓2(Kt

) that varies with K
t

and takes the values ✓2(l), l = 1, 2, the resulting rational

expectations system can be written as

�0(✓1)xt

= C(✓1, ✓2(Kt

)) + �1(✓1)xt�1 + (✓1)✏t

+⇧(✓1)⌘t

(103)

and is solvable with the algorithm provided in Sims (2002b). The solution takes the

special form

y
t

=  0 + 1t + 2xt

, x
t

= �1xt�1 + �
✏

[µ(K
t

) + ✏
t

] + �0(Kt

), (104)

where only �0 and µ depend on the Markov process K
t

(indirectly through ✓2(Kt

)),

but not the matrices  0,  1,  2, �1, and �
✏

. Equation (104) defines a (linear)

Markov-switching state-space model, with the understanding that the system ma-

trices are functions of the DSGE model parameters ✓1 and ✓2(Kt

). Following a

filtering approach that simultaneously integrates over x
t

and K
t

, discussed in Kim

and Nelson (1999b), Schorfheide (2005) constructs an approximate likelihood that

depends only on ✓1, ✓2(1), ✓2(2) and the transition probabilities ⇡11 and ⇡22. This

likelihood function is then used in Algorithm 4.1 to implement posterior inference.

The analysis in Schorfheide (2005) is clearly restrictive. For instance, there is a

large debate in the literature about whether the central bank’s reaction to inflation

and output deviations from target changed around 1980. A candidate explanation

for the reduction of macroeconomic volatility in the 1980s is a more forceful reaction

of central banks to inflation deviations. To capture this explanation in a Markov-

switching rational expectations model, it is necessary that not just the intercept

in (101) but also the slope coe�cients be a↵ected by the regime shifts. Thus,

subsequent work by Davig and Leeper (2007) and Farmer, Waggoner, and Zha

(2009) is more ambitious in that it allows for switches in all the matrices of the

canonical rational expectations model:

�0(✓(Kt

))x
t

= C(✓(K
t

)) + �1(✓(Kt

))x
t�1 + (✓(K

t

))✏
t

+⇧(✓(K
t

))⌘
t

.
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Characterizing the full set of solutions for this general MS linear rational expecta-

tions model and conditions under which a unique stable solution exists is the subject

of ongoing research.

5.3 Applications of Bayesian TVP Models

Bayesian TVP models have been applied to several issues of interest, including

macroeconomic forecasting, for example, Sims (1993) and Cogley, Morozov, and

Sargent (2005). Here, we shall focus on one specific issue, namely, the debate over

whether the dynamics of U.S. inflation changed over the last quarter of the 20th

century and, to the extent that they have, whether monetary policy played a major

role in a↵ecting inflation dynamics. Naturally, this debate evolved in parallel to the

debate over the magnitude and causes of the Great Moderation, that is, the decline

in the volatility of business cycles around 1984 initially documented by Kim and

Nelson (1999a) and McConnell and Perez-Quiros (2000). Whatever the causes of

the changes in output dynamics were – shocks, monetary policy, or other structural

changes – it is likely that these same causes a↵ected the dynamics of inflation.

Bayesian inference in a TVP VAR yields posterior estimates of the reduced-form

coe�cients �
t

in (90). Conditioning on estimates of �
t

for various periods between

1960 and 2000, Cogley and Sargent (2002) compute the spectrum of inflation based

on their VAR and use it as evidence that both inflation volatility and persistence

have changed dramatically in the United States. Cogley and Sargent (2005b) find

that their earlier empirical results are robust to time-variation in the volatility of

shocks and argue that changes in the monetary policy rule are partly responsible

for the changes in inflation dynamics. Based on an estimated structural TVP VAR,

Primiceri (2005) argues that monetary policy has indeed changed since the 1980s

but that the impact of these changes on the rest of the economy has been small. He

claims that variation in the volatility of the shocks is the main cause for the lower

volatility of both inflation and business cycles in the post-Volcker period. Sims and

Zha (2006) conduct inference with a MS VAR and find no support for the hypothesis

that the parameters of the monetary policy rule di↵ered pre- and post-1980. To the

contrary, they provide evidence that it was the behavior of the private sector that

changed and that shock heteroskedasticity is important. Similarly, using an AR

time-varying coe�cients VAR identified with sign restrictions Canova and Gambetti

(2009) find little evidence that monetary policy has become more aggressive in
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responding to inflation since the early 1980s. Cogley and Sbordone (2008) use a

TVP VAR to assess the stability of the New Keynesian Phillips curve during the

past four decades.

Given the numerical di�culties of estimating nonlinear DSGE models, there cur-

rently exists less published empirical work based on DSGE models with time-

varying coe�cients. Two notable exceptions are the papers by Justiniano and Prim-

iceri (2008) discussed in Section (4.5) and Fernández-Villaverde and Rubio-Ramı́rez

(2008). The latter paper provides evidence that after 1980 the U.S. central bank

has changed interest rates more aggressively in response to deviations of inflation

from the target rate. The authors also find that the estimated frequency of price

changes has decreased over time. This frequency is taken as exogenous within the

Calvo framework they adopt.

6 Models for Data-Rich Environments

We now turn to inference with models for data sets that have a large cross-sectional

and time-series dimension. Consider the VAR(p) from Section 2:

y
t

= �1yt�1 + . . . + �
p

y
t�p

+ �
c

+ u
t

, u
t

⇠ iidN(0,⌃), t = 1, . . . , T

where y
t

is an n⇥ 1 vector. Without mentioning it explicitly, our previous analysis

was tailored to situations in which the time-series dimension T of the data set is

much larger than the cross-sectional dimension n. For instance, in Illustration 2.1 the

time-series dimension was approximately T = 160 and the cross-sectional dimension

was n = 4. This section focuses on applications in which the ratio T/n is relatively

small, possibly less than 5.

High-dimensional VARs are useful for applications that involve large cross sec-

tions of macroeconomic indicators for a particular country – for example, GDP and

its components, industrial production, measures of employment and compensation,

housing starts and new orders of capital goods, price indices, interest rates, con-

sumer confidence measures, et cetera. Examples of such data sets can be found

in Stock and Watson (1999) and Stock and Watson (2002). Large-scale VARs are

also frequently employed in the context of multicountry econometric modeling. For

instance, to study international business cycles among OECD countries, y
t

might
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be composed of aggregate output, consumption, investment, and employment for a

group of 20 to 30 countries, which leads to n > 80.

In general, for the models considered in this section there will be a shortage of

sample information to determine parameters, leading to imprecise inference and

di↵use predictive distributions. Priors can be used to impose either hard or soft

parameter restrictions and thereby to sharpen inference. Hard restrictions involve

setting combinations of VAR coe�cients equal to zero. For instance, Stock and

Watson (2005), who study international business cycles using output data for the

G7 countries, impose the restriction that in the equation for GDP growth in a given

country enter only the trade-weighted averages of the other countries’ GDP growth

rates. Second, one could use very informative, yet nondegenerate, prior distributions

for the many VAR coe�cients, which is what is meant by soft restrictions. Both

types of restrictions are discussed in Section 6.1. Finally, one could express y
t

as

a function of a lower-dimensional vector of variables called factors, possibly latent,

that drive all the comovement among the elements of y
t

, plus a vector ⇣
t

of so-called

idiosyncratic components, which evolve independently from one another. In such

a setting, one needs only to parameterize the evolution of the factors, the impact

of these on the observables y
t

, and the evolution of the univariate idiosyncratic

components, rather than the dynamic interrelationships among all the elements of

the y
t

vector. Factor models are explored in Section 6.2.

6.1 Restricted High-Dimensional VARs

We begin by directly imposing hard restrictions on the coe�cients of the VAR.

As before, define the k ⇥ 1 vector x
t

= [y0
t�1, . . . , y

0
t�p

, 1]0 and the k ⇥ n matrix

� = [�1, . . . ,�p

,�
c

]0, where k = np+1. Moreover, let X
t

= I
n

⌦x
t

and � = vec(�)

with dimensions kn⇥ n and kn⇥ 1, respectively. Then we can write the VAR as

y
t

= X 0
t

� + u
t

, u
t

⇠ iidN(0,⌃). (105)

To incorporate the restrictions on �, we reparameterize the VAR as follows:

� = M✓. (106)

✓ is a vector of size  << nk, and the nk ⇥  matrix M induces the restrictions

by linking the VAR coe�cients � to the lower-dimensional parameter vector ✓.

The elements of M are known. For instance, M could be specified such that the
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coe�cient in Equation i, i = 1, .., n, associated with the l’th lag of variable j is

the sum of an equation-specific, a variable-specific parameter, and a lag-specific

parameter. Here, ✓ would comprise the set of all n + n + p equation/variable/lag-

specific parameters, and M would be an indicator matrix of zeros and ones that

selects the elements of ✓ associated with each element of �. The matrix M could

also be specified to set certain elements of � equal to zero and thereby exclude

regressors from each of the n equations of the VAR. Since the relationship between

� and ✓ is linear, Bayesian inference in this restricted VAR under a Gaussian prior

for ✓ and an Inverted Wishart prior for ⌃ is straightforward.

To turn the hard restrictions (106) into soft restrictions, one can construct a

hierarchical model, in which the prior distribution for � conditional on ✓ has a

nonzero variance:

� = M✓ + ⌫, ⌫ ⇠ N(0, V ), (107)

where ⌫ is an nk⇥1 vector with nk⇥nk covariance matrix V . The joint distribution

of parameters and data can be factorized as

p(Y, �, ✓) = p(Y |�)p(�|✓)p(✓). (108)

A few remarks are in order. First, (108) has the same form as the DSGE-VAR

discussed in Section 4.7.3, except that the conditional distribution of � given ✓

is centered at the simple linear restriction M✓ rather than the rather complicated

VAR approximation of a DSGE model. Second, (108) also nests the Minnesota prior

discussed in Section 2.2, which can be obtained by using a degenerate distribution

for ✓ concentrated at ✓ with a suitable choice of M , ✓, and V . Third, in practice

the choice of the prior covariance matrix V is crucial for inference. In the context

of the Minnesota prior and the DSGE-VAR, we expressed this covariance matrix

in terms of a low-dimensional vector � of hyperparameters such that kV (�)k �! 0

(kV (�)k �! 1) as k�k �! 1 (k�k �! 0) and recommended conditioning on a

value of � that maximizes the marginal likelihood function p
�

(Y ) over a suitably

chosen grid.

Finally, since the discrepancy between the posterior mean estimate of � and the

restriction M✓ can be reduced by increasing the hyperparameter �, the resulting

Bayes estimator of � is often called a shrinkage estimator. De Mol, Giannone, and

Reichlin (2008) consider a covariance matrix V that in our notation takes the form

V = ⌃ ⌦ (I
k

/�2) and show that there is a tight connection between these shrink-

age estimators and estimators of conditional mean functions obtained from factor
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models, which we will discuss below. They document empirically that with a suit-

ably chosen shrinkage parameter the forecast performance of their Bayes predictor

constructed from a large number of regressors is similar to the performance of a

predictor obtained by regressing y
t

on the first few principal components of the

regressors x
t

, as is often done in the factor model literature.

Canova and Ciccarelli (2009) allow the deviations of � from the restricted subspace

characterized by M✓ to di↵er in each period t. Formally, they allow for time-

variation in � and let

�
t

= M✓ + ⌫
t

, ⌫
t

⇠ iidN(0, V ). (109)

The deviations ⌫
t

from the restriction M✓ are assumed to be independent over time,

which simplifies inference. In fact, the random deviations ⌫
t

can be merged with

the VAR innovations u
t

, resulting in a model for which Bayesian inference is fairly

straightforward to implement. Inserting (109) into (105), we obtain the system

y
t

= (X 0
t

M)✓ + ⇣
t

. (110)

The n ⇥  matrix of regressors X 0
t

M essentially contains weighted averages of the

regressors, where the weights are given by the columns of M . The random vector ⇣
t

is

given by ⇣
t

= X 0
t

⌫
t

+u
t

and, since x
t

contains lagged values of y
t

, forms a Martingale

di↵erence sequence with conditional covariance matrix X 0
t

V X
t

+ ⌃. If one chooses

a prior covariance matrix of the form V = ⌃⌦ (I
k

/�2), then the covariance matrix

of ⇣
t

reduces to (1+(x0
t

x
t

)/�2)⌃. The likelihood function (conditional on the initial

observations Y�p+1:0) takes the convenient form

p(Y1:T |✓, �) /
��(1 + (x0

t

x
t

)/�2)⌃
���1/2 (111)

⇥
TY

t=1

exp
⇢
� 1

2(1 + (x0
t

x
t

)/�2)
(y

t

�X 0
t

M✓)0⌃�1(y
t

�X 0
t

M✓)
�

,

and Bayesian inference under a conjugate prior for ✓ and ⌃ is straightforward.

Canova and Ciccarelli (2009) further generalize expression (109) by assuming that

the vector ✓ is time-varying and follows a simple autoregressive law of motion.

They discuss in detail how to implement Bayesian inference in this more general

environment. The authors interpret the time-varying ✓
t

as a vector of latent factors.

Their setting is therefore related to that of the factor models described in the next

subsection. In multicountry VAR applications, M could be chosen such that y
t

is a
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function of lagged country-specific variables and, say, average lagged output growth

and unemployment across countries. If most of the variation in the elements of y
t

is

due to the cross-sectional averages, then the business cycles in the various countries

are highly synchronized. Canova and Ciccarelli (2009) use their framework to study

the convergence in business cycles among G7 countries.

6.2 Dynamic Factor Models

Factor models describe the dynamic behavior of a possibly large cross section of

observations as the sum of a few common components, which explain comovements,

and of series-specific components, which capture idiosyncratic dynamics of each se-

ries. While factor models have been part of the econometricians’ toolbox for a

long time – the unobservable index models by Sargent and Sims (1977) and Geweke

(1977)), for example – the contribution of Stock and Watson (1989) generated re-

newed interest in this class of models among macroeconomists. These authors use

a factor model to exploit information from a large cross section of macroeconomic

time series for forecasting. While Stock and Watson (1989) employ maximum likeli-

hood methods, Geweke and Zhou (1996) and Otrok and Whiteman (1998) conduct

Bayesian inference with dynamic factor models. Our baseline version of the DFM

is introduced in Section 6.2.1, and posterior inference is described in Section 6.2.2.

Some applications are discussed in Section 6.2.3. Finally, Section 6.2.4 surveys var-

ious extensions of the basic DFM.

6.2.1 Baseline Specification

A DFM decomposes the dynamics of n observables y
i,t

, i = 1, . . . , n, into the sum

of two unobservable components:

y
i,t

= a
i

+ �
i

f
t

+ ⇠
i,t

, t = 1, . . . , T. (112)

Here, f
t

is a  ⇥ 1 vector of factors that are common to all observables, and ⇠
i,t

is

an idiosyncratic process that is specific to each i. Moreover, a
i

is a constant, and

�
i

is a 1 ⇥  vector of loadings that links y
i,t

to the factor f
t

. The factors follow a

vector autoregressive processes of order q:

f
t

= �0,1ft�1 + . . . + �0,q

f
t�q

+ u0,t

, u0,t

⇠ iidN(0,⌃0), (113)
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where ⌃0 and the �0,j

matrices are of dimension ⇥  and u0,t

is a ⇥ 1 vector of

innovations. We used 0-subscripts to denote parameter matrices that describe the

law of motion of the factors. The idiosyncratic components follow autoregressive

processes of order p
i

:

⇠
i,t

= �
i,1⇠i,t�1 + . . . + �

i,pi⇠i,t�pi + u
i,t

, u
i,t

⇠ iidN(0,�2
i

). (114)

At all leads and lags, the u
i,t

innovations are independent across i and independent

of the innovations to the law of motion of the factors u0,t

. These orthogonality

assumptions are important to identifying the factor model, as they imply that all

comovements in the data arise from the factors.

Without further restrictions, the latent factors and the coe�cient matrices of the

DFM are not identifiable. One can premultiply f
t

and its lags in (112) and (113) as

well as u0,t

by a ⇥  invertible matrix H and postmultiply the vectors �
i

and the

matrices �0,j

by H�1, without changing the distribution of the observables. There

are several approaches to restricting the parameters of the DFM to normalize the

factors and achieve identification. We will provide three specific examples in which

we impose restrictions on ⌃0 and the first  loading vectors stacked in the matrix

⇤1,

=

2

664

�1

...

�


3

775 .

The loadings �
i

for i >  are always left unrestricted.

Example 6.1: Geweke and Zhou (1996) restrict ⇤1,

to be lower-triangular:

⇤1,

= ⇤tr

1,

=

2

664

X 0 · · · 0 0
... . . . ...

X X · · ·X X

3

775 . (115)

Here, X denotes an unrestricted element, and 0 denotes a zero restriction. The

restrictions can be interpreted as follows. According to (115), factor f2,t

does not

a↵ect y1,t

, factor f3,t

does not a↵ect y1,t

and y2,t

, and so forth. However, these zero

restrictions alone are not su�cient for identification because the factors and hence

the matrices �0,j

and ⌃0 could still be transformed by pre- and postmultiplication

of an arbitrary invertible lower-triangular  ⇥  matrix H
tr

without changing the

distribution of the observables. Under this transformation, the factor innovations
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become H
tr

u0,t

. Since ⌃0 can be expressed as the product of the unique lower-

triangular Choleski factor ⌃0,tr

and its transpose, one can choose H
tr

= ⌃�1
0,tr

such

that the factor innovations reduce to a vector of independent standard Normals. To

implement this normalization, we simply let

⌃0 = I


. (116)

Finally, the signs of the factors need to be normalized. Let �
i,i

, i = 1, . . . ,, be

the diagonal elements of ⇤1,

. The sign normalization can be achieved with a set of

restrictions of the form

�
i,i

� 0, i = 1, . . . ,. (117)

Thus, (115), (116), and (117) provide a set of identifying restrictions. ⇤

Example 6.2: Suppose we start from the normalization in the previous example

and proceed with premultiplying the factors by the diagonal matrix H that is com-

posed of the diagonal elements of ⇤tr

1,

in (115) and postmultiplying the loadings

by H�1. This transformation leads to a normalization in which ⇤1,

is restricted

to be lower-triangular with ones on the diagonal and ⌃0 is a diagonal matrix with

nonnegative elements. The one-entries on the diagonal of ⇤1,

also take care of the

sign normalization. Since under the normalization �
i,i

= 1, i = 1, . . . ,, factor f
i,t

is forced to have a unit impact on y
i,t

, there exists a potential pitfall. For instance,

imagine that there is only one factor and that y1,t

is uncorrelated with all other

observables. Imposing �1,1 = 1 may result in a misleading inference for the factor

as well as for the other loadings. ⇤

Example 6.3: Suppose we start from the normalization in Example 6.1 and proceed

with premultiplying the factors by the matrix H = ⇤tr

1,

in (115) and postmultiplying

the loadings by H�1. This transformation leads to a normalization in which ⇤1,

is restricted to be the identity matrix and ⌃0 is an unrestricted covariance matrix.

As in Example 6.2, the one-entries on the diagonal of ⇤1,

take care of the sign

normalization. ⇤

Finally, one might find it attractive to impose overidentifying restrictions. For

concreteness, imagine that the factor model is used to study comovements in output

across U.S. states, and let y
i,t

correspond to output in state i in period t. Moreover,

suppose that the number of factors is  = 3, where f1,t

is interpreted as a national

business cycle and f2,t

and f3,t

are factors that a↵ect the Eastern and Western

regions, respectively. In this case, one could impose the condition that �
i,j

= 0 if

state i does not belong to region j = 2, 3.



Del Negro, Schorfheide – Bayesian Macroeconometrics: April 18, 2010 81

6.2.2 Priors and Posteriors

We now describe Bayesian inference for the DFM. To simplify the notation, we will

discuss the case in which the lag length in (114) is the same for all i (p
i

= p) and

q  p + 1. As we did previously in this chapter, we adopt the convention that

Y
t0:t1 and F

t0:t1 denote the sequences {y
t0 , . . . , yt1} and {f

t0 , . . . , ft1}, respectively.

Premultiply (112) by 1� �
i,1L · · ·� �

i,p

Lp, where L here denotes the lag operator.

The quasi-di↵erenced measurement equation takes the form

y
i,t

= a
i

+ �
i

f
t

+ �
i,1(yi,t�1 � a

i

� �
i

f
t�1) + . . . (118)

+�
i,p

(y
i,t�p

� a
i

� �
i

f
t�p

) + u
i,t

, for t = p+1, .., T.

Let ✓
i

= [a
i

,�
i

,�
i

,�
i,1, ..,�i,p

]0 be the parameters entering (118) and ✓0 be the pa-

rameters pertaining to the law of motion of the factors (113). The joint distribution

of data, parameters, and latent factors can be written as

p(Y1:T , F0:T , {✓
i

}n

i=1, ✓0) (119)

=

2

4
TY

t=p+1

 
nY

i=1

p(y
i,t

|Y
i,t�p:t�1, Ft�p:t, ✓i

)

!
p(f

t

|F
t�q:t�1, ✓0)

3

5

⇥
 

nY

i=1

p(Y
i,1:p|F0:p, ✓i

)

!
p(F0:p|✓0)

 
nY

i=1

p(✓
i

)

!
p(✓0).

To obtain the factorization on the right-hand side of (119), we exploited the fact

that the conditional distribution of y
i,t

given (Y1:t�1, F0:t, ✓i

) depends on lagged ob-

servables only through Y
i,t�p:t�1 and on the factors only through F

t�p:t. Moreover,

the distribution of f
t

conditional on (Y1:t�1, F0:t�1, ✓0) is a function only of F
t�q:t�1.

The distributions p(y
i,t

|Y
i,t�p:t�1, Ft�p:t, ✓i

) and p(f
t

|F
t�q:t�1, ✓0) can easily be de-

rived from expressions (118) and (113), respectively.

The term p(Y
i,1:p|F0:p, ✓i

) in (119) represents the distribution of the first p obser-

vations conditional on the factors, which is given by
2

664

y
i,1

...

y
i,p

3

775

����(F0:p, ✓i

) ⇠ N

0

BB@

2

664

a
i

+ f1

...

a
i

+ f
p

3

775 , ⌃
i,1:p(✓i

)

1

CCA . (120)

The matrix ⌃
i,1:p(✓i

) is the covariance matrix of [⇠
i,1, . . . , ⇠i,p

]0, which can be derived

from the autoregressive law of motion (114) by assuming that ⇠
i,�(⌧+1) = . . . =

⇠
i,�(⌧+p) = 0 for some ⌧ > 0. If the law of motion of ⇠

i,t

is stationary for all ✓
i

in the
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support of the prior, one can set ⌧ = 1, and ⌃
i,1:p becomes the covariance matrix

associated with the unconditional distribution of the idiosyncratic shocks. Detailed

derivations can be found in Otrok and Whiteman (1998). The initial distribution

of the factors p(F0:p|✓0) can be obtained in a similar manner using (113).

The remaining terms, p(✓
i

) and p(✓0), represent the priors for ✓
i

and ✓0, which are

typically chosen to be conjugate (see, for example, Otrok and Whiteman (1998)).

Specifically, the priors on the constant term a
i

and the loadings �
i

are normal,

namely, N(a
i

, V
ai

) and N(�
i

, V
�i

). If the �
i,i

, i = 1, . . . , elements are restricted to

be nonnegative to resolve the sign-indeterminacy of the factors as in Example 6.1,

then the density associated with the prior for �
i

needs to be multiplied by the

indicator function I{�
i,i

� 0} to impose the constraint (117). The autoregressive

coe�cients for the factors and the idiosyncratic shocks have a Normal prior. Define

�0 = [vec(�0,1)0, .., vec(�0,q

)0]0 and assume that ⌃0 is normalized to be equal to

the identity matrix. The prior for �0 is N(�
0
, V

�0
). Likewise, the prior for �

i

=

[�
i,1, ..,�i,p

]0 is N(�
i

, V
�i

). In some applications, it may be desirable to truncate

the prior for �0 (�
i

) to rule out parameters for which not all of the roots of the

characteristic polynomial associated with the autoregressive laws of motion of f
t

and ⇠
i,t

lie outside the unit circle. Finally, the prior for the idiosyncratic volatilities

�
i

can be chosen to be of the Inverted Gamma form.

A Gibbs sampler can be used to generate draws from the posterior distribution.

The basic structure of the sampler is fairly straightforward though some of the

details are tedious and can be found, for instance, in Otrok and Whiteman (1998).

Conditional on the factors, Equation (112) is a linear Gaussian regression with

AR(p) errors. The posterior density takes the form

p(✓
i

|F0:T , ✓0, Y1:T ) / p(✓
i

)

0

@
TY

t=p+1

p(y
i,t

|Y
i,t�p:t�1, Ft�p:t, ✓i

)

1

A p(Y
i,1:p|F0:p, ✓i

).

(121)

Under a conjugate prior, the first two terms on the right-hand side correspond to

the density of a Normal-Inverted Gamma distribution. The last term reflects the

e↵ect of the initialization of the AR(p) error process, and its log is not a quadratic

function of ✓
i

. Draws from the distribution associated with (121) can be obtained

with the procedure of Chib and Greenberg (1994).

If the prior for �
i,i

, i = 1, . . . , includes the indicator function I{�
i,i

� 0}, one

can use an acceptance sampler that discards all draws of ✓
i

for which �
i,i

< 0. If
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the prior of the loadings does not restrict �
i,i

� 0, i = 1, . . . ,, but is symmetric

around zero, then one can resolve the sign indeterminacy by postprocessing the

output of the (unrestricted) Gibbs sampler: for each set of draws ({✓
i

}n

i=1, ✓0, F0:T )

such that �
i,i

< 0, flip the sign of the i’th factor and the sign of the loadings of

all n observables on the ith factor. Hamilton, Waggoner, and Zha (2007) discuss

the sign normalization and related normalization issues in other models at length.

Since the errors ⇠
i,t

in equation (112) are independent across i, the sampling can be

implemented one i at a time, which implies that computational cost is linear in the

size of the cross section.

Conditional on the factors, the posterior for the coe�cients ✓0 in (113) is obtained

from a multivariate generalization of the preceding steps. Its density can be written

as

p(✓0|F0:T , {✓
i

}n

i=1, Y1:T ) /

0

@
TY

t=p+1

p(f
t

|F
t�p:t�1, ✓0)

1

A p(✓0)p(F0:p|✓0). (122)

The first term on the right-hand side corresponds to the conditional likelihood func-

tion of a VAR(q) and has been extensively analyzed in Section 2. If the prior for

✓0 is conjugate, the first two terms are proportional to the density of a MNIW dis-

tribution if ⌃0 is unrestricted and corresponds to a multivariate normal density if

the DFM is normalized such that ⌃0 = I. The last terms capture the probability

density function of the initial factors f0, . . . , fp

. Thus, ✓0 cannot be directly sampled

from, say, a MNIW distribution. As in the case of ✓
i

, one can use a variant of the

procedure proposed by Chib and Greenberg (1994).

In the third block of the Gibbs sampler, one draws the factors F0:T conditional

on ({✓
i

}n

i=1, ✓0, Y1:T ). Two approaches exist in the Bayesian DFM literature. Otrok

and Whiteman (1998) explicitly write out the joint Normal distribution of the obser-

vations Y1:T and the factors F0:T , p(Y1:T , F0:T |{✓i

}
i=1,n

, ✓0) and derive the posterior

distribution p(F0:T |{✓i

}
i=1,n

, ✓0, Y1:T ) using the formula for conditional means and

covariance matrices of a multivariate normal distribution.5 Their approach involves

inverting matrices of size T and hence becomes computationally expensive for data

sets with a large time-series dimension. An alternative is to cast the DFM into

a linear state-space form and apply the algorithm of Carter and Kohn (1994) for

sampling from the distribution of the latent states, described in Giordani, Pitt, and
5If X = [X 0

1, X
0
2] is distributed N(µ, ⌃) then X1|X2 is distributed N µ1+⌃12⌃

�1
22 (X2�µ2), ⌃11�

⌃12⌃
�1
22 ⌃21 , where the partitions of µ and ⌃ conform with the partitions of X.
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Kohn (This Volume). To avoid the increase in the dimension of the state vector with

the cross-sectional dimension n, it is convenient to exclude the AR(p) processes ⇠
i,t

from the state vector and to use the quasi-di↵erenced measurement equation (118)

instead of (112).

We will now provide some more details on how to cast the DFM into state-space

form with iid measurement errors and a VAR(1) state-transition equation. For

ease of notation, we shall subsequently assume that the factor f
t

is scalar ( = 1).

Stacking (118) for all i, one obtains the measurement equation

(I
n

�
pX

j=1

�̃
j

Lj)ỹ
t

= (I
n

�
pX

j=1

�̃
j

)ã + ⇤⇤f̃
t

+ ũ
t

, t = p + 1, . . . , T, (123)

where L is the temporal lag operator, ỹ
t

= [y1,t

, . . . , y
n,t

]0, ã = [a1, . . . , an

]0, ũ
t

=

[u1,t

, . . . , u
n,t

]0, the �̃
j

’s are diagonal n⇥n matrices with elements �1,j

, . . . ,�
n,j

, and

⇤⇤ =

2

664

�1 ��1�1,1 . . . ��1�1,p

... . . . ...

�
n

��
n

�
n,1 . . . ��

n

�
n,p

3

775 .

Due to the quasi-di↵erencing, the random variables ũ
t

in the measurement equa-

tion (123) are iid. The (p + 1)⇥ 1 vector f̃
t

collects the latent states and is defined

as f̃
t

= [f
t

, .., f
t�p

]0. The state-transition equation is obtained by expressing the law

of motion of the factor (113) in companion form

f̃
t

= �̃0f̃t�1 + ũ0,t

, (124)

where ũ0,t

= [u0,t

, 0, .., 0]0 is an iid (p+1)⇥ 1 random vector and �̃0 is the (p+1)⇥
(p + 1) companion form matrix

�̃0 =

"
[�0,1, . . . , �0,q

, 01⇥(p+1�q)]

I
p

0
p⇥1

#
. (125)

Since (123) starts from t = p + 1 as opposed to t = 1, one needs to initialize

the filtering step in the Carter and Kohn (1994) algorithm with the conditional

distribution of p(F0:p|Y1:p, {✓i

}n

i=1, ✓0). As mentioned above, this conditional distri-

bution can be obtained from the joint distribution p(F0:p, Y1:p|{✓i

}n

i=1, ✓0) by using

the formula for conditional means and covariance matrices of a multivariate normal

distribution. Del Negro and Otrok (2008) provide formulas for the initialization.

The Gibbs sampler can be summarized as follows
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Algorithm 6.1: Sampling from the Posterior of the DFM

For s = 1, . . . , n
sim

:

1. Draw ✓
(s)
i

conditional on (F (s�1)
0:T , ✓

(s�1)
0 , Y1:T ) from (121). This can be done

independently for each i = 1, . . . , n.

2. Draw ✓
(s)
0 conditional on (F (s�1)

0:T , {✓(s)
i

}n

i=1, Y1:T ) from (122).

3. Draw F
(s)
0:T , conditional on ({✓(s)

i

}n

i=1, ✓
(s)
0 , Y1:T ).

We have omitted the details of the conditional posterior distributions. The exact

distributions can be found in the references given in this section. Last, we have not

discussed the issue of determining the number of factors . In principle, one can

regard DFMs with di↵erent ’s as individual models and treat the determination of

the number of factors as a model selection or a model averaging problem, which will

be discussed in more detail in Section 7. In practice, the computation of marginal

likelihoods for DFMs, which are needed for the evaluation of posterior model proba-

bilities, is numerically challenging. Lopes and West (2004) discuss the computation

of marginal likelihoods for a static factor model in which the factors are iid. The

authors also consider a MCMC approach where the number of factors is treated as

an unknown parameter and is drawn jointly with all the other parameters.

6.2.3 Applications of Dynamic Factor Models

How integrated are international business cycles? Are countries more integrated in

terms of business-cycle synchronization within a region (say, within Europe) than

across regions (say, France and the United States)? Has the degree of comovement

changed significantly over time as trade and financial links have increased? These

are all natural questions to address using a dynamic factor model, which is precisely

what Kose, Otrok, and Whiteman (2003) do. The authors estimate a DFM on a

panel of annual data on output, investment, and consumption for 60 countries and

about 30 years. The model includes a world factor that captures the world business

cycle, regional factors that capture region-specific cycles (say, Latin America), and

country-specific cycles. These factors are assumed to evolve independently from one

another. The authors find that international business-cycle comovement is signif-

icant. In terms of the variance decomposition of output in the G7 countries, for

instance, world cycles are on average as important as country-specific cycles, in the
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sense that world and country-specific cycles explain a similar share of the variance

of output growth. For the entire world, country-specific cycles are, not surprisingly,

much more important than world cycles. Regional cycles are not particularly im-

portant at all, suggesting that integration is no higher within regions than across

regions.

The study of house prices is another interesting application of factor models.

House prices have both an important national and regional component, where the

former is associated with nationwide conditions (for example, stance of monetary

policy and the national business cycle), while the latter is associated with regional

business cycles and other region-specific conditions (for example, migration and

demographics). Del Negro and Otrok (2007) apply dynamic factor models to study

regional house prices in the US.

In a Bayesian framework estimating models where regional or country-specific fac-

tors are identified by imposing the restriction that the respective factors have zero

loadings on series that do not belong to that region or country is quite straight-

forward. Models with such restrictions are harder to estimate using nonparametric

methods such as principal components. Moreover, using Bayesian methods, we can

conduct inference on the country factors even if the number of series per country

is small, as is the case in Kose, Otrok, and Whiteman (2003), while nonparametric

methods have a harder time characterizing the uncertainty that results from having

a small cross section.

6.2.4 Extensions and Alternative Approaches

We briefly discuss four extensions of the basic DFM presented above. These ex-

tensions include Factor Augmented VARs, DFMs with time-varying parameters,

hierarchical DFMs, and hybrid models that combine a DSGE model and a DFM.

Factor Augmented VARs: Bernanke, Boivin, and Eliasz (2005) introduce Factor

augmented VARs (or FAVARs). The FAVAR approach introduces two changes to

the standard factor model. First, the FAVAR allows for additional observables

y0,t

, for example, the federal funds rate, to enter the measurement equation, which

becomes

y
i,t

= a
i

+ �
i

y0,t

+ �
i

f
t

+ ⇠
i,t

, i = 1, . . . , n, t = 1, . . . , T, (126)
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where y0,t

and �
i

are m⇥ 1 and 1⇥m vectors, respectively. Second, the observable

vector y0,t

and the unobservable factor f
t

are assumed to jointly follow a vector

autoregressive process of order q:
"

f
t

y0,t

#
= �0,1

"
f

t�1

y0,t�1

#
+ . . .+�0,q

"
f

t�q

y0,t�q

#
+u0,t

, u0,t

⇠ iidN(0,⌃0), (127)

which is the reason for the term factor augmented VAR. The �0,j

matrices are

now of size ( + m) ⇥ ( + m). The innovation vector u0,t

is still assumed to be

normally distributed with mean 0 and variance ⌃0, with the di↵erence that the

variance-covariance matrix ⌃0 is no longer restricted to be diagonal. The idiosyn-

cratic components ⇠
i,t

evolve according to (114 ), and the innovations to their law

of motion u
i,t

are subject to the distributional assumptions u
i,t

⇠ N(0,�2
i

). More-

over, we maintain the assumption that the innovations u
i,t

are independent across

i and independent of u0,t

at all leads and lags. In order to achieve identification,

Bernanke, Boivin, and Eliasz (2005) assume that (i) the  ⇥  matrix obtained by

stacking the first  �
i

’s equals the identity I


(as in Example 6.3) and (ii) the ⇥m

matrix obtained by stacking the first  �
i

’s is composed of zeros.

The appeal of the FAVAR is that it a↵ords a combination of factor analysis with

the structural VAR analysis described in Section 2.4. In particular, one can assume

that the vector of reduced-form shocks u0,t

relates to a vector of structural shocks

✏0,t

as in (21):

u0,t

= ⌃0,tr

⌦0✏0,t

, (128)

where ⌃tr

0 is the unique lower-triangular Cholesky factor of ⌃0 with nonnegative

diagonal elements, and ⌦0 is an arbitrary orthogonal matrix. Bernanke, Boivin,

and Eliasz (2005) apply their model to study the e↵ects of monetary policy shocks

in the United States. They identify monetary policy shocks by imposing a short-run

identification scheme where ⌦0 is diagonal as in Example 2.1. This identification

implies that the central bank responds contemporaneously to the information con-

tained in the factors. In contrast, unanticipated changes in monetary policy only

a↵ect the factors with a one-period lag.

At least in principle, conducting inference in a FAVAR is a straightforward applica-

tion of the tools described in Section 6.2.2. For given factors, obtaining the posterior

distribution for the parameters of (126) and (127) is straightforward. Likewise, the

factors can be drawn using expressions (126) and the first  equations of the VAR
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in (127), as the measurement and transition equations, respectively, in a state-space

representation.

Time-Varying Parameters: For the same reasons that it may be useful to allow

parameter variation in a VAR as we saw in Section 5, we may want to allow for time-

variation in the parameters of a factor model. For instance, comovements across

countries may have changed as a result of increased financial or trade integration,

or because of monetary arrangements (monetary unions, switches from fixed to

flexible exchange rates, and so forth). Del Negro and Otrok (2008) accomplish that

by modifying the standard factor model in two ways. First, they make the loadings

vary over time. This feature allows for changes in the sensitivity of individual

series to common factors. The second innovation amounts to introducing stochastic

volatility in the law of motion of the factors and the idiosyncratic shocks. This

feature accounts for changes in the relative importance of common factors and of

idiosyncratic shocks. Both loadings and volatilities evolve according to a random

walk without drift as in Cogley and Sargent (2005b). Del Negro and Otrok (2008)

apply this model to study the time-varying nature of international business cycles,

in the attempt to determine whether the Great Moderation has country-specific or

international roots. Mumtaz and Surico (2008) introduce time-variation in the law

of motion of the factors (but not in any of the other parameters) and use their model

to study cross-country inflation data.

Hierarchical factors: Ng, Moench, and Potter (2008) pursue a modeling strategy

di↵erent from the one outlined in Section 6.2.1. Their approach entails building a

hierarchical set of factor models, where the hierarchy is determined by the level of

aggregation. For concreteness, in the study of international business cycles – the

application discussed in the previous section – the three levels of aggregation are

country, regional, and world. Only the most disaggregated factors – the country-

level factors – would appear in the measurement equation (112). In turn, the country

factors evolve according to a factor model in which the common components are the

factors at the next level of aggregation (the regional factors). Similarly, the regional

factors evolve according to a factor model in which the common components are the

the world factors. This approach is more parsimonious than the one used by Kose,

Otrok, and Whiteman (2003).

Combining DSGE Models and Factor Models: Boivin and Giannoni (2006a)

estimate a DSGE-DFM that equates the latent factors with the state variables
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of a DSGE model. Accordingly, the factor dynamics are therefore subject to the

restrictions implied by the DSGE model and take the form

f
t

= �1(✓DSGE

)f
t�1 + �

✏

(✓
DSGE

)✏
t

, (129)

where the vector f
t

now comprises the minimal set of state variables associated

with the DSGE model and ✓
DSGE

is the vector of structural DSGE model param-

eters. In the context of the simple stochastic growth model analyzed in Section 4,

this vector would contain the capital stock as well as the two exogenous processes.

Equation (129) is then combined with measurement equations of the form (112).

Since in the DSGE-DFM the latent factors have a clear economic interpretation, it

is in principle much easier to elicit prior distributions for the loadings �
i

. For in-

stance, suppose y
i,t

corresponds to log GDP. The solution of the stochastic growth

model delivers a functional relationship between log GDP and the state variables of

the DSGE model. This relationship can be used to center a prior distribution for

�
i

. Details of how to specify such a prior can be found in Kryshko (2010).

As before, define ✓
i

= [a
i

,�
i

,�
i

,�
i,1, . . . ,�i,p

]0, i = 1, . . . , n. Inference in a DSGE-

DFM can be implemented with a Metropolis-within-Gibbs sampler that iterates

over (i) the conditional posterior distributions of {✓
i

}n

i=1 given (F1:T , ✓
DSGE

, Y1:T );

(ii) the conditional distribution of F1:T given ({✓
i

}n

i=1, ✓DSGE

, Y1:T ); and (iii) the

distribution of ✓
DSGE

given ({✓
i

}n

i=1, Y1:T ). Steps (i) and (ii) resemble Steps 1 and 3

in Algorithm 6.1, whereas Step (iii) can be implemented with a modified version of

the Random-Walk-Metropolis step described in Algorithm 4.1. Details are provided

in Boivin and Giannoni (2006a) and Kryshko (2010).

Boivin and Giannoni (2006a) use their DSGE-DFM to relate DSGE model vari-

ables such as aggregate output, consumption, investment, hours worked, wages,

inflation, and interest rates to multiple observables, that is, multiple measures of

employment and labor usage, wage rates, price inflation, and so forth. Using multi-

ple (noisy) measures implicitly allows a researcher to obtain a more precise measure

of DSGE model variables – provided the measurement errors are approximately in-

dependent – and thus sharpens inference about the DSGE model parameters and

the economic state variables, as well as the shocks that drive the economy. Kryshko

(2010) documents that the space spanned by the factors of a DSGE-DFM is very

similar to the space spanned by factors extracted from an unrestricted DFM. He

then uses the DSGE-DFM to study the e↵ect of unanticipated changes in technology
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and monetary policy, which are elements of the vector ✏
t

in (129), on a large cross

section of macroeconomic variables.

7 Model Uncertainty

The large number of vector autoregressive and dynamic stochastic general equilib-

rium models encountered thus far, combined with great variation in the implications

for policy across models, makes the problem of model uncertainty a compelling one

in macroeconometrics. More specifically, in the context of VARs there is uncertainty

about the number of lags and cointegration relationships as well as appropriate re-

strictions for identifying policy rules or structural shocks. In the context of a DSGE

model, a researcher might be uncertain whether price stickiness, wage stickiness,

informational frictions, or monetary frictions are quantitatively important for the

understanding of business-cycle fluctuations and should be accounted for when de-

signing monetary and fiscal policies. In view of the proliferation of hard-to-measure

coe�cients in time-varying parameter models, there is uncertainty about the impor-

tance of such features in empirical models. Researchers working with dynamic factor

models are typically uncertain about the number of factors necessary to capture the

comovements in a cross section of macroeconomic or financial variables.

In a Bayesian framework, a model is formally defined as a joint distribution of

data and parameters. Thus, both the likelihood function p(Y |✓(i),Mi

) and the prior

density p(✓(i)|Mi

) are part of the specification of a model M
i

. Model uncertainty

is conceptually not di↵erent from parameter uncertainty, which is illustrated in the

following example.

Example 7.1: Consider the two (nested) models:

M1 : y
t

= u
t

, u
t

⇠ iidN(0, 1),

M2 : y
t

= ✓(2)xt

+ u
t

, u
t

⇠ iidN(0, 1), ✓(2) ⇠ N(0, 1).

Here M1 restricts the regression coe�cient ✓(2) in M2 to be equal to zero. Bayesian

analysis allows us to place probabilities on the two models, denoted by ⇡
i,0. Suppose

we assign prior probability ⇡1,0 = � to M1. Then the mixture of M1 and M2 is

equivalent to a model M0

M0 : y
t

= ✓(0)xt

+u
t

, u
t

⇠ iidN(0, 1), ✓(0) ⇠
(

0 with prob. �

N(0, 1) with prob. 1� �
. ⇤



Del Negro, Schorfheide – Bayesian Macroeconometrics: April 18, 2010 91

In principle, one could try to construct a prior distribution on a su�ciently large

parameter space such that model uncertainty can be represented as parameter un-

certainty. However, as evident from the example, this prior distribution would have

to assign nonzero probability to certain lower-dimensional subspaces, which compli-

cates the computation of the posterior distribution. Thus, in most of the applica-

tions considered in this chapter such an approach is impractical, and it is useful to

regard restricted versions of a large encompassing model as models themselves, for

example VARs of lag length p = 1, . . . , p
max

and cointegration rank r = 1, . . . , n or

a collection of linearized DSGE models, which can all be nested in an unrestricted

state-space model.

The remainder of this section is organized as follows. Section 7.1 discusses the

computation of posterior model probabilities and their use in selecting among a

collection of models. Rather than first selecting a model and then conditioning on

the selected model in the subsequent analysis, it may be more desirable to average

across models and to take model uncertainty explicitly into account when making

decisions. We use a stylized optimal monetary policy example to highlight this point

in Section 7.2. In many macroeconomic applications, in particular those that are

based on DSGE models, posterior model probabilities are often overly decisive, in

that one specification essentially attains posterior probability one and all other spec-

ifications receive probability zero. These decisive probabilities found in individual

studies are di�cult to reconcile with the variation in results and model rankings

found across di↵erent studies and therefore are in some sense implausible. In view

of potentially implausible posterior model probabilities, a decision maker might be

inclined to robustify her decisions. These issues are discussed in Section 7.3.

7.1 Posterior Model Probabilities and Model Selection

Suppose we have a collection of M models denoted by M1 through M
M

. Each

model has a parameter vector ✓(i), a proper prior distribution p(✓(i)|Mi

) for the

model parameters, and prior probability ⇡
i,0. The posterior model probabilities are

given by

⇡
i,T

=
⇡

i,0p(Y1:T |Mi

)
P

M

j=1 ⇡
j,0p(Y1:T |Mj

)
, p(Y1:T |Mi

) =
Z

p(Y1:T |✓(i),Mi

)p(✓(i)|Mi

)d✓(i),

(130)
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where p(Y1:T |Mi

) is the marginal likelihood or data density associated with model

M
i

. As long as the likelihood functions p(Y1:T |✓(i),Mi

) and prior densities p(✓(i)|Mi

)

are properly normalized for all models, the posterior model probabilities are well de-

fined. Since for any model M
i

ln p(Y1:T |Mi

) =
TX

t=1

ln
Z

p(y
t

|✓(i), Y1,t�1,Mi

)p(✓(i)|Y1,t�1,Mi

)d✓(i), (131)

log marginal likelihoods can be interpreted as the sum of one-step-ahead predictive

scores. The terms on the right-hand side of (131) provide a decomposition of the

one-step-ahead predictive densities p(y
t

|Y1,t�1,Mi

). This decomposition highlights

the fact that inference about the parameter ✓(i) is based on time t� 1 information,

when making the prediction for y
t

. The predictive score is small whenever the

predictive distribution assigns a low density to the observed y
t

. It is beyond the

scope of this chapter to provide a general discussion of the use of posterior model

probabilities or odds ratios for model comparison. A survey is provided by Kass

and Raftery (1995). In turn, we shall highlight a few issues that are important in

the context of macroeconometric applications.

We briefly mentioned in Sections 2.2 (hyperparameter choice for Minnesota prior)

and 4.3 (prior elicitation for DSGE models) that in practice priors are often based

on presample (or training sample) information. Since in time-series models obser-

vations have a natural ordering, we could regard observations Y1:T ⇤ as presample

and p(✓|Y1:T ⇤) as a prior for ✓ that incorporates this presample information. Condi-

tional on Y1:T ⇤ , the marginal likelihood function for subsequent observations Y
T

⇤+1:T

is given by

p(Y
T

⇤+1:T |Y1:T ⇤) =
p(Y1:T )
p(Y1:T ⇤)

=
Z

p(Y
T

⇤+1:T |Y1:T ⇤ , ✓)p(✓|Y1:T ⇤)d✓. (132)

The density p(Y
T

⇤+1:T |Y1:T ⇤) is often called predictive (marginal) likelihood and

can replace the marginal likelihood in (130) in the construction of posterior model

probabilities, provided the prior model probabilities are also adjusted to reflect the

presample information Y1:T ⇤ . As before, it is important that p(✓|Y1:T ⇤) be a proper

density. In the context of a VAR, a proper prior could be obtained by replacing

the dummy observations Y ⇤ and X⇤ with presample observations. Two examples of

papers that use predictive marginal likelihoods to construct posterior model prob-

abilities are Schorfheide (2000), who computes posterior odds for a collection of

VARs and DSGE models, and Villani (2001), who uses them to evaluate lag length
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and cointegration rank restrictions in vector autoregressive models. A more detailed

discussion of predictive likelihoods can be found in Geweke (2005). An application

of predictive likelihoods to forecast combination and model averaging is provided by

Eklund and Karlsson (2007).

While the calculation of posterior probabilities is conceptually straightforward, it

can be computationally challenging. There are only a few instances, such as the

VAR model in (1) with conjugate MNIW prior, in which the marginal likelihood

p(Y ) =
R

p(Y |✓)p(✓)d✓ can be computed analytically. In fact, for priors represented

through dummy observations the formula is given in (15). We also mentioned in Sec-

tion 4.7.1 that for a DSGE model, or other models for which posterior draws have

been obtained using the RWM Algorithm, numerical approximations to marginal

likelihoods can be obtained using Geweke (1999)’s modified harmonic mean estima-

tor or the method proposed by Chib and Jeliazkov (2001). A more detailed discus-

sion of numerical approximation techniques for marginal likelihoods is provided in

Chib (This Volume). Finally, marginal likelihoods can be approximated analytically

using a so-called Laplace approximation, which approximates ln p(Y |✓) + ln p(✓) by

a quadratic function centered at the posterior mode or the maximum of the like-

lihood function. The most widely used Laplace approximation is the one due to

Schwarz (1978), which is known as Schwarz Criterion or Bayesian Information Cri-

terion (BIC). Phillips (1996) and Chao and Phillips (1999) provide extensions to

nonstationary time-series models and reduced-rank VARs.

Schorfheide (2000) compares Laplace approximations of marginal likelihoods for

two small-scale DSGE models and bivariate VARs with 2-4 lags to numerical approx-

imations based on a modified harmonic mean estimator. The VARs were specified

such that the marginal likelihood could be computed exactly. The approximation

error of the numerical procedure was at most 0.02 for log densities, whereas the

error of the Laplace approximation was around 0.5. While the exact marginal likeli-

hood was not available for the DSGE models, the discrepancy between the modified

harmonic mean estimator and the Laplace approximation was around 0.1 on a log

scale. While the results reported in Schorfheide (2000) are model and data specific,

the use of numerical procedures to approximate marginal likelihood functions is

generally preferable for two reasons. First, posterior inference is typically based on

simulation-based methods, and the marginal likelihood approximation can often be

constructed from the output of the posterior simulator with very little additional ef-

fort. Second, the approximation error can be reduced to a desired level by increasing
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the number of parameter draws upon which the approximation is based.

Posterior model probabilities are often used to select a model specification upon

which any subsequent inference is conditioned. While it is generally preferable to

average across all model specifications with nonzero posterior probability, a model

selection approach might provide a good approximation if the posterior probability

of one model is very close to one, the probabilities associated with all other speci-

fications are very small, and the loss of making inference or decisions based on the

highest posterior probability model is not too large if one of the low probability mod-

els is in fact correct. We shall elaborate on this point in Example 7.2 in Section 7.2.

A rule for selecting one out of M models can be formally derived from the following

decision problem. Suppose that a researcher faces a loss of zero if she chooses the

“correct” model and a loss of ↵
ij

> 0 if she chooses model M
i

although M
j

is

correct. If the loss function is symmetric in the sense that ↵
ij

= ↵ for all i 6= j,

then it is straightforward to verify that the posterior expected loss is minimized by

selecting the model with the highest posterior probability. A treatment of model

selection problems under more general loss functions can be found, for instance, in

Bernardo and Smith (1994).

If one among the M models M1, . . . ,MM

is randomly selected to generate a

sequence of observations Y1:T , then under fairly general conditions the posterior

probability assigned to that model will converge to one as T �! 1. In this sense,

Bayesian model selection procedures are consistent from a frequentist perspective.

An early version of this result for general linear regression models was proved by

Halpern (1974). The consistency result remains valid if the marginal likelihoods

that are used to compute posterior model probabilities are replaced by Laplace ap-

proximations (see, for example, Schwarz (1978) and Phillips and Ploberger (1996)).

These Laplace approximations highlight the fact that log marginal likelihoods can

be decomposed into a goodness-of-fit term, comprising the maximized log likelihood

function max
✓(i)2⇥(i)

ln p(Y1:T |✓(i),Mi

) and a term that penalizes the dimensional-

ity, which in case of Schwarz’s approximation takes the form of�(k
i

/2) ln T , where k
i

is the dimension of the parameter vector ✓(i). Moreover, the consistency is preserved

in nonstationary time-series models. Chao and Phillips (1999), for instance, prove

that the use of posterior probabilities leads to a consistent selection of cointegration

rank and lag length in vector autoregressive models.
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7.2 Decision Making and Inference with Multiple Models

Economic policy makers are often confronted with choosing policies under model

uncertainty.6 Moreover, policy decisions are often made under a fairly specific loss

function that is based on some measure of welfare. This welfare loss function might

either be fairly ad-hoc – for example, the variability of aggregate output and inflation

– or micro-founded albeit model-specific – for instance, the utility of a representative

agent in a DSGE model. The optimal decision from a Bayesian perspective is

obtained by minimizing the expected loss under a mixture of models. Conditioning

on the highest posterior probability model can lead to suboptimal decisions. At

a minimum, the decision maker should account for the loss of a decision that is

optimal under M
i

, if in fact one of the other models M
j

, j 6= i, is correct. The

following example provides an illustration.

Example 7.2: Suppose that output y
t

and inflation ⇡
t

are related to each other

according to one of the two Phillips curve relationships

M
i

: y
t

= ✓(M
i

)⇡
t

+ ✏
s,t

, ✏
s,t

⇠ iidN(0, 1), i = 1, 2, (133)

where ✏
s,t

is a cost (supply) shock. Assume that the demand side of the economy

leads to the following relationship between inflation and money m
t

:

⇡
t

= m
t

+ ✏
d,t

, ✏
d,t

⇠ iidN(0, 1), (134)

where ✏
d,t

is a demand shock. Finally, assume that up until period T monetary

policy was m
t

= 0. All variables in this model are meant to be in log deviations

from some steady state.

In period T , the central bank is considering a class of new monetary policies,

indexed by �:

m
t

= �✏
d,t

+ �✏
s,t

. (135)

� controls the strength of the central bank’s reaction to supply shocks. This class

of policies is evaluated under the loss function

eL
t

= (⇡2
t

+ y2
t

). (136)
6Chamberlain (This Volume) studies the decision problem of an individual who chooses between

two treatments from a Bayesian perspective.
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If one averages with respect to the distribution of the supply shocks, the expected

period loss associated with a particular policy � under model M
i

is

L(M
i

, �) = (�✓(M
i

) + 1)2 + �2. (137)

To provide a numerical illustration, we let

✓(M1) = 1/10, ✓(M2) = 1, ⇡1,T

= 0.61, ⇡2,T

= 0.39.

Here, ⇡
i,T

denotes the posterior probability of model M
i

at the end of period T .

We will derive the optimal decision and compare it with two suboptimal procedures

that are based on a selection step.

First, from a Bayesian perspective it is optimal to minimize the posterior risk

(expected loss), which in this example is given by

R(�) = ⇡1,T

L(M1, �) + ⇡2,T

L(M2, �). (138)

A straightforward calculation leads to �⇤ = argmin
�

R(�) = �0.32 and the posterior

risk associated with this decision is R(�⇤) = 0.85. Second, suppose that the policy

maker had proceeded in two steps: (i) select the highest posterior probability model;

and (ii) conditional on this model, determine the optimal choice of �. The highest

posterior probability model is M1, and, conditional on M1, it is optimal to set

�⇤(M1) = �0.10. The risk associated with this decision is R(�⇤(M1)) = 0.92,

which is larger than R(�⇤) and shows that it is suboptimal to condition the decision

on the highest posterior probability model. In particular, this model-selection-based

procedure completely ignores the loss that occurs if in fact M2 is the correct model.

Third, suppose that the policy maker relies on two advisorsA1 andA2. AdvisorA
i

recommends that the policy maker implement the decision �⇤(M
i

), which minimizes

the posterior risk if only model M
i

is considered. If the policy maker implements the

recommendation of advisor A
i

, taking into account the posterior model probabilities

⇡
i,T

, then Table 4 provides the matrix of relevant expected losses. Notice that

there is a large loss associated with �⇤(M2) if in fact M1 is the correct model.

Thus, even though the posterior odds favor the model entertained by A1, it is

preferable to implement the recommendation of advisor A2 because R(�⇤(M2)) <

R(�⇤(M1)). However, while choosing between �⇤(M1) and �⇤(M2) is preferable to

conditioning on the highest posterior probability model, the best among the two

decisions, �⇤(M2), is inferior to the optimal decision �⇤, obtained by minimizing
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Table 4: Expected Losses

Decision M1 M2 Risk R(�)

�⇤ = �0.32 1.04 0.56 0.85

�⇤(M1) = �0.1 0.99 0.82 0.92

�⇤(M2) = �0.5 1.15 0.50 0.90

the overall posterior expected loss. In fact, in this numerical illustration the gain

from averaging over models is larger than the di↵erence between R(�⇤(M1)) and

R(�⇤(M2)). ⇤

In more realistic applications, the two simple models would be replaced by more

sophisticated DSGE models. These models would themselves involve unknown pa-

rameters. Cogley and Sargent (2005a) provide a nice macroeconomic illustration

of the notion that one should not implement the decision of the highest posterior

probability model if it has disastrous consequences in case one of the other models

is correct. The authors consider a traditional Keynesian model with a strong output

and inflation trade-o↵ versus a model in which the Phillips curve is vertical in the

long run. According to Cogley and Sargent’s analysis, the posterior probability of

the Keynesian model was already very small by the mid-1970s, and the natural rate

model suggested implementing a disinflation policy. However, the costs associated

with this disinflation were initially very high if, in fact, the Keynesian model pro-

vided a better description of the U.S. economy. The authors conjecture that this

consideration may have delayed the disinflation until about 1980.

Often, loss depends on future realizations of y
t

. In this case, predictive distribu-

tions are important. Consider, for example, a prediction problem. The h-step-ahead

predictive density is given by the mixture

p(y
T+h

|Y1:T ) =
MX

i=1

⇡
i,T

p(y
T+h

|Y1:T ,M
i

). (139)

Thus, p(y
T+h

|Y1:T ) is the result of the Bayesian averaging of model-specific predic-

tive densities p(y
T+h

|Y1:T ). Notice that only if the posterior probability of one of the

models is essentially equal to one, conditioning on the highest posterior probability

leads to approximately the same predictive density as model averaging. There exists

an extensive literature on applications of Bayesian model averaging. For instance,
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Min and Zellner (1993) use posterior model probabilities to combine forecasts, and

Wright (2008) uses Bayesian model averaging to construct exchange rate forecasts.

If the goal is to generate point predictions under a quadratic loss function, then it is

optimal to average posterior mean forecasts from the M models, using the posterior

model probabilities as weights. This is a special case of Bayesian forecast combi-

nation, which is discussed in more general terms in Geweke and Whiteman (2006).

Strachan and van Dijk (2006) average across VARs with di↵erent lag lengths and

cointegration restrictions to study the dynamics of the Great Ratios.

If the model space is very large, then the implementation of model averaging can

be challenging. Consider the empirical Illustration 2.1, which involved a 4-variable

VAR with 4 lags, leading to a coe�cient matrix � with 68 elements. Suppose one

constructs submodels by restricting VAR coe�cients to zero. Based on the exclu-

sion of parameters, one can in principle generate 268 ⇡ 3 · 1020 submodels. Even if

one restricts the set of submodels by requiring that a subset of the VAR coe�cients

are never restricted to be zero and one specifies a conjugate prior that leads to an

analytical formula for the marginal likelihoods of the submodels, the computation

of posterior probabilities for all submodels can be a daunting task. As an alter-

native, George, Ni, and Sun (2008) develop a stochastic search variable selection

algorithm for a VAR that automatically averages over high posterior probability

submodels. The authors also provide detailed references to the large literature on

Bayesian variable selection in problems with large sets of potential regressors. In

a nutshell, George, Ni, and Sun (2008) introduce binary indicators that determine

whether a coe�cient is restricted to be zero. An MCMC algorithm then iterates

over the conditional posterior distribution of model parameters and variable selec-

tion indicators. However, as is typical of stochastic search applications, the number

of restrictions actually visited by the MCMC simulation is only a small portion of

all possible restrictions.

Bayesian model averaging has also become popular in growth regressions following

the work of Fernandez, Ley, and Steel (2001), Sala-i Martin, Doppelhofer, and Miller

(2004), and Masanjala and Papageorgiou (2008). The recent empirical growth lit-

erature has identified a substantial number of variables that potentially explain the

rate of economic growth in a cross section or panel of countries. Since there is uncer-

tainty about exactly which explanatory variables to include in a growth regression,

Bayesian model averaging is an appealing procedure. The paper by Sala-i Martin,

Doppelhofer, and Miller (2004) uses a simplified version of Bayesian model averag-
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ing, in which marginal likelihoods are approximated by Schwarz (1978)’s Laplace

approximation and posterior means and covariances are replaced by maxima and

inverse Hessian matrices obtained from a Gaussian likelihood function.

7.3 Di�culties in Decision-Making with Multiple Models

While Bayesian model averaging is conceptually very attractive, it very much relies

on the notion that the posterior model probabilities provide a plausible characteriza-

tion of model uncertainty. Consider a central bank deciding on its monetary policy.

Suppose that a priori the policy makers entertain the possibility that either wages or

prices of intermediate goods producers are subject to nominal rigidities. Moreover,

suppose that – as is the case in New Keynesian DSGE models – these rigidities have

the e↵ect that wage (or price) setters are not able to adjust their nominal wages

(prices) optimally, which distorts relative wages (prices) and ultimately leads to the

use of an ine�cient mix of labor (intermediate goods). The central bank could use

its monetary policy instrument to avoid the necessity of wage (price) adjustments

and thereby nullify the e↵ect of the nominal rigidity.

Based on the tools and techniques in the preceding sections, one could now proceed

by estimating two models, one in which prices are sticky and wages are flexible and

one in which prices are flexible and wages are sticky. Results for such an estimation,

based on a variant of the Smets and Wouters (2007) models, have been reported,

for instance, in Table 5 of Del Negro and Schorfheide (2008). According to their

estimation, conducted under various prior distributions, U.S. data favor the sticky

price version of the DSGE model with odds that are greater than e40. Such odds are

not uncommon in the DSGE model literature. If these odds are taken literally, then

under relevant loss functions we should completely disregard the possibility that

wages are sticky. In a related study, Del Negro, Schorfheide, Smets, and Wouters

(2007) compare versions of DSGE models with nominal rigidities in which those

households (firms) that are unable to reoptimize their wages (prices) are indexing

their past price either by the long-run inflation rate or by last period’s inflation rate

(dynamic indexation). According to their Figure 4, the odds in favor of the dynamic

indexation are greater than e20, which again seems very decisive.

Schorfheide (2008) surveys a large number of DSGE model-based estimates of

price and wage stickiness and the degree of dynamic indexation. While the papers

included in this survey build on the same theoretical framework, variations in some
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details of the model specification as well as in the choice of observables lead to a

significant variation in parameter estimates and model rankings. Thus, posterior

model odds from any individual study, even though formally correct, appear to be

overly decisive and in this sense implausible from a meta perspective.

The problem of implausible odds has essentially two dimensions. First, each DSGE

model corresponds to a stylized representation of a particular economic mechanism,

such as wage or price stickiness, augmented by auxiliary mechanisms that are de-

signed to capture the salient features of the data. By looking across studies, one

encounters several representations of essentially the same basic economic mecha-

nism, but each representation attains a di↵erent time-series fit and makes posterior

probabilities appear fragile across studies. Second, in practice macroeconometri-

cians often work with incomplete model spaces. That is, in addition to the models

that are being formally analyzed, researchers have in mind a more sophisticated

structural model, which may be too complicated to formalize or too costly (in terms

of intellectual and computational resources) to estimate. In some instances, a richly

parameterized vector autoregression that is only loosely connected to economic the-

ory serves as a stand-in. In view of these reference models, the simpler specifications

are potentially misspecified. For illustrative purpose, we provide two stylized exam-

ples in which we explicitly specify the sophisticated reference model that in practice

is often not spelled out.

Example 7.3: Suppose that a macroeconomist assigns equal prior probabilities to

two stylized models M
i

: y
t

⇠ iidN(µ
i

,�2
i

), i = 1, 2, where µ
i

and �2
i

are fixed. In

addition, there is a third model M0 in the background, given by y
t

⇠ iidN(0, 1). For

the sake of argument, suppose it is too costly to analyze M0 formally. If a sequence

of T observations were generated from M0, the expected log posterior odds of M1

versus M2 would be

IE0


ln

⇡1,T

⇡2,T

�
= IE0

"
�T

2
ln�2

1 �
1

2�2
1

TX

t=1

(y
t

� µ1)2

�
 
�T

2
ln�2

2 �
1

2�2
2

TX

t=1

(y
t

� µ2)2
!#

= �T

2


ln�2

1 +
1
�2

1

(1 + µ2
1)
�

+
T

2


ln�2

2 +
1
�2

2

(1 + µ2
2)
�

,

where the expectation is taken with respect to y1, . . . , yT

under M0. Suppose that

the location parameters µ1 and µ2 capture the key economic concept, such as wage
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or price stickiness, and the scale parameters are generated through the various aux-

iliary assumptions that are made to obtain a fully specified DSGE model. If the

two models are based on similar auxiliary assumptions, that is, �2
1 ⇡ �2

2, then the

posterior odds are clearly driven by the key economic contents of the two models.

If, however, the auxiliary assumptions made in the two models are very di↵erent, it

is possible that the posterior odds and hence the ranking of models M1 and M2 are

dominated by the auxiliary assumptions, �2
1 and �2

2, rather than by the economic

contents, µ1 and µ2, of the models. ⇤

Example 7.4: This example is adapted from Sims (2003). Suppose that a re-

searcher considers the following two models. M1 implies y
t

⇠ iidN(�0.5, 0.01)

and model M2 implies y
t

⇠ iidN(0.5, 0.01). There is a third model, M0, given by

y
t

⇠ iidN(0, 1), that is too costly to be analyzed formally. The sample size is T = 1.

Based on equal prior probabilities, the posterior odds in favor of model M1 are

⇡1,T

⇡2,T

= exp
⇢
� 1

2 · 0.01
[(y1 + 1/2)2 � (y1 � 1/2)2]

�
= exp {�100y1} .

Thus, for values of y1 less than -0.05 or greater than 0.05 the posterior odds are

greater than e5 ⇡ 150 in favor of one of the models, which we shall term decisive.

The models M1 (M2) assign a probability of less than 10�6 outside the range

[�0.55, �0.45] ([0.45, 0.55]). Using the terminology of the prior predictive checks

described in Section 4.7.2, for observations outside these ranges one would conclude

that the models have severe di�culties explaining the data. For any observation

falling into the intervals (�1,�0.55], [�0.45, �0.05], [0.05, 0.45], and [0.55,1),

one would obtain decisive posterior odds and at the same time have to conclude

that the empirical observation is di�cult to reconcile with the models M1 and M2.

At the same time, the reference model M0 assigns a probability of almost 0.9 to

these intervals. ⇤

As illustrated through these two stylized examples, the problems in the use of

posterior probabilities in the context of DSGE models are essentially twofold. First,

DSGE models tend to capture one of many possible representations of a particular

economic mechanism. Thus, one might be able to find versions of these models that

preserve the basic mechanisms but deliver very di↵erent odds. Second, the models

often su↵er from misspecification, which manifests itself through low posterior prob-

abilities in view of more richly parameterized vector autoregressive models that are

less tightly linked to economic theory. Posterior odds exceeding e50 in a sample of
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120 observations are suspicious (to us) and often indicate that we should compare

di↵erent models or consider a larger model space.

Sims (2003) recommends introducing continuous parameters such that di↵erent

sub-model specifications can be nested in a larger encompassing model. The down-

side of creating these encompassing models is that it is potentially di�cult to prop-

erly characterize multimodal posterior distributions in high-dimensional parameter

spaces. Hence, a proper characterization of posterior uncertainty about the strength

of various competing decision-relevant economic mechanisms remains a challenge.

Geweke (2010) proposes to deal with incomplete model spaces by pooling mod-

els. This pooling amounts essentially to creating a convex combination of one-

step-ahead predictive distributions, which are derived from individual models. The

time-invariant weights of this mixture of models is then estimated by maximizing

the log predictive score for this mixture (see Expression (131)).

In view of these practical limitations associated with posterior model probabilities,

a policy maker might find it attractive to robustify her decision. In fact, there is

a growing literature in economics that studies the robustness of decision rules to

model misspecification (see Hansen and Sargent (2008)). Underlying this robustness

is often a static or dynamic two-person zero-sum game, which we illustrate in the

context of Example 7.2.

Example 7.2, Continued: Recall the monetary policy problem described at the

beginning of this section. Suppose scepticism about the posterior probabilities ⇡1,T

and ⇡2,T

generates some concern about the robustness of the policy decision to per-

turbations of these model probabilities. This concern can be represented through the

following game between the policy maker and a fictitious adversary, called nature:

min
�

max
q2[0,1/⇡1,T ]

q⇡1,T

L(M1, �) + (1� q⇡1,T

)L(M2, �) (140)

+
1
⌧


⇡1,T

ln(q⇡1,T

) + (1� ⇡1,T

) ln(1� q⇡1,T

)
�
.

Here, nature uses q to distort the posterior model probability of model M1. To

ensure that the distorted probability of M1 lies in the unit interval, the domain of

q is restricted to [0, 1/⇡1,T

]. The second term in (140) penalizes the distortion as a

function of the Kullback-Leibler divergence between the undistorted and distorted

probabilities. If ⌧ is equal to zero, then the penalty is infinite and nature will not

distort ⇡1,T

. If, however, ⌧ = 1, then conditional on a particular � nature will set
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Table 5: Nash Equilibrium as a Function of Risk Sensitivity ⌧

⌧ 0.00 1.00 10.0 100

q⇤(⌧) 1.00 1.10 1.43 1.60

�⇤(⌧) -0.32 -0.30 -0.19 -0.12

q = 1/⇡1,T

if L(M1, �) > L(M2, �) and q = 0 otherwise. For selected values of

⌧ , the Nash equilibrium is summarized in Table 5. In our numerical illustration,

L(M1, �) > L(M2, �) in the relevant region for �. Thus, nature has an incentive

to increase the probability of M1, and in response the policy maker reduces (in

absolute terms) her response � to a supply shock. ⇤

The particular implementation of robust decision making in Example 7.2 is very

stylized. While it is our impression that in actual decision making a central bank

is taking the output of formal Bayesian analysis more and more seriously, the final

decision about economic policies is influenced by concerns about robustness and

involves adjustments of model outputs in several dimensions. These adjustments

may reflect some scepticism about the correct formalization of the relevant economic

mechanisms as well as the availability of information that is di�cult to process in

macroeconometric models such as VARs and DSGE models.
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Figure 1: Output, Inflation, and Interest Rates
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Notes: The figure depicts U.S. data from 1964:Q1 to 2006:Q4. Output is depicted

in percentage deviations from a linear deterministic trend. Inflation and interest

rates are annualized (A%).
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Figure 2: Response to a Monetary Policy Shock

Notes: The figure depicts 90% credible bands and posterior mean responses for a

VAR(4) to a one-standard deviation monetary policy shock.
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Figure 3: Nominal Output and Investment
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Notes: The figure depicts U.S. data from 1964:Q1 to 2006:Q4.
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Figure 4: Posterior Density of Cointegration Parameter

Notes: The figure depicts Kernel density approximations of the posterior density for

B in � = [1, B]0 based on three di↵erent priors: B ⇠ N(�1, 0.01), B ⇠ N(�1, 0.1),

and B ⇠ N(�1, 1).
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Figure 5: Trends and Fluctuations

Notes: The figure depicts posterior medians and 90% credible intervals for the

common trends in log investment and output as well as deviations around these

trends. The gray shaded bands indicate NBER recessions.
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Figure 6: Aggregate Output, Hours, and Labor Productivity
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Notes: Output and labor productivity are depicted in percentage deviations from

a deterministic trend, and hours are depicted in deviations from its mean. Sample

period is 1955:Q1 to 2006:Q4.
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Figure 7: Inflation and Measures of Trend Inflation

0

2

4

6

8

10

12

14

60 65 70 75 80 85 90 95 00 05

Inflation Rate (A%)
HP Trend

Constant Mean
Mean with Breaks

Notes: Inflation is measured as quarter-to-quarter changes in the log GDP deflator,

scaled by 400 to convert it into annualized percentages (A%). The sample ranges

from 1960:Q1 to 2005:Q4.


