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C
ONSTRUCTING FORECASTS OF THE FUTURE PATH FOR ECONOMIC SERIES SUCH AS REAL

(INFLATION-ADJUSTED) GROSS DOMESTIC PRODUCT (GDP) GROWTH, INFLATION, AND UNEM-

PLOYMENT FORMS A LARGE PART OF APPLIED ECONOMIC ANALYSIS FOR BUSINESS AND GOV-

ERNMENT. THERE ARE A VARIETY OF METHODS AVAILABLE FOR GENERATING ECONOMIC

FORECASTS. ONE COMMON TYPE OF FORECAST IS A SO-CALLED JUDGMENT-BASED FORECAST. THIS TYPE OF

FORECAST IS PREDOMINANTLY THE RESULT OF A PARTICULAR FORECASTER’S SKILL AT READING THE ECO-

NOMIC TEA LEAVES, INTERPRETING ANECDOTAL EVIDENCE, AND HIS OR HER EXPERIENCE AT OBSERVING

EMPIRICAL REGULARITIES IN THE ECONOMY.
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One difficulty with judgmental forecasts, however,
is that it is hard, if not impossible, for an outside observ-
er to trace the source of systematic forecast errors be-
cause there is no formal model of how the data were
used. Moreover, the accuracy of judgmental forecasts
can be evaluated only after a track record is established.
In addition, it would not be surprising, given the element
of subjectivity in such forecasts, to find that changes in
the personnel of the forecasting staff substantially af-
fected the accuracy of judgmental forecasts.

Model-based forecasts provide an alternative. They
are easier to replicate and validate by independent
researchers than forecasts based on expert opinion alone,
and the forecaster can formally investigate the source of
systematic errors in the forecasts. An important aspect 
of a forecast from a model that quantifies future uncer-
tainty is that it allows the forecaster to give not only an 
estimate of the most likely future outcome but also a

probabilistic assessment of a range of alternative out-
comes. In this context, to say that GDP growth next year
is predicted to be 2 percent conveys somewhat less infor-
mation about the future than does saying that GDP
growth next year is most likely to be 2 percent and the
probability of negative growth is less than 10 percent.
Another advantage to employing model-based forecasts is
that the accuracy of the point forecasts from the model
can be statistically evaluated prior to using the fore-
casts. In other words, a forecast model’s performance
can be established before it is used by a decision maker.
The distinction between judgmental and model-based
forecasts cannot be pushed too far, however, because
successful model specifications also depend heavily on
the skill and ingenuity of particular individuals. No
model can be left on automatic pilot for long.1

This article describes a particular model-based fore-
casting approach. The model studied is a vector autore-
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gression (VAR) of six U.S. macroeconomic variables.
Although this model is small and highly aggregated, it
provides a convenient framework for illustrating several
practical forecasting issues. In emphasizing the practical
problems of forecasting economic data using a statistical
model, the research draws on experience in using such a
model at the Federal Reserve Bank of Atlanta. The focus
on a simple model is intended to provide potential users
with a road map of how one might implement a VAR-
based forecasting model more generally.

The article first describes some practical problems
in using a VAR model for forecasting purposes. The dis-
cussion focuses on a VAR model fitted to monthly data
having staggered release dates that uses a distributed
monthly estimate of quarterly GDP data. The article
then evaluates the relative forecast performance of var-
ious alternative specifications of the VAR and offers
conclusions based on the study’s findings.

Developing a VAR Model for Forecasting

The starting point for any forecasting project
should be the question, What is the objective of
the forecasting exercise? This question inevitably

raises additional questions, such as who will be using the
model and for what purpose the forecast will be used. A
forecaster will design a model to fit the demands of his or
her client. In essence, the end user of the forecast typi-
cally determines the variables to be incorporated into the
model.

Who Are the Clients and What Data Should Be
Forecast? The main client for models designed at the
Federal Reserve Bank of Atlanta is the bank president,
and his needs determine the model’s design. The pres-
ident serves on the Federal Open Market Committee
(FOMC), the voting body of the Fed that determines
monetary policy. To support his responsibilities in con-
tributing to policy decisions, a helpful model will be
designed to forecast the main economic aggregates of
concern to the FOMC, such as measures of inflation, of
the employment situation, and of real output.2 As in Zha
(1998), the VAR model described in this article includes
real GDP as a measure of real output, the consumer
price index (CPI) for urban households as a measure of
inflation, and the civilian unemployment rate (UR) as a
measure of unemployment. In addition, since it is con-

structed to help guide monetary policy, two monetary
variables are included—the effective federal funds rate
(FF), which is a series that the FOMC influences direct-
ly, and the M2 money stock, a series that the FOMC influ-
ences somewhat less directly. Finally, to allow a role for
commodity prices in predicting future inflation, a com-
modity price series is also included in the variables list.3

Handling Mixed-Frequency Data. The VAR model
is specified for data at a monthly frequency. But one of
the variables in the model, real GDP, is measured only
quarterly. Incorporating data of different frequencies into
a single-frequency model is a vexing problem. One simple
approach is to take all
the higher-frequency
data and convert them
to the frequency of the
lowest-frequency data,
in this case real GDP.
The estimated model
would then be a quar-
terly model in which the
other variables would
typically be averages of
the daily, weekly, or
monthly observations.
This method is a stan-
dard approach in fore-
casting models involv-
ing GDP data.

There is some evidence, however, that incorporat-
ing timely, monthly data can help forecast quarterly
data (Miller and Chin 1996; Ingenito and Trehan 1996;
Tallman and Peterson 1998).4 The ability to incorporate
high-frequency data into forecasts is perhaps one of the
main justifications for using judgmental forecasts.
However, measuring the marginal contribution of such
procedures in judgmentally adjusted forecasts is diffi-
cult because the impacts of using high-frequency data
on the forecasts cannot be clearly traced.

The technologies that are available for exploiting
monthly information for model-based forecasts of real
economic aggregates (like real GDP) take a variety of
forms. The approach taken here is to use the distribution
technique of Chow and Lin (1971) in constructing a
monthly real GDP series. The procedure uses monthly

1. Reifschneider, Stockton, and Wilcox (1997) provide a thorough discussion of the interaction between judgmental and model-
based forecasting as practiced at the Board of Governors of the Federal Reserve System.

2. For a monetary policymaker, the Humphrey-Hawkins legislation suggests that the objectives of the Fed (as legislated by
Congress) should be consistent with the federal government’s goals of full employment and low inflation.

3. Exact definitions of the series used are contained in Appendix 1.
4. Ingenito and Trehan estimate a monthly model of the U.S. economy. Miller and Chin combine forecasts of, say, one month

of a monthly series with two actual monthly observations within a quarter, to form preliminary estimates of the quarterly
observations. In essence, there are alternative ways to extract information from monthly data and incorporate it into quar-
terly forecasts. Tallman and Peterson show that incorporating timely monthly information improves the forecast accuracy
of a quarterly model for Australian GDP.

The focus on a simple
model is intended to 
provide potential users 
with a road map of how 
one might implement a
VAR-based forecasting
model more generally.
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data on variables related to GDP (specifically, industrial
production, nonagricultural payroll employment, and per-
sonal consumption expenditures) to estimate the coeffi-
cients of a regression equation for GDP at a quarterly
frequency.5 The regression is then used to construct esti-
mates of monthly real GDP in a way that ensures that the
quarterly average of the resulting monthly GDP estimates
equals the corresponding quarterly observation of GDP.

Three new values for the monthly GDP index can
be constructed with the release of GDP data for a new
quarter. GDP and the data on the monthly indicator
series are revised on a reasonably regular schedule (see

Appendix 1). Hence,
the whole index could
be reestimated every
month as the existing
quarterly GDP data and
data on the monthly
series are revised and
when a new GDP obser-
vation becomes avail-
able. A description of
how to implement this
procedure is presented
in Appendix 2.

Specification and
Estimation of the VAR.
The idea underlying
forecasting with a vec-

tor autoregression model is first to summarize the
dynamic correlation patterns among observed data
series and then use this summary to predict likely
future values for each series. Mathematically, a VAR
expresses the current value of each of m series as a
weighted average of the recent past of all the series plus
a term that contains all the other influences on the cur-
rent values. A VAR can be written compactly as

yt = n + B1 yt–1 + . . . + Bp yt–p + ut,

where yt denotes the m 3 1 vector of variables includ-
ed in the VAR for month t and where all but the interest
rate and unemployment are expressed in natural loga-
rithms.6 Notice that the m 3 1 error vector ut measures
the extent to which yt cannot be determined exactly as a
linear combination of the past values of y with weights
given by the constant coefficients n and Bl , l = 1, . . . , p.
Uncertainty about the value of ut arises because the
numbers of lagged observations of y to be included in
the VAR, p, along with the values of the coefficients are
unknown and hence will have to be estimated from the
available data. The uncertainty about ut is made opera-
tional by assuming that ut is a random vector having a
zero mean, the error covariance matrix S is positive-
definite, and ut is uncorrelated with lagged values of yt.

It is not uncommon to find that VAR models freely
fitted to data of the type used here have many estimat-
ed coefficients whose standard errors are large. Perhaps
they are large because the coefficients are actually zero
as indicated. Alternatively, the data might not be rich
enough to provide sufficiently precise estimates of nonze-
ro coefficients. If the parameters are too imprecise, then
the situation is serious because it has been observed that
large estimation uncertainty can lead to poor forecasts.7

Getting imprecise parameter estimates in a VAR is likely
to be a common practical problem because the number of
parameters is often quite large relative to the available
number of observations. For example, in the next section
of the article the VAR models are specified with p as large
as 13. With six variables in the VAR, a total of seventy-
nine coefficients would therefore be estimated in each
equation in the VAR. Various solutions to the problem of
“overfitting” VAR models have been proposed in the fore-
casting literature, and these all amount to putting prior
constraints on the values of the model’s coefficients so as
to require less information from the data when deter-
mining the coefficient values. These prior restrictions
act as nondata information regarding the coefficient
values.

One approach to reducing the coefficient uncer-
tainty is to set some coefficients to zero or other pre-
assigned values. These values may or may not have been
determined on the basis of prior fitting of models to the
data. For example, one might prespecify a maximum lag
order pmax for the VAR (pmax = 13 in the empirical analy-
sis) and select the p ≤ pmax that minimizes a specific
criterion. This criterion discounts the increase in mea-
sured in-sample fit that occurs simply because one is fit-
ting more coefficients to a fixed set of observations.
Another way that coefficient restrictions are used in a
VAR forecasting model is by predifferencing data series
that appear to exhibit trends or quite persistent local
levels over time, prior to fitting the VAR. This approach
would be mathematically the same as imposing exact
restrictions on the coefficients of a VAR in the levels of
the data.

An alternative approach is to impose inexact prior
restrictions. For example, rather than setting all lags
greater than p to zero, the VAR could be estimated in a
way that gives more weight to nonzero coefficients on
recent observations relative to those on more distant
lags but without necessarily setting the coefficients on
the more distant lags to zero. Similarly, the degree of
uncertainty about the constraints implied by prediffer-
encing the data could be incorporated explicitly into
the coefficient estimation strategy.

The methods presented in Litterman (1980, 1986),
Doan, Litterman, and Sims (1984), Sims (1992),
Kadiyala and Karlsson (1993, 1997), and Sims and Zha
(1998) are all essentially ways of imposing inexact prior

An advantage to employing
model-based forecasts is
that the accuracy of the
point forecasts from the
model can be statistically
evaluated prior to using the
forecasts.
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restrictions on the coefficients of a VAR. How closely the
prior restrictions are imposed is usually determined by
examining historical out-of-sample forecast perfor-
mance across various degrees of tightness on the prior
restrictions. The specification can be made to resemble
an exact restriction if the resulting improvement in
forecast performance warrants such a specification, but
it has been found that the best performance usually
arises by not imposing the restrictions exactly. The
implementation of various types of inexact prior restric-
tion is described in some detail in Box 1.

Handling the Staggered Timing of Data Releases.
Another data-related problem is that new data are
released at irregular intervals. For example, an average
interest rate for a month is available at the end of the
month being measured. On the other hand, a money
stock estimate for a month is not available until the mid-
dle of the following month. Moreover, although the dis-
tribution of the real GDP series puts the model data on
a monthly frequency, the new GDP observations can be
estimated only toward the end of the month after the
quarter being measured. In order to exploit monthly
data that are available on some but not all series in the
VAR, the so-called conditional forecasting technique, as
described in Doan, Litterman, and Sims (1984) and
Litterman (1984), is used. In this framework, at the end
of a particular month, say, the value for all data series
that are not yet available for that month are forecast
“conditional” upon all the variables for which observa-
tions are available for the current month. The procedure
involves first estimating the VAR model using a sample
that contains complete observations on all the variables
in the model. At the end of January, then, the VAR would
be estimated with data up to the previous December.
Then a forecast of all the variables from the VAR for
January is made as if no additional data were available.
However, the forecasts for the federal funds rate and
commodity prices must be exact because their January
values are at hand, and this information should allow
deducing more accurate forecasts of the other series
whose January values are not known. The size of the
improvement to the forecast for January will depend on
the extent to which knowing the values of January’s fed-
eral funds rate and commodity prices is useful for pre-
dicting the other series’ values for that month. This idea
can be readily extended to more complicated situations,

as occurs at the end of March when the values for the fed-
eral funds rate and commodity prices for January,
February, and March and values of M2, CPI, and unem-
ployment for January and February are available but there
is no value for first-quarter GDP.8 A simple example that
illustrates the implementation of the foregoing condition-
al forecasting procedure is presented in Box 2.

Measuring Forecast Accuracy. Evaluating the accu-
racy of forecasts is a form of accountability in the sense
that a client would presumably give more weight to a fore-
casting scheme that can generate relatively accurate fore-
casts. In addition, forecast evaluation is relevant to the
forecaster when deciding
on a model specification
for subsequent use. The
preferences or loss func-
tion of the forecast user
is key to the selection 
of the accuracy criterion.
In most forecast evalua-
tions the accuracy mea-
sures are some form of
average error, typically
root mean squared error
(RMSE) or mean ab-
solute error (MAE), but
many other possibilities
are available. For exam-
ple, the proportion of
times the direction of a change in a variable is correctly
forecast may be relevant for evaluating forecasts if, for
example, capturing turning points were viewed as of pri-
mary importance. The results reported below use the
RMSE as the accuracy criterion, but it is acknowledged
that using other forecast accuracy criteria may yield dif-
ferent model rankings.

In justifying the final specification to a client, most
forecasters would present some evidence regarding the
accuracy and reliability of the model over some historical
period. This evidence is likely to be a by-product of the
model selection process given that a forecaster will proba-
bly have spent considerable time conducting historical
out-of-sample forecasting experiments in order to tune the
model specification. In the empirical application present-
ed below, the period from 1986 to 1997 is used to examine
the forecast performance of the various VAR specifications.

5. These monthly data are the same as those used in constructing the Conference Board’s coincident index of economic activi-
ty except that this model uses consumption expenditure instead of disposable income and does not use the monthly retail
and trade sales series because it has a two-month release lag.

6. The selection of the variables included in the model implies a strong exclusion restriction on all other variables that could
have been but were not included.

7. On this point see Wallis (1989) and Fair and Shiller (1990).
8. An algorithm for implementing this procedure is available in the RATS software package. The authors have a more general

version programmed using the GAUSS language that allows a wider range of conditioning experiments. 

The idea underlying fore-
casting with a vector
autoregression model 
is first to summarize the
dynamic correlation pat-
terns among observed 
data series and then use
this summary to predict
likely future values for 
each series.
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As described in the text, a VAR model for the m 3 1 vec-

tor of observations yt has the form

yt = n + B1 yt–1 + . . . + Bp yt–p + ut , (B1)

where the coefficients n and Bl, l = 1, . . . , p, and the

covariance of ut, S, are to be estimated once a value for p

is specified. A major problem with using a VAR such as

equation (B1) for forecasting based on unrestricted OLS

estimates of the coefficients when p is moderately large is

that the coefficient values are often not very well deter-

mined in a finite set of data. Litterman (1980, 1986) dis-

cusses this problem in the context of economic series that

exhibit trends or persistent local levels and suggests an

alternative, Bayesian, method for estimating the coeffi-

cients in these cases. The idea is to treat the coefficients

as random quantities around given mean values, with the

tightness of the distributions about these prior means

determined via a set of hyperparameters. The OLS coeffi-

cient estimator is then modified to incorporate the inex-

act prior information contained in these distributions.

The main technical issues involve specifying the form of

the prior distributions and determining the form of the

estimators.

Litterman’s method is often referred to as the

Minnesota prior because of its origins at the University of

Minnesota and the Federal Reserve Bank of Minneapolis.

It is usually implemented as follows.

The prior for the individual elements of each lag coef-

ficient matrix Bl is that they are each independent, nor-

mally distributed random variables with the mean of the

coefficient matrix on the first lag, B1, equal to an identity

matrix and the mean of the elements of Bl, l > 1, equal to

zero. Notice that if these restrictions were exact then each

variable would be a random walk, possibly with nonzero

drift. While the random walk prior might be considered a

reasonable specification, there is no need to impose it exact-

ly on the VAR. In particular, the standard deviation of the

ij-th element of the l-th lag coefficient matrix Bl can be

nonzero, with these being often specified as , if i = j,

and , if i Þ j (see, for example, Sims 1992).

The parameter l1 is the prior standard deviation of

the ii-th element of B1, reflecting how closely the random

walk approximation is to be imposed. Lowering l1 toward

zero has the effect of shrinking the diagonal elements of B1

toward one and all other coefficients to zero.

It is reasonable to suppose that most of the variation in

each of the dependent variables in the VAR is accounted for

by its own lags. Thus, in each row of Bl, coefficients on lags of

other variables can be assigned smaller variance in relative

terms by choosing a value for l2 such that 0 < l2 ≤ 1.

Decreasing l2 toward zero has the effect of shrinking the off-

diagonal elements of Bl toward zero. Setting l2 to unity

means that no distinction is made between the lags of the

dependent variable and the lags of other variables.

The ratio (si /sj) is included in the prior standard

deviations to account for the differences in the units of

measurement of different variables. If the variability of yi, t

is much lower than that of yj,t, then the coefficient on yj,t–1

in the i-th equation is shrunk toward zero. In practice, the

si are usually set equal to the residual standard error from

an OLS regression of each dependent variable on p lagged

values.

The parameter l3 > 0 is used to determine the extent

to which coefficients on lags beyond the first one are like-

ly to be different from zero. As l3 increases, the coeffi-

cients on high-order lags are being shrunk toward zero

more tightly. If l3 is set to one, the rate of decay in the

weight is harmonic. For a VAR fitted to monthly data one

could choose to use a decay rate that approximates a har-

monic decay pattern at a quarterly frequency. In particular,

in a monthly VAR with p = 13 lags, rather than using l–1, the

decay could be specified as exp(cl – c) where c = –0.13412.

This approximation is depicted in Chart A, which shows

the harmonic decay pattern at a quarterly frequency (1, 1⁄2,
1⁄3, 1⁄4, 1⁄5). The approximately equivalent monthly decay is

based on p = 13 lags. Notice that this specification ensures

that for l = 13 the decay rate is exactly 1⁄5. By contrast,

assuming a harmonic decay at the monthly frequency

results in a much faster rate of decay, as the chart shows.

In fact, under the monthly harmonic decay scheme the

weight given to the coefficients on observations from five

months ago would be the same as that given to the coeffi-

cients attached to observations from thirteen months ago

under the quarterly harmonic decay approximation. The

choice of the decay pattern will undoubtedly have some

influence on the model’s forecast performance.

As for the constant term n, there are numerous ways

that an inexact prior restriction could be implemented.

Here the prior mean of the constant in the i-th equation is

taken to be zero with standard deviation sil4. As l4

decreases, the constant is shrunk toward zero.

B O X  1

Inexact Prior Restrictions in VAR Forecasting Models

λ λ
1

3/ l

σ λ λ σ λ
i j l1 2

3/
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To summarize, the Minnesota prior for the coeffi-

cients of the i-th equation of the VAR is that the coefficient

vector bi is normally distributed with mean    and covariance

. For example, if m = 2 variables and there are p = 2 lags

of each variable in the VAR, then    = (0 1 0 0 0)9 and    =

(0 0 1 0 0)9. The diagonal prior covariance matrix      has

nonzero elements (s1l4)
2,     , (s1l1l2/s2)

2, (l1/     )
2, and

[s1l1l2/(    s2)]2 while    has nonzero elements (s2l4)
2,

(s2l1l2/s1)
2,      , [s2l1l2/ (     s1)]2, and (l1/   )2.

In terms of coefficient estimation, one should note

that the usual OLS estimator of the coefficients of the i-th

equation of the VAR model in equation (B1) has the form

where yi is a T 3 1 vector with T-th element (yi,T) and X is

a T 3 (mp + 1) matrix with T-th row (1 y1,T–1
…ym,T–1

y1,T–2
…ym,T–2

…ym,T–p). In contrast, the coefficient estima-

tor, or more formally, the mean of the posterior distribution

under the Minnesota prior, is

(see, for example, Lutkepohl 1991).

Under a strict interpretation of the Minnesota prior,

the estimator of the error covariance is a diagonal matrix

with si along the diagonal and with si determined from the

data. The coefficient estimation problem is therefore sim-

plified because it avoids having to specify how the prior

distribution S is related to the prior distribution for Bl. In

practice, the diagonality restriction on S is often ignored,

and a nondiagonal estimator based on the residual sum-of-

squares matrix is used instead.

Over recent years Bayesian VAR techniques have been

developed that remove the assumption that the error

covariance matrix is fixed and diagonal (see Kadiyala and

Karlsson 1993, 1997, and Sims and Zha 1998 for a discus-

sion). For example, one could replace the Minnesota prior

with a specific form of a so-called Normal-Wishart prior.

Under a Normal-Wishart prior, the prior distribution of

coefficients (given S) is Normal while the prior distribu-

tion of S is inverse Wishart (see Drèze and Richard 1983,

539–41). This feature allows the random-walk aspect of

the Minnesota prior on the coefficients to be used without

having to take independence across the equations of the

VAR as an exact restriction.

Under the Normal-Wishart prior, the coefficient esti-

mator (the mean of the posterior distribution) has the form

where   is the prior mean of the coefficient matrix B =

(b1…bm), and is a diagonal, positive-definite matrix,

with elements defined as in Sims and Zha (1998). The cor-

responding estimator of the error covariance is

where    is the diagonal scale matrix in the prior inverse-

Wishart distribution for S. As a specific example, if m = 2

and p = 2, then vec( ) = (0 1 0 0 0 0 0 1 0 0)9;      has

(s
i
/l0)

2 along the diagonal; and    has diagonal elements

P
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(l0l4)
2, (l0l1/s1)

2, (l0l1/s2)
2, [l0l1/(  s1)]2, and 

[l0l1/(    s2)]2. The parameter, l0, can be thought of as

controlling the overall tightness of the prior on S.1

To see how this setup is related to the Minnesota prior,

note that under a Normal-Wishart prior the covariance of

coefficients has a form whereby is multiplied by each ele-

ment of  (a Kroneker product operation). Doing this mul-

tiplication yields an m(mp + 1) 3 m(mp + 1) scale

matrix whose elements are exactly the coefficient prior

variances under the Minnesota prior but with l2 = 1. This

latter restriction is required because the Normal-Wishart

prior implies a certain symmetry across the equations of

the VAR (apart from scale). In particular, it prohibits the

prior from treating lags of the dependent variable differ-

ently from lags of other variables in each equation. In a

sense the restriction on l2 is the price of being able to relax

the strong error covariance assumption of the Minnesota

prior while still being able to have an estimator that is sim-

ple to implement.2

Other types of inexact prior information have been

introduced as modifications of the Minnesota prior that

involve priors on linear combinations of the coefficients in

equation (B1). Because this modification introduces non-

zero off-diagonal terms into the prior covariance for the

individual coefficients, it is usually implemented by mixing

a set of dummy observations into the data set rather than

directly specifying the prior covariance structure. The mag-

nitude of the weight attached to the dummy observations is

used to determine the tightness of the prior restriction.

Two types of initial dummy observations are discussed

here. The first is motivated by the frequent practice of spec-

ifying a VAR model of data that contain stochastic trends

(unit roots) in first differences of the data. This specifica-

tion corresponds to the restrictions that the sums of coeffi-

cients on the lags of the dependent variable in each

equation of the VAR equal one while coefficients on lags of

other variables sum to zero. Formally, when          Bi = I, the

VAR can be written as

Dyt = n + G1 Dyt–1 +…+ Gp–1 Dyt–p+1 + ut,

where Gl = Bn and forecasts of period-to-period

changes in the variables will not be influenced at all by 

the current level of the series. To accommodate this possi-

bility, Doan, Litterman, and Sims (1984) developed the so-

called sum of coefficients prior for a VAR specified in the

levels of the data. This prior is implemented by adding a

set of m initial dummy observations to the data set. For

example, if there are m = 2 variables then there are two

sum-of-coefficients dummy observations for each equa-

tion. For the dependent variable in the first equation,

these are           while they are             for the dependent

variable in the second equation, and        is the mean of the

p presample values for variable yi. If there are p = 2 lags of

each of the two variables in the VAR, then the matrix of

dummy observations for the regressors in both equations

has the form 

A weight of m5 ≥ 0 is then attached to these dummy obser-

vations, and as m5 the estimated VAR will increasing-

ly satisfy the sum of coefficients restriction.3 Notice also

that as m5 the forecast growth rates will eventually

converge to their sample average values.

If it is supposed that each series contains a stochastic

trend, then as m5 the sum of coefficients restriction

implies that there are as many stochastic trends in the VAR

as there are variables in yt. However, it might be reason-

able to suppose that there are fewer than m stochastic

trends in the VAR, as would be the case if there were stable

long-run relations between the trending series (cointegra-

tion). Sims (1992) observed that introducing an addition-

al dummy observation could make some allowance for this

possibility. If m = 2 and p = 2, the Sims initial dummy

observation for the dependent variable in the i-th equation

is        while                                        is the vector of dummy

regressor observations. A weight of m6 ≥ 0 is then attached

to these dummy observations for each equation. If the series

individually contain stochastic trends, then as m6 in-

creasingly more weight will be put on a VAR that can be

written in a form in which all series share a single sto-

chastic trend and the intercept will be close to zero.4
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1. For given sj , it is only the products l0l1 and l0l4 that have a direct influence on the coefficient estimator.
2. GAUSS and MATLAB code for implementing this prior is available from the authors upon request.
3. It is not necessary that m5 be the same in each equation. See, for example, Miller and Roberds (1991).
4. A remaining practical question is how to select values for the hyperparameters since the quality of the forecasts will depend on these

choices. In practice, values are determined based on examining historical forecast performance across a range of parameter settings.



9. The study also examined the forecasts from a VAR in levels, where the lag length was chosen based on the AIC (denoted as OLS-
AIC). The OLS-AIC model’s accuracy is better than the unrestricted OLS model but not as good as the DOLS-AIC model. Similarly,
an unrestricted VAR in first differences (denoted as DOLS) performs better than the OLS and OLS-AIC specifications but not as
well as the DOLS-AIC model. The fact that specifications in which the lag length is selected on the basis of a penalty function out-
perform those that do not suggests that down-weighting distant lags is advantageous to forecast performance.
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plied to generate a new monthly GDP series based on
the revised data, and the VAR is fitted using the vintage
of data through to December 1997 available at the end
of March. Conditional forecasts of the unemployment
rate, CPI, and M2 are made for March, and a condition-
al forecast of GDP is made for January, February and
March. Forecasts of the quarterly and annual aver-
ages/growth rates are then constructed.

The process then repeats itself. For example, at the
end of April 1998 the commodity price index and funds
rate for April, the CPI, unemployment rate, and M2
stock for March, and a
GDP estimate for the
first quarter of the cur-
rent year are available,
and so on.

Empirical
Application

This section re-
ports the results
of using various

VAR specifications to
forecast the unemploy-
ment rate, the inflation
rate, and the rate of
growth in GDP for the
current and the next
quarter and the current and next calendar year over the
period from 1986 to 1997. This comparison is not
intended as a formal model evaluation but simply as a
demonstration that the nature of prior restrictions on a
VAR specification can have important implications for
forecast performance. The alternative specifications
considered are

• An unrestricted VAR specification in the levels of
the data, estimated by OLS, and with p = 13 im-
posed. This specification is denoted as the OLS
model.

• A VAR specification estimated by OLS, with the sum-
of-coefficients restriction imposed exactly (the data
are first-differenced) and with the lag length chosen
on the basis of the Akaike Information Criterion
(AIC) with pmax set at 13 (see Lutkepohl 1991 for a
discussion of the AIC). This specification is denoted
as the DOLS-AIC model.9

• A Litterman VAR as described in Box 1, with the
settings for the parameters of the prior standard
deviations those suggested by Litterman (1986),

Summary of the VAR Forecasting Procedure.
Assuming that the forecasts are constructed within a
few days of the end of a month, there is a simple pattern
for forecast construction across a year. In particular,
forecasts formed at the end of January, April, July, and
October all have the same structure. Those formed at
the end of February, May, August, and November all have
the same structure, and those formed at the end of
March, June, September, and December have the same
structure. As a specific example of the previous discus-
sion, it may be helpful to consider how forecasts would
have been formed at the end of January, February, and
March 1998.

January. At the end of January 1998 the commod-
ity price index and funds rate for January would be
available. The most recent quarterly GDP observation
would be the “advanced estimate” for the fourth quarter
of 1997. The latest available CPI, unemployment rate,
M2 stock, and monthly GDP data (constructed using the
Chow-Lin procedure) are all for December 1997. A VAR
is then fitted to the latest vintage of monthly data
through December 1997. Conditional forecasts of the
unemployment rate, CPI, M2, and GDP are made for
January, and with these forecasts in hand forecasts of
the quarterly average unemployment rate, inflation
rate, and rate of GDP growth are constructed, along
with corresponding forecasts of the annual averages
and growth rates.

February. At the end of February 1998 the com-
modity price index and funds rate for January and
February, the CPI, unemployment rate, and M2 stock for
January, and a GDP estimate for the preceding fourth
quarter would be in hand. The latest quarterly GDP esti-
mate for the fourth quarter of 1997 is the “preliminary
estimate.” The Chow-Lin procedure is reapplied to gen-
erate a new monthly GDP series, and the VAR is refit
using the vintage of data through December 1997, avail-
able at the end of February. Conditional forecasts of the
unemployment rate, CPI, and M2 are made for February,
and a conditional forecast of GDP is made for January
and February. Forecasts of the quarterly and annual
averages/growth rates are then constructed.

March. At the end of March 1998 the commodity
price index and funds rate for January, February, and
March, the CPI, unemployment rate, and M2 stock for
January and February, and a GDP estimate for the pre-
ceding fourth quarter would be available. The latest
quarterly GDP estimate for the fourth quarter of 1997 is
the “final estimate.” The Chow-Lin procedure is reap-

Evaluating the accuracy 
of forecasts is a form of
accountability in the sense
that a client would pre-
sumably give more weight
to a forecasting scheme
that can generate relatively
accurate forecasts.
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Afrequent problem in implementing a VAR model for

forecasting is that observations on all the variables in

the model for the current month are not available. Rather

than using a complete data set, which may involve using

relatively old data or postponing the forecast until all new

data are available, one can make a forecast of the missing

observations using the partially complete data set. If there

is significant high-frequency correlation among the

observed and yet-to-be-observed data, then this approach

should generate better forecasts of the missing observa-

tions than if that information were ignored.

As a hypothetical example of the strategy, suppose

that there is a VAR with m = 2 variables and p = 1 lag such

that each series is a random walk and the errors have unit

variance and a contemporaneous (current-period) corre-

lation of 0.25. Thus, the VAR can be written as

where, as at time t, the et are expected to be zero with

covariance equal to an identity matrix. Now suppose that

for some reason, possibly because of lags in the publication

of data, at the end of February 1998 there are observations

on y1 for December 1997 and for January and February

1998 while the only observation on y2 is for December 1997.

If T denotes December 1997, then the January and

February values are determined according to

and

With only data for December 1997 in hand, the best

guess about the future errors is zero, and hence the fore-

cast of January’s and February’s data values for variable yi

will simply be the corresponding December data values yiT.

However, this forecast ignores the fact that the January

and February values of y1: y1T+1 and y1T+2 are actually

already known. The problem is how to use this extra infor-

mation to refine the forecasts of y2T+1 and y2T+2.

Suppose the difference between the December fore-

casts of y1T+1 and y1T+2 and their actual values were

stacked in a 2 3 1 vector,

Notice that the first element of r is exactly equal to e1T+1 in

the example and the second element of r is equal to e1T+1 +

e1T+2. That is, there is only one value for e1T+1 that can

ensure that the forecast of y1T+1 satisfies the constraint,

and hence there is only one value for e1T+2 that can make

the second constraint hold. Denote as e the 4 3 1 vector of

stacked error terms,

e = (e1T+1 e2T+1 e1T+2 e2T+2)9,

and let R be a 2 3 4 matrix,

where the first row of R gives the relationship between the

first element of r and e while the second row gives the rela-

tionship between the second element of r and e. The result

is a system of equations of the form r = Re to solve for e, and

in general there will be an infinity of possible solutions.1

However, Doan, Litterman, and Sims (1984) showed

that a unique vector of forecast errors that both satisfy the

constraints and minimize the sum of squared errors e9e is

given by ê = R9(RR9)–1r . In a least-squares sense this is the

most likely set of values for the forecast errors. In the

example this solution yields

ê = (ê1T+1 0  ê1T+2 0)9,

where ê1T+1 = y1T+1 – y1T and ê1T+2 = y1T+2 – y1T – ê1T+1.

Finally, substituting the elements of ê back into the VAR

yields modified, or conditional, forecasts. In particular,

instead of using y1T as the forecast of y1T+j for j = 1, 2, their

actual known values would be used, and rather than using

y2T as the forecast of y2T+j, y2T + 0.5ê1T+1 and y2T + 0.5(ê1T+1

+ ê1T+2) would be used, respectively.

Although designed to handle incomplete data matrix-

es in a VAR model, this procedure can also be extended to

allow for conditioning on assumed future paths for vari-

ables in the model by simply treating these as known data.

For example, in September 1998 one might wish to condi-

tion on GDP growth to be an annualized 2 percent per quar-

ter for the current and the next quarter. Doing so would
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1. In general, R is of dimension n 3 (mk), where n is the number of constraints to be satisfied and k is the maximum number of
months the constraints are imposed.

2. This strategy assumes that one does not want to incorporate additional information as to the underlying source of the 2 percent
GDP growth. See Litterman (1984) and Waggoner and Zha (1998) for a discussion on this point.

that is, l1= 0.2, l2 = 0.2, and l3 = 1, with l4 set 
as 0.3.

• A modified Litterman VAR that uses the base
Litterman settings but also incorporates sum-of-
coefficients and cointegration dummy observations
described in Box 1, with weights m5 = 5 and m6 = 5,
respectively.

• The VAR specification used in Waggoner and Zha
(1998) and Zha (1998) and described in Box 1.
Following Waggoner and Zha the prior standard
deviation parameter values are set at l0 = 0.6, 
l1= 0.1, l2= 1, l3= 1, l4= 0.1, m5= 5 and m6 = 5.
This model is denoted as the ZVAR model.

• A partial ZVAR specification that uses the base para-
meter settings of the ZVAR model but shuts off the
dummy observations by setting m5= 0 and m6 = 0.

Each non-OLS specification uses the monthly approxi-
mation to a quarterly harmonic lag decay pattern as dis-
cussed in Box 1.

Robertson and Tallman (1998) describe how a true
real-time forecast experiment would involve using exact-
ly the data series available at the time the forecasts were
made, together with a model specification and coeffi-
cients determined using these data. The results reported
below are obtained by using the real-time vintage of his-
torical data to construct the forecasts and a recent vin-
tage of data (as of July 1998) to evaluate the forecasts.
However, because the parameter setting for the ZVAR
specification was chosen on the basis of out-of-sample
forecast performance, the study does not accurately
replicate real-time forecasts. In particular, a forecaster in
1986 would not have been able to use the post-1986 fore-
cast performance to guide the model specification.

For each VAR specification a maximum of p = 13
lagged observations of the six variables in yt are includ-

ed in each equation. The VAR is first fit to data for the
period from February 1960 to December 1985, with the
thirteen presample values being those for January 1959
to January 1960. The VAR is reestimated (and lag length
reselected in the case of the DOLS-AIC model) every
three months through December 1997, and in doing so
the coefficient estimates can vary in response to new
data and revisions to existing data. As described in the
previous section, each time the model is reestimated,
(conditional) forecasts of the unemployment rate,
inflation, and GDP growth are generated for the current
and the two subsequent quarters, as well as forecasts
for the current and each of the two subsequent calendar
years. Pooling the forecast errors for each period (quar-
ter or year) yields a set of 144 current-quarter forecasts,
141 next-quarter forecasts, 138 subsequent-quarter
forecasts, 144 current-year forecasts, 132 forecasts for
the next calendar year, and 120 forecasts for the calen-
dar year after next. Each model’s forecast accuracy is
evaluated on the basis of the RMSE statistic.

Forecast Results. The RMSE results are reported
in Table 1. The numbers in parentheses give the ratio of
the RMSE of the associated model to the RMSE of the
ZVAR forecasts at each horizon. A value greater than
one for this ratio means that the RMSE of the given
model is larger than for the ZVAR forecasts, indicating
that those forecasts are less accurate. The modified
Litterman model generally produces the smallest RMSE
values across variables and forecast horizons. However,
the ZVAR model is only slightly less accurate overall.
The DOLS-AIC model also performs very well for the
inflation and GDP growth forecasts but generates rela-
tively poor unemployment forecasts. The basic Litterman
and partial ZVAR models are ranked next in terms of
accuracy, and the unrestricted OLS model is clearly

introduce two constraints (one for each quarter) into the

VAR to be spread across six months.2

Waggoner and Zha (1998) observe that, although ê are

the most likely outcomes for the forecast errors, one can

also allow for the fact that over the constraint period

(January and February in the example) the values of the

nonconstrained errors will not necessarily be zero. In par-

ticular, the stacked forecast errors will be randomly dis-

tributed with mean ê and a singular covariance matrix

given by I – R9(RR9)–1R. This result can be used to gener-

ate error bands for the conditional forecasts by repeatedly

simulating observations from this distribution. The reader

is referred to Waggoner and Zha for additional details relat-

ing to conditional forecasting in this context and for meth-

ods for accounting for uncertainty about the true values of

the model’s coefficients in these simulations.
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dominated by all the others. The results are described
in more detail below.10

Unemployment. The modified Litterman model gen-
erates the most accurate unemployment forecasts of any
of the alternative forecast schemes considered here.
However, the ZVAR model performs quite well, having an
RMSE no more than 5 percent higher than the modified
Litterman model. The Litterman and partial ZVAR mod-
els’ forecasts are essentially equivalent, but each per-
formed worse than either the ZVAR or modified
Litterman models. For example, for the one-year annual
forecast, the RMSE from the Litterman specification is 14
percent higher than from the ZVAR model, and the RMSE
from the partial ZVAR model is 10 percent higher. The
DOLS-AIC is the next best performing specification, but
it has an RMSE more than 30 percent higher than the
ZVAR for one- and two-year annual forecasts. The OLS
model performs very poorly for any variable over any 
horizon other than the current quarter. For each of the
one- and two-year annual forecasts the RMSE is over 40
percent higher than for the ZVAR model.

CPI Inflation. The ZVAR and modified Litterman
specifications generate almost equally accurate infla-

tion forecasts at all horizons, with the relative RMSEs dif-
fering by no more than 3 percent. The DOLS-AIC specifi-
cation is marginally more accurate than either the ZVAR
or modified Litterman model at the two-quarter and the
one-year horizons. But the improvement in RMSE is no
more than 3 percent over the ZVAR benchmark. The par-
tial ZVAR generates somewhat worse forecasts than the
Litterman model, especially for annual forecasts. More
notably, the RMSE for the partial ZVAR is almost 40 per-
cent higher than for the ZVAR model for two-year annu-
al forecasts. The OLS model generates by far the
worst-performing inflation forecasts, with an RMSE 132
percent higher than the ZVAR model for two-year annu-
al forecasts.

GDP Growth. The ZVAR and modified Litterman
specifications generate almost equally accurate fore-
casts of GDP growth, with the RMSEs differing by no
more than 5 percent. The DOLS-AIC specification also
yields almost the same forecast accuracy for the annual
forecasts, and it has an RMSE that is no more than 8
percent higher than the ZVAR model for the quarterly
forecasts. The Litterman and partial ZVAR models are
the next most accurate, but each have RMSEs that are

T A B L E  1 RMSE of VAR Forecasts 1986–97a

Current Quarter First Quarter Second Quarter Current Year First Year Second Year

Unemployment

OLS 0.190 (1.25) 0.367 (1.30) 0.546 (1.33) 0.261 (1.54) 0.920 (1.42) 1.435 (1.46)
DOLS-AIC 0.161 (1.06) 0.324 (1.15) 0.519 (1.26) 0.202 (1.20) 0.879 (1.36) 1.377 (1.40)
Litterman 0.160 (1.05) 0.306 (1.10) 0.449 (1.09) 0.220 (1.30) 0.740 (1.14) 1.089 (1.10)
Modified Litterman 0.151 (0.99) 0.277 (0.98) 0.398 (0.97) 0.166 (0.98) 0.619 (0.96) 0.940 (0.95)
ZVAR 0.152 0.282 0.411 0.169 0.647 0.986
Partial ZVAR 0.159 (1.05) 0.302 (1.07) 0.439 (1.05) 0.216 (1.28) 0.718 (1.10) 1.069 (1.08)

CPI Inflation

OLS 1.216 (1.30) 2.105 (1.38) 2.207 (1.39) 0.552 (1.34) 1.719 (1.56) 2.560 (2.32)
DOLS-AIC 1.076 (1.15) 1.701 (1.12) 1.541 (0.97) 0.444 (1.08) 1.074 (0.98) 1.106 (1.00)
Litterman 0.973 (1.04) 1.737 (1.14) 1.787 (1.12) 0.472 (1.15) 1.227 (1.12) 1.451 (1.32)
Modified Litterman 0.920 (0.99) 1.523 (1.00) 1.616 (1.02) 0.400 (0.97) 1.106 (1.00) 1.133 (1.03)
ZVAR 0.933 1.524 1.590 0.411 1.099 1.102
Partial ZVAR 0.999 (1.07) 1.783 (1.17) 1.826 (1.15) 0.495 (1.20) 1.336 (1.21) 1.519 (1.38)

GDP Growth

OLS 2.819 (1.32) 3.122 (1.52) 2.982 (1.39) 0.954 (1.35) 2.156 (1.48) 2.509 (1.49)
DOLS-AIC 2.266 (1.06) 2.140 (1.04) 2.322 (1.08) 0.696 (0.99) 1.465 (1.00) 1.641 (0.98)
Litterman 2.340 (1.09) 2.332 (1.13) 2.459 (1.15) 0.800 (1.13) 1.776 (1.22) 1.878 (1.12)
Modified Litterman 2.237 (1.05) 2.036 (0.99) 2.133 (0.99) 0.710 (1.00) 1.430 (0.98) 1.621 (0.96)
ZVAR 2.141 2.058 2.147 0.706 1.456 1.681
Partial ZVAR 2.250 (1.05) 2.351 (1.14) 2.447 (1.14) 0.785 (1.11) 1.775 (1.22) 1.919 (1.14)

a The numbers in parentheses give the ratio of the RMSE of the associated model to the RMSE of the ZVAR forecasts at each
horizon. A value greater than one means that the RMSE of the given model is larger than for the ZVAR forecasts, indicating that
the given model’s forecast is less accurate than the ZVAR forecasts.

Sources: Unemployment and CPI, Bureau of Labor Statistics; GDP, Bureau of Economic Analysis
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10. The impact of conducting a real-time forecasting experiment is most noticeable in the short-term GDP forecasts. In particu-
lar, the quarterly GDP forecasts can be more accurate one or two quarters ahead than they are for the current quarter.
However, when the same experiment is conducted using the July 1998 vintage of historical data throughout, the forecast
accuracy uniformly declines as one forecasts beyond the current quarter. Recall that a GDP estimate is revised on at least
three occasions, and the size of the revisions to the monthly series used in constructing the monthly GDP data is often quite
large. Of the series used to distribute GDP data over a quarter, industrial production in particular is often substantially
revised (see Robertson and Tallman 1998 for discussion of this point). These real-time data revision issues affect the near-
term (current and next-quarter) forecasting accuracy statistics in a way not captured in a forecasting analysis that uses
only the latest available data.

11. This article has not searched across parameter settings for the non-OLS VAR specifications that might have improved their
performance further.

as much as 20 percent higher than the ZVAR model for
annual forecasts. Again the OLS model performs the
worst, having an RMSE for the two-year annual GDP
growth forecast that is almost 50 percent higher than that
from the ZVAR model.

The results suggest that using the sum of coeffi-
cients restriction, either exactly as in the case of the
DOLS-AIC model or slightly more loosely as in the ZVAR
and modified Litterman models, can significantly improve
forecast performance over specifications that do not use
such information. However, the fact that the restriction is
not imposed exactly and that the cointegration prior is
used might account for why the ZVAR and modified
Litterman models decisively outperform the DOLS-AIC
model in forecasting the unemployment rate.11

Conclusion

This article illustrates in some detail the steps
involved in one approach to producing real-time
forecasts from a VAR model. It focuses attention

on the technical hurdles that must be addressed in a
real-time application and methods for overcoming those
hurdles. The solutions to technical difficulties include
conditional forecasting to handle the staggered release
of data and the interpolation of lower-frequency data to
match the frequency of monthly data. In addition, the
article discusses methods that attempt to improve VAR
forecast accuracy by imposing inexact prior restrictions.

The goal is to provide a road map for an analyst inter-
ested in designing and building a VAR forecasting model
using these techniques.

The article then provides some suggestive empiri-
cal evidence regarding the performance of various pos-
sible specifications of a six-variable VAR in forecasting
unemployment, inflation, and output growth. The fore-
cast accuracy results show that using a particular set-
ting for the systemwide inexact prior restrictions of the
type described in Sims and Zha (1998) generates more
accurate forecasts for unemployment, inflation, and real
GDP growth than a VAR that uses the single-equation
Litterman (1980) inexact priors. However, this improve-
ment is largely explained by the incorporation of reason-
ably tight priors on the long-run properties of the VAR.
This long-run aspect of the specification appears to mat-
ter more for the improvements in accuracy than the sys-
temwide nature of the formulation does. In particular, a
modified Litterman model that also incorporates these
priors appears to be at least as accurate as the ZVAR
model.

VAR models are increasingly being used for fore-
casting in private business and in policy institutions. It
is hoped that the empirical techniques presented in this
article will prove useful to those interested in imple-
menting or at least understanding real-time forecasting
with a VAR model.



Variables Included in the VAR
Real GDP: The value in real (1992) dollars of the output

produced over a given quarter reported at a seasonally

adjusted annual rate. Real GDP is measured in chain-

weighted dollars to account for changes in relative prices

over time. Availability is discussed below. Source: Bureau of

Economic Analysis.

Civilian unemployment rate: The percentage of the civil-

ian labor force that is unemployed. Seasonally adjusted.

Released on either the first or second Friday of the month

following the month measured. Source: Bureau of Labor

Statistics.

Price level: Consumer price index (CPI) for all urban con-

sumers. Not seasonally adjusted. Available by about the mid-

dle of the month following the measured month. Currently

the average CPI value for the years from 1982 to 1984 is set

equal to 100. A not seasonally adjusted series is used in the

empirical analysis described in the article largely because it

was readily available over the forecast period 1986 to 1997.

However, there appears to be little seasonality in U.S. CPI

data. Source: Bureau of Labor Statistics.

M2 money stock: Seasonally adjusted. Measured in billions of

current dollars and available around the middle of the month

after the month to which they refer. The aggregate is current-

ly composed of the sum total of coins and paper currency,

traveler’s checks, demand deposits, other checkable deposits

(NOW, share drafts), overnight repurchase agreements,

overnight Eurodollars, general purpose and broker/dealer

money market funds, money market deposit accounts, sav-

ings deposits, and small-denomination time deposits. Source:

Board of Governors of the Federal Reserve System.

Effective federal funds rate: The interest charged between

banks on loans of reserves held with the Federal Reserve

System and measured as the monthly average of federal

funds transactions for a group of federal funds brokers who

report to the Federal Reserve Bank of New York each day.

Source: Board of Governors of the Federal Reserve System.

Commodity prices (CP): Spot raw industrial subindex of

thirteen markets for commodity prices. Not seasonally

adjusted. Compiled daily and available at a monthly fre-

quency at the end of the current month. The thirteen

included prices are burlap, scrap copper, cotton, hides, lead

scrap, print cloth, rosin, rubber, steel scrap, tallow, tin,

wool tops, and zinc. Source: Commodity Research Bureau.

Monthly Series Used in the 
Chow-Lin Distribution Procedure
Nonagricultural payroll employment: Available on the first

or second Friday following the measured month. Measured in

millions of employed. Seasonally adjusted. Source: Bureau of

Labor Statistics.

Total industrial production index: Available midmonth fol-

lowing the month measured. Measured as an index of physical

output produced in a selection of sectors. 1987 = 100. Season-

ally adjusted. Source: Board of Governors of the Federal

Reserve System.

Real personal consumption expenditures: Seasonally adjust-

ed. New estimates are usually available by the end of the

month after that being measured. Source: Bureau of Economic

Analysis.

Data Release Sequence
There is usually a delay of a few weeks between the end of

a quarter and the release of the initial estimate of quarterly real

GDP (the advanced estimate) for that quarter. Two revised real

GDP estimates (preliminary and final) are released in the two

subsequent months. Moreover, real GDP data for any particular

quarter are subsequently revised, and this process of revision

can continue many years after the initial data release (see

Robertson and Tallman 1998 for a discussion).

Monthly civilian unemployment rate data are pub-

lished on the first or second Friday of the month immedi-

ately following the month to which they refer, and the CPI

data are published around the middle of the month follow-

ing the month to which the data refer. There is generally lit-

tle revision to the unemployment and CPI data over time,

although major benchmark revisions to the CPI are made

approximately every ten years.

The Board of Governors of the Federal Reserve System

publishes monthly data on various money aggregates by the

middle of the month after the month to which the data refer.

These estimates are revised on a continuing basis with the

receipt of more accurate source data, and on occasion the

historical M2 data have been subject to major redefinition

(see Anderson and Kavajecz 1994).

Numerous commodity price indexes are available on a

daily basis. The study uses the monthly average of the daily

closing CRB/BLS index of spot prices for raw industrial com-

modities as the commodity price. The federal funds rate data

are the monthly average of the daily effective funds rate.

A P P E N D I X  1

Data Definitions
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A P P E N D I X  2

Chow and Lin (1971) derive a procedure for distribut-

ing quarterly observations on a flow variable across

the months of a quarter. Their algorithm assumes that the

T observations in the monthly series ym to be estimated are

related to T observations on n monthly indicator variables

Xm via a regression of the form

ym = Xmb + um, (A1)

where ym is T 3 1, Xm is T 3 n, and the regression error fol-

lows a stationary first-order autoregression um,t = rmum,t–1 +

em,t for t = 1, . . . , T, with the T 3 1 vector em having zero

mean and a covariance matrix s2IT. Thus, the covariance

matrix of um has the standard form Vm = [s2/(1 – r2
m)]Pm,

where

(see for example, Hamilton 1994).1

The (T/3) quarterly observations are related to the

monthly observations via an “averaging” matrix

This matrix implies a regression relationship for the quar-

terly observations of the form

yq = Cym = Xqb + uq (A2)

and where the covariance matrix of uq will be

Vq = CVmC9. (A3)

Chow and Lin show that the smallest variance linear

unbiased estimator of ym is

where     is the (generalized) least squares estimate of b in

equation (A2). To estimate rm notice that the auto-regression

coefficient in the quarterly regression, rq, is the ratio of the

first to the second elements of the first row of Vq in equation

(A3). This ratio reveals that rm can be obtained as the unique

solution to the polynomial

and replacing rq with the (generalized) least squares esti-

mate of rq in equation (A2) provides a consistent estimate

of rm.

The Chow and Lin (1971) Procedure for 
Distributing Quarterly GDP Observations

1. If Xm contains a stochastic trend, then the regression represents a cointegrating relationship. A modification of the Chow and Lin
procedure that was suggested by Litterman (1983) would be appropriate in the case that rm = 1.
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