Networks in a Simple New Keynesian Model without Capital

Lawrence J. Christiano

October 25, 2015

What we do

- Introduce networks: fact that for the typical firm, 50% of output is sold to other firms and 50% of costs is for materials purchased from other firms.
- In absence of monopoly power and price-setting frictions (e.g., real business cycle (RBC) model), fact that materials are typically ignored involves no loss of generality.
- RBC strategy of adopting representative firm, backing out technology from production function that relates GDP to capital and labor (ignoring materials) is fine.
- When there are frictions, networks
- render RBC strategy invalid, because TFP is endogenous and no longer structural.
- blow up the costs of inflation and monopoly power.
- create 'strategic complementarity' in price-setting: flatten the Phillips curve.
- raise concerns about the effectiveness of the Taylor Principle.

Background Readings on Networks

- Basu, Susanto, 1995, 'Intermediate goods and business cycles: Implications for productivity and welfare,' American Economic Review, 85 (3), 512-531.
- Rotemberg, J., and M. Woodford, 1995, 'Dynamic General Equilibrium Models with Imperfectly Competitive Product Markets,' in, T. Cooley, ed., Frontiers of Business Cycle Research, Princeton University Press (also, NBER wp 4502).
- Nakamura, Emi and Jon Steinsson, 2010, 'Monetary Non-Neutrality in a Multisector Menu Cost Model,' The Quarterly Journal of Economics, August.
- Jones, Chad, 2013, 'Misallocation, Economic Growth, and Input-Output Economics,' in D. Acemoglu, M. Arellano, and E. Dekel, Advances in Economics and Econometrics, Tenth World Congress, Volume II, Cambridge University Press.
- Daron Acemoglu, Ufuk Akcigit, William Kerr, 'Networks and the Macroeconomy: An Empirical Exploration,' forthcoming, NBER Macroeconomics Annual 2015.

Networks and the Consequences of Inflation

- Christiano, 2015, 'Networks and the Macroeconomic Consequences of Inflation'.
- Following notes based on latter.
- Christiano, Lawrence J., Mathias Trabandt, and Karl Walentin, 2011, 'DSGE Models for Monetary Policy Analysis,' In Benjamin M. Friedman, and Michael Woodford, editors: Handbook of Monetary Economics, Vol. 3A, The Netherlands: North-Holland, 2011, pp. 285-367.
- Ascari, Guido, Louis Phaneuf and Eric Sims, 2015, 'On the Welfare and Cyclical Implications of Moderate Trend Inflation,' National Bureau of Economic Research Working Paper 21392.

Outline

- Decisions by individual agents
- Households, homogeneous good producers, intermediate good producers.
- Efficient allocation of resources in production.
- Equilibrium for Aggregate Variables
- Comparing RBC and Sticky Price version of the model.
- Gross output versus value-added.
- Tack Yun distortion, allocative cost of monopoly power and inflation.
- Classical Dichotomy.
- The costs of inflation through the lense of the model.
- Steady state: useful for model intuition, and needed for solution methods.
- Phillips curve - linearized equilibrium condition for inflation.
- Networks flatten Phillips curve by magnifying strategic complementarities in price-setting.

Households

- Problem:

$$
\max E_{0} \sum_{t=0}^{\infty} \beta^{t}\left(\log C_{t}-\exp \left(\tau_{t}\right) \frac{N_{t}^{1+\varphi}}{1+\varphi}\right), \tau_{t}=\lambda \tau_{t-1}+\varepsilon_{t}^{\tau}
$$

s.t. $P_{t} C_{t}+B_{t+1} \leq W_{t} N_{t}+R_{t-1} B_{t}+$ Profits net of taxes $_{t}$

- First order conditions:

$$
\begin{aligned}
\frac{1}{C_{t}} & =\beta E_{t} \frac{1}{C_{t+1}} \frac{R_{t}}{\bar{\pi}_{t+1}}(5) \\
\exp \left(\tau_{t}\right) C_{t} N_{t}^{\varphi} & =\frac{W_{t}}{P_{t}}
\end{aligned}
$$

Goods Production

- A homogeneous final good is produced using the following (Dixit-Stiglitz) production function:

$$
Y_{t}=\left[\int_{0}^{1} Y_{i, t}^{\frac{\varepsilon-1}{\varepsilon}} d i\right]^{\frac{\varepsilon}{\varepsilon-1}}
$$

- Each intermediate good, $Y_{i, t}$, is produced as follows:
$Y_{i, t}=\exp \left(a_{t}\right) N_{i, t}^{\gamma} I_{i, t}^{1-\gamma}, a_{t} \sim$ exogenous shock to technology,
$0<\gamma \leq 1$.
- $I_{i, t}$ ~'materials' these are purchases of the homogeneous output good (Basu's simplified way of capturing that firms buy goods from other firms).
- Before discussing the firms that operate these production functions, we briefly investigate the socially efficient ('First Best') allocation of resources across i.
- simplify the discussion with $\gamma=1$ (no materials).

Efficient Sectoral Allocation of Resources Across Sectors

- With Dixit-Stiglitz final good production function, there is a socially optimal allocation of resources to all the intermediate activities, $Y_{i, t}$
- It is optimal to run them all at the same rate, i.e., $Y_{i, t}=Y_{j, t}$ for all $i, j \in[0,1]$.
- For given N_{t}, it is optimal to set $N_{i, t}=N_{j, t}$, for all $i, j \in[0,1]$
- In this case, final output is given by

$$
Y_{t}=e^{a_{t}} N_{t}
$$

- Best way to see this is to suppose that labor is not allocated equally to all activities.
- Explore one simple deviation from $N_{i, t}=N_{j, t}$ for all $i, j \in[0,1]$.

Suppose Labor Not Allocated Equally

- Example:

$$
N_{i t}=\left\{\begin{array}{cl}
2 \alpha N_{t} & i \in\left[0, \frac{1}{2}\right] \\
2(1-\alpha) N_{t} & i \in\left[\frac{1}{2}, 1\right]
\end{array}, 0 \leq \alpha \leq 1 .\right.
$$

- Note that this is a particular distribution of labor across activities:

$$
\int_{0}^{1} N_{i t} d i=\frac{1}{2} 2 \alpha N_{t}+\frac{1}{2} 2(1-\alpha) N_{t}=N_{t}
$$

Labor Not Allocated Equally, cnt’d

$$
\begin{aligned}
Y_{t} & =\left[\int_{0}^{1} Y_{i, t}^{\frac{\varepsilon-1}{\varepsilon}} d i\right]^{\frac{\varepsilon}{\varepsilon-1}} \\
& =\left[\int_{0}^{\frac{1}{2}} Y_{i, t}^{\frac{\varepsilon-1}{\varepsilon}} d i+\int_{\frac{1}{2}}^{1} Y_{i, t}^{\frac{\varepsilon-1}{\varepsilon}} d i\right]^{\frac{\varepsilon}{\varepsilon-1}} \\
& =e^{a_{t}}\left[\int_{0}^{\frac{1}{2}} N_{i, t}^{\frac{\varepsilon-1}{\varepsilon}} d i+\int_{\frac{1}{2}}^{1} N_{i, t}^{\frac{\varepsilon-1}{\varepsilon}} d i\right]^{\frac{\varepsilon}{\varepsilon-1}} \\
& =e^{a_{t}}\left[\int_{0}^{\frac{1}{2}}\left(2 \alpha N_{t}\right)^{\frac{\varepsilon-1}{\varepsilon}} d i+\int_{\frac{1}{2}}^{1}\left(2(1-\alpha) N_{t}\right)^{\frac{\varepsilon-1}{\varepsilon}} d i\right]^{\frac{\varepsilon}{\varepsilon-1}} \\
& =e^{a_{t}} N_{t}\left[\int_{0}^{\frac{1}{2}}(2 \alpha)^{\frac{\varepsilon-1}{\varepsilon}} d i+\int_{\frac{1}{2}}^{1}(2(1-\alpha))^{\frac{\varepsilon-1}{\varepsilon}} d i\right]^{\frac{\varepsilon}{\varepsilon-1}} \\
& =e^{a_{t}} N_{t}\left[\frac{1}{2}(2 \alpha)^{\frac{\varepsilon-1}{\varepsilon}}+\frac{1}{2}(2(1-\alpha))^{\frac{\varepsilon-1}{\varepsilon}}\right]^{\frac{\varepsilon}{\varepsilon-1}} \\
& =e^{a_{t}} N_{t} f(\alpha)
\end{aligned}
$$

$$
f(\alpha)=\left[\frac{1}{2}(2 \alpha)^{\frac{\varepsilon-1}{\varepsilon}}+\frac{1}{2}(2(1-\alpha))^{\frac{\varepsilon-1}{\varepsilon}}\right]^{\frac{\varepsilon}{\varepsilon-1}}
$$

Homogeneous Good Production

- Competitive firms:
- maximize profits:

$$
P_{t} Y_{t}-\int_{0}^{1} P_{i, t} Y_{i, t} d j
$$

subject to:

$$
Y_{t}=\left[\int_{0}^{1} Y_{i, t}^{\frac{\varepsilon-1}{\varepsilon}} d j\right]^{\frac{\varepsilon}{\varepsilon-1}} .
$$

- Foncs:

$$
Y_{i, t}=Y_{t}\left(\frac{P_{t}}{P_{i, t}}\right)^{\varepsilon} \rightarrow \overbrace{P_{t}=\left(\int_{0}^{1} P_{i, t}^{(1-\varepsilon)} d i\right)^{\frac{1}{1-\varepsilon}}}^{\text {"cross price restrictions" }}
$$

Intermediate Goods Production

- Demand curve for $i^{\text {th }}$ monopolist:

$$
Y_{i, t}=Y_{t}\left(\frac{P_{t}}{P_{i, t}}\right)^{\varepsilon} .
$$

- Production function, $0<\gamma \leq 1$:

$$
Y_{i, t}=\exp \left(a_{t}\right) N_{i, t}^{\gamma} I_{i, t}^{1-\gamma}, a_{t} \sim \text { exogenous shock to technology. }
$$

- $I_{i, t}$ ~'materials' these are purchases of the homogeneous output good (Basu's simplified way of capturing that firms buy goods from other firms).
- Calvo Price-Setting Friction:

$$
P_{i, t}=\left\{\begin{array}{ll}
\tilde{P}_{t} & \text { with probability } 1-\theta \\
P_{i, t-1} & \text { with probability } \theta
\end{array} .\right.
$$

Cost Minimization Problem

- Price setting by intermediate good firms is discussed later.
- The intermediate good firm must produce the quantity demanded, $Y_{i, t}$, at the price that it sets.
- Right now we take $Y_{i, t}$ as given and we investigate the cost minimization problem that determines the firm's choice of inputs.
Cost minimization problem:
marginal cost (money terms)
$\min _{N_{i, t}, I_{i, t}} \bar{W}_{t} N_{i, t}+\bar{P}_{t} I_{i, t}+$

$$
\left[Y_{i, t}-A_{t} N_{i, t}^{\gamma} I_{i, t}^{1-\gamma}\right]
$$

with resource costs:

$$
\begin{aligned}
& \bar{W}_{t}=\overbrace{(1-v)}^{\text {subsidy, if } v>0} \times \overbrace{\left(1-\psi+\psi R_{t}\right) W_{t}}^{\text {cost, including finance, of a unit of labor }} \\
& \bar{P}_{t}=(1-v) \times \overbrace{\left(1-\psi+\psi R_{t}\right) P_{t}}^{\text {cost, including finance, of a unit of materials }} .
\end{aligned}
$$

Cost Minimization Problem

- Problem:

$$
\min _{N_{i, t}, I_{i, t}} \bar{W}_{t} N_{i, t}+\bar{P}_{t} I_{i, t}+\lambda_{i, t}\left[Y_{i, t}-A_{t} N_{i, t}^{\gamma} I_{i, t}^{1-\gamma}\right]
$$

- First order conditions:

$$
\bar{P}_{t} I_{i, t}=(1-\gamma) \lambda_{i, t} Y_{i, t}, \bar{W}_{t} N_{i, t}=\gamma \lambda_{i, t} Y_{i, t}
$$

so that,

$$
\begin{aligned}
\frac{I_{i t}}{N_{i t}} & =\frac{1-\gamma}{\gamma} \frac{\bar{W}_{t}}{\bar{P}_{t}}=\frac{1-\gamma}{\gamma} \exp \left(\tau_{t}\right) C_{t} N_{t}^{\varphi} \\
& \rightarrow \frac{I_{i t}}{N_{i t}}=\frac{I_{t}}{N_{t}}, \text { for all } i
\end{aligned}
$$

Cost Minimization Problem

- Firm first order conditions imply

$$
\lambda_{i, t}=\left(\frac{\bar{P}_{t}}{1-\gamma}\right)^{1-\gamma}\left(\frac{\bar{W}_{t}}{\gamma}\right)^{\gamma} \frac{1}{A_{t}} .
$$

- Divide marginal cost by P_{t} :

$$
\begin{aligned}
s_{t} \equiv & \frac{\lambda_{i, t}}{P_{t}}=(1-v)\left(1-\psi+\psi R_{t}\right)\left(\frac{1}{1-\gamma}\right)^{1-\gamma} \\
& \times\left(\frac{1}{\gamma} \exp \left(\tau_{t}\right) C_{t} N_{t}^{\varphi}\right)^{\gamma} \frac{1}{A_{t}}(9),
\end{aligned}
$$

after substituting out for \bar{P}_{t} and \bar{W}_{t} and using the household's labor first order condition.

- Note from (9) that $i^{\text {th }}$ firm's marginal cost, s_{t}, is independent of i and $Y_{i t,}$.

Share of Materials in Intermediate Good Output

- Firm i materials proportional to $Y_{i, t}$:

$$
I_{i, t}=\frac{(1-\gamma) \lambda_{i_{i} t} Y_{i, t}}{\bar{P}_{t}}=\mu_{t} Y_{i, t}
$$

where

$$
\mu_{t}=\frac{(1-\gamma) s_{t}}{(1-v)\left(1-\psi+\psi R_{t}\right)}(10)
$$

- "Share of materials in firm-level gross output", μ_{t}.

Decision By Firm that Can Change Its Price

- $i^{\text {th }}$ intermediate good firm's objective:

$$
\begin{aligned}
& E_{t}^{i} \sum_{j=0}^{\infty} \beta^{j} v_{t+j} \overbrace{[\overbrace{P_{i, t+j} Y_{i, t+j}}^{\text {revenues }}-}^{\overbrace{P_{t+j} s_{t+j} Y_{i, t+j}}^{\text {period } t+j \text { profits sent to household }} \text { total cost }}] \\
& v_{t+j} \text { - Lagrange multiplier on household budget constraint }
\end{aligned}
$$

- Firm that gets to reoptimize its price is concerned only with future states in which it does not change its price:

$$
\begin{aligned}
& E_{t}^{i} \sum_{j=0}^{\infty} \beta^{j} v_{t+j}\left[P_{i, t+j} Y_{i, t+j}-P_{t+j} s_{t+j} Y_{i, t+j}\right] \\
= & E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j} v_{t+j}\left[\tilde{P}_{t} Y_{i, t+j}-P_{t+j} s_{t+j} Y_{i, t+j}\right]+X_{t}
\end{aligned}
$$

where \tilde{P}_{t} denotes a firm's price-setting choice at time t and X_{t} not a function of \tilde{P}_{t}.

Decision By Firm that Can Change Its Price

- Substitute out demand curve:

$$
\begin{aligned}
& E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j} v_{t+j}\left[\tilde{P}_{t} Y_{i, t+j}-P_{t+j} s_{t+j} Y_{i, t+j}\right] \\
= & E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j} v_{t+j} Y_{t+j} P_{t+j}^{\varepsilon}\left[\tilde{P}_{t}^{1-\varepsilon}-P_{t+j} s_{t+j} \tilde{P}_{t}^{-\varepsilon}\right] .
\end{aligned}
$$

- Differentiate with respect to \tilde{P}_{t} :

$$
\begin{aligned}
& E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j} v_{t+j} Y_{t+j} P_{t+j}^{\varepsilon}\left[(1-\varepsilon)\left(\tilde{P}_{t}\right)^{-\varepsilon}+\varepsilon P_{t+j} s_{t+j} \tilde{P}_{t}^{-\varepsilon-1}\right]=0, \\
& \text { or, }
\end{aligned}
$$

$$
E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j} v_{t+j} Y_{t+j} P_{t+j}^{\varepsilon+1}\left[\frac{\tilde{P}_{t}}{P_{t+j}}-\frac{\varepsilon}{\varepsilon-1} s_{t+j}\right]=0
$$

- When $\theta=0$, get standard result - price is fixed markup over marginal cost.

Decision By Firm that Can Change Its Price

- Substitute out the multiplier:

$$
E_{t} \sum_{j=0}^{\infty}(\beta \theta) \overbrace{\frac{\overbrace{u^{\prime}\left(C_{t+j}\right)}}{P_{t+j}}}^{v_{t+j}} Y_{t+j} P_{t+j}^{\varepsilon+1}\left[\frac{\tilde{P}_{t}}{P_{t+j}}-\frac{\varepsilon}{\varepsilon-1} s_{t+j}\right]=0 .
$$

- Using assumed log-form of utility,

$$
\begin{gathered}
E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j} \frac{Y_{t+j}}{C_{t+j}}\left(X_{t, j}\right)^{-\varepsilon}\left[\tilde{p}_{t} X_{t, j}-\frac{\varepsilon}{\varepsilon-1} s_{t+j}\right]=0 \\
\tilde{p}_{t} \equiv \frac{\tilde{P}_{t}}{P_{t}}, \bar{\pi}_{t} \equiv \frac{P_{t}}{P_{t-1}}, X_{t, j}=\left\{\begin{array}{c}
\frac{1}{\bar{\pi}_{t+j} \bar{\pi}_{t+j-1} \cdots \bar{\pi}_{t+1}}, j \geq 1 \\
1, j=0
\end{array}\right. \\
X_{t, j}=X_{t+1, j-1} \frac{1}{\bar{\pi}_{t+1}}, j>0
\end{gathered}
$$

Decision By Firm that Can Change Its Price

- Want $\tilde{p}_{t} \mathrm{in}$:

$$
E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j} \frac{Y_{t+j}}{C_{t+j}}\left(X_{t, j}\right)^{-\varepsilon}\left[\tilde{p}_{t} X_{t, j}-\frac{\varepsilon}{\varepsilon-1} s_{t+j}\right]=0
$$

- Solving for \tilde{p}_{t}, we conclude that prices are set as follows:

$$
\tilde{p}_{t}=\frac{E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j} \frac{Y_{t+j}}{C_{t+1}}\left(X_{t, j}\right)^{-\varepsilon} \frac{\varepsilon}{\varepsilon-1} s_{t+j}}{E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j} \frac{Y_{t+j}}{C_{t+j}}\left(X_{t, j}\right)^{1-\varepsilon}}=\frac{K_{t}}{F_{t}}
$$

- Need convenient expressions for K_{t}, F_{t}.

Decision By Firm that Can Change Its Price

$$
\begin{aligned}
K_{t}= & E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j} \frac{Y_{t+j}}{C_{t+j}}\left(X_{t, j}\right)^{-\varepsilon} \frac{\varepsilon}{\varepsilon-1} s_{t+j} \\
= & \frac{\varepsilon}{\varepsilon-1} \frac{Y_{t}}{C_{t}} s_{t} \\
& +\beta \theta E_{t}\left(\frac{1}{\bar{\pi}_{t+1}}\right)^{-\varepsilon} \overbrace{E_{t+1} \sum_{j=0}^{\infty}(\beta \theta)^{j} X_{t+1, j}^{-\varepsilon}}^{Y_{t+j+1}} \frac{\varepsilon}{C_{t+j+1}} s_{t+1+j} \\
= & \frac{\varepsilon}{\varepsilon-1} \frac{Y_{t}}{C_{t}} s_{t}+\beta \theta E_{t}\left(\frac{1}{\bar{\pi}_{t+1}}\right)^{-\varepsilon} K_{t+1}
\end{aligned}
$$

For a detailed derivation, see, e.g., http://faculty.wcas.northwestern.edu/~Ichrist/course/IMF2015/ intro_NK_handout.pdf.

Decision By Firm that Can Change Its Price

- Conclude:

$$
\tilde{p}_{t}=\frac{E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j}\left(X_{t, j}\right)^{-\varepsilon} \frac{Y_{t+j}}{C_{t+j}} \frac{\varepsilon}{\varepsilon-1} S_{t+j}}{E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j}\left(X_{t, j}\right)^{1-\varepsilon} \frac{Y_{t+j}}{C_{t+j}}}=\frac{K_{t}}{F_{t}}
$$

where

$$
\begin{equation*}
K_{t}=\frac{\varepsilon}{\varepsilon-1} \frac{Y_{t}}{C_{t}} S_{t}+\beta \theta E_{t}\left(\frac{1}{\bar{\pi}_{t+1}}\right)^{-\varepsilon} K_{t+1} \tag{1}
\end{equation*}
$$

- Similarly,

$$
F_{t}=\frac{Y_{t}}{C_{t}}+\beta \theta E_{t}\left(\frac{1}{\bar{\pi}_{t+1}}\right)^{1-\varepsilon} F_{t+1}
$$

Interpretation of Price Formula

- Note,

$$
\frac{1}{P_{t+j}}=\frac{1}{P_{t}} X_{t, j}, s_{t+j}=\frac{\lambda_{t+j}}{P_{t+j}}=\frac{\lambda_{t+j}}{P_{t}} X_{t, j}, \tilde{p}_{t}=\frac{\tilde{P}_{t}}{P_{t}} .
$$

Multiply both sides of the expression for \tilde{p}_{t} by P_{t} :

$$
\tilde{P}_{t}=\frac{E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j}\left(X_{t, j}\right)^{1-\varepsilon} \frac{Y_{t+j}}{C_{t+j}} \frac{\varepsilon}{\varepsilon-1} \lambda_{t+j}}{E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j}\left(X_{t, j}\right)^{1-\varepsilon} \frac{Y_{t+j}}{C_{t+j}}}=\frac{\varepsilon}{\varepsilon-1} \sum_{j=0}^{\infty} E_{t} \omega_{t+j} \lambda_{t+j}
$$

where

$$
\omega_{t+j}=\frac{(\beta \theta)^{j}\left(X_{t, j}\right)^{1-\varepsilon} \frac{Y_{t+j}}{C_{t+j}}}{E_{t} \sum_{j=0}^{\infty}(\beta \theta)^{j}\left(X_{t, j}\right)^{1-\varepsilon} \frac{Y_{t+j}}{C_{t+j}}}, \sum_{j=0}^{\infty} E_{t} \omega_{t+j}=1
$$

Evidently, price is set as a markup over a weighted average of future marginal cost, where the weights are shifted into the future depending on how big θ is.

Moving On to Aggregates

- Aggregate price level.
- Aggregate measures of production.
- Value added.
- Gross output.

Aggregate Price Index

- Rewrite the aggregate price index.
- let $p \in(0, \infty)$ the set of logically possible prices for intermediate good producers.
- let $g_{t}(p) \geq 0$ denote the measure (e.g., 'number') of producers that have price, p, in t
- let $g_{t-1, t}(p) \geq 0$, denote the measure of producers that had price, p, in $t-1$ and could not reoptimize in t
- Then,

$$
P_{t}=\left(\int_{0}^{1} P_{i, t}^{(1-\varepsilon)} d i\right)^{\frac{1}{1-\varepsilon}}=\left(\int_{0}^{\infty} g_{t}(p) p^{(1-\varepsilon)} d p\right)^{\frac{1}{1-\varepsilon}}
$$

- Note:

$$
P_{t}=\left(\theta \tilde{P}_{t}^{1-\varepsilon}+\int_{0}^{\infty} g_{t-1, t}(p) p^{(1-\varepsilon)} d p\right)^{\frac{1}{1-\varepsilon}}
$$

Aggregate Price Index

- Calvo randomization assumption:
measure of firms that had price, p, in $t-1$ and could not change

$$
\overbrace{g_{t-1, t}(p)}
$$

measure of firms that had price p in $t-1$

$$
=\theta \times \quad \overbrace{g_{t-1}(p)}
$$

- Then,

$$
\begin{aligned}
P_{t} & =\left((1-\theta) \tilde{P}_{t}^{1-\varepsilon}+\int_{0}^{\infty} g_{t-1, t}(p) p^{(1-\varepsilon)} d p\right)^{\frac{1}{1-\varepsilon}} \\
& =((1-\theta) \tilde{P}_{t}^{1-\varepsilon}+\theta \overbrace{\int_{0}^{\infty} g_{t-1}(p) p^{(1-\varepsilon)} d p}^{1-\varepsilon})^{\frac{1}{1-\varepsilon}}
\end{aligned}
$$

Restriction Between Aggregate and Intermediate Good Prices

- 'Calvo result':

$$
P_{t}=\left(\int_{0}^{1} P_{i, t}^{(1-\varepsilon)} d i\right)^{\frac{1}{1-\varepsilon}}=\left[(1-\theta) \tilde{P}_{t}^{(1-\varepsilon)}+\theta P_{t-1}^{(1-\varepsilon)}\right]^{\frac{1}{1-\varepsilon}}
$$

- Divide by P_{t} :

$$
1=\left[(1-\theta) \tilde{p}_{t}^{(1-\varepsilon)}+\theta\left(\frac{1}{\bar{\pi}_{t}}\right)^{(1-\varepsilon)}\right]^{\frac{1}{1-\varepsilon}}
$$

- Rearrange:

$$
\tilde{p}_{t}=\left[\frac{1-\theta}{1-\theta \bar{\pi}_{t}^{(\varepsilon-1)}}\right]^{\frac{1}{\varepsilon-1}}
$$

Aggregate inputs and outputs

- Gross output of firm i :

$$
Y_{i, t}=\exp \left(a_{t}\right) N_{i, t}^{\gamma} I_{i, t}^{1-\gamma} .
$$

- Net output or value-added would subtract out the materials that were bought from other firms.
- Economy-wide gross output: sum of value of $Y_{i, t}$ across all firms:

$$
\begin{aligned}
\int_{0}^{1} P_{i, t} Y_{i, t} d i & =\int_{0}^{1} P_{t}\left(\frac{Y_{t}}{Y_{i, t}}\right)^{\frac{1}{\varepsilon}} Y_{i, t} d i \\
& =P_{t} Y_{t}^{\frac{1}{\varepsilon}} \overbrace{\int_{0}^{1} Y_{i, t}^{\frac{\varepsilon-1}{\varepsilon}} d i}^{=Y_{t}^{\varepsilon-1}}
\end{aligned}=P_{t} Y_{t} .
$$

- Gross output production function: relation between Y_{t} and non-produced inputs, N_{t}.

Aggregate inputs and outputs, cnt'd

- Gross output, Y_{t}, is not a good measure of economic output, because it double counts.
- Some of the output that firm i 'produced' is materials produced by another firm, which is counted in that firm's output.
- If wheat is used to make bread, wrong to measure production by adding all wheat and all bread. That double counts the wheat.
- Want aggregate value-added: sum of firm-level gross output, minus purchases of materials from other firms.
- Value-added production function: expression relating aggregate value-added in period t to inputs not produced in period t.
- capital and labor.

Gross Output Production Function

- Approach developed by Tack Yun (JME, 1996).
- Define Y_{t}^{*} :

$$
\begin{aligned}
Y_{t}^{*} & \equiv \int_{0}^{1} Y_{i, t} d i \\
& \overbrace{=}^{\text {demand curve }} Y_{t} \int_{0}^{1}\left(\frac{P_{i, t}}{P_{t}}\right)^{-\varepsilon} d i=Y_{t} P_{t}^{\varepsilon} \int_{0}^{1}\left(P_{i, t}\right)^{-\varepsilon} d i \\
& =Y_{t} P_{t}^{\varepsilon}\left(P_{t}^{*}\right)^{-\varepsilon}
\end{aligned}
$$

where, using 'Calvo result':

$$
P_{t}^{*} \equiv\left[\int_{0}^{1} P_{i, t}^{-\varepsilon} d i\right]^{\frac{-1}{\varepsilon}}=\left[(1-\theta) \tilde{P}_{t}^{-\varepsilon}+\theta\left(P_{t-1}^{*}\right)^{-\varepsilon}\right]^{\frac{-1}{\varepsilon}}
$$

- Then

$$
Y_{t}=p_{t}^{*} Y_{t}^{*}, p_{t}^{*}=\left(\frac{P_{t}^{*}}{P_{t}}\right)^{\varepsilon} .
$$

Tack Yun Distortion

- Consider the object,

$$
p_{t}^{*}=\left(\frac{P_{t}^{*}}{P_{t}}\right)^{\varepsilon}
$$

where

$$
P_{t}^{*}=\left(\int_{0}^{1} P_{i, t}^{-\varepsilon} d i\right)^{\frac{-1}{\varepsilon}}, P_{t}=\left(\int_{0}^{1} P_{i, t}^{(1-\varepsilon)} d i\right)^{\frac{1}{1-\varepsilon}}
$$

- In following slide, use Jensen's inequality to show:

$$
p_{t}^{*} \leq 1 .
$$

Tack Yun Distortion

- Note

$$
\begin{gathered}
\overbrace{\left(\int_{0}^{1} P_{i, t}^{-\varepsilon} d i\right)^{\frac{-1}{\varepsilon}}}^{P_{t}^{*}} \leq \overbrace{\left(\int_{0}^{1} P_{i, t}^{(1-\varepsilon)} d i\right)^{\frac{1}{1-\varepsilon}}}^{P_{t}} \\
\Longleftrightarrow\left(\int_{0}^{1} P_{i, t}^{-\varepsilon} d i\right) \geq\left(\int_{0}^{1} P_{i, t}^{(1-\varepsilon)} d i\right)^{\frac{\varepsilon}{\varepsilon-1}} \\
\Longleftrightarrow \int_{0}^{1}\left(P_{i, t}^{(1-\varepsilon)}\right)^{\frac{\varepsilon}{\varepsilon-1}} d i \geq\left(\int_{0}^{1} P_{i, t}^{(1-\varepsilon)} d i\right)^{\frac{\varepsilon}{\varepsilon-1}},
\end{gathered}
$$

by convexity.

- Example:
- let $f(x)=x^{4}$. Then,

$$
\alpha x_{1}^{4}+(1-\alpha) x_{2}^{4}>\left(\alpha x_{1}+(1-\alpha) x_{2}\right)^{4}
$$

for $x_{1} \neq x_{2}, 0<\alpha<1$.

Gross Output Production Function

- Relationship between aggregate inputs and outputs:

$$
\begin{aligned}
Y_{t} & =p_{t}^{*} Y_{t}^{*}=p_{t}^{*} \int_{0}^{1} Y_{i, t} d i \\
& =p_{t}^{*} A_{t} \int_{0}^{1} N_{i, t}^{\gamma} I_{i, t}^{1-\gamma} d i=p_{t}^{*} A_{t} \int_{0}^{1}\left(\frac{N_{i, t}}{I_{i, t}}\right)^{\gamma} I_{i, t} d i \\
& =p_{t}^{*} A_{t}\left(\frac{N_{t}}{I_{t}}\right)^{\gamma} I_{t}
\end{aligned}
$$

or,

$$
\begin{equation*}
Y_{t}=p_{t}^{*} A_{t} N_{t}^{\gamma} I_{t}^{1-\gamma} \tag{6}
\end{equation*}
$$

where

$$
p_{t}^{*}:\left\{\begin{array}{l}
\leq 1 \\
=1
\end{array} \quad P_{i, t}=P_{j, t}, \text { all } i, j .\right.
$$

Law of Motion of Tack Yun Distortion

- We have

$$
P_{t}^{*}=\left[(1-\theta) \tilde{P}_{t}^{-\varepsilon}+\theta\left(P_{t-1}^{*}\right)^{-\varepsilon}\right]^{\frac{-1}{\varepsilon}}
$$

- Then,

$$
\begin{align*}
p_{t}^{*} & \equiv\left(\frac{P_{t}^{*}}{P_{t}}\right)^{\varepsilon}=\left[(1-\theta) \tilde{p}_{t}^{-\varepsilon}+\theta \frac{\bar{\pi}_{t}^{\varepsilon}}{p_{t-1}^{*}}\right]^{-1} \\
& =\left[(1-\theta)\left(\frac{1-\theta \bar{\pi}_{t}^{(\varepsilon-1)}}{1-\theta}\right)^{\frac{\varepsilon}{\varepsilon-1}}+\frac{\theta \bar{\pi}_{t}^{\varepsilon}}{p_{t-1}^{*}}\right]^{-1} \tag{4}
\end{align*}
$$

using the restriction between \tilde{p}_{t} and aggregate inflation developed earlier.

Gross Output Production Function

- Recall

$$
I_{i, t}=\mu_{t} Y_{i, t},
$$

SO,

$$
I_{t} \equiv \int_{0}^{1} I_{i, t} d i=\mu_{t} \int_{0}^{1} Y_{i, t} d=\mu_{t} Y_{t}^{*}=\frac{\mu_{t}}{p_{t}^{*}} Y_{t} .
$$

- Then, the gross output production function is:

$$
\begin{aligned}
Y_{t} & =p_{t}^{*} A_{t} N_{t}^{\gamma} I_{t}^{1-\gamma} \\
& =p_{t}^{*} A_{t} N_{t}^{\gamma}\left(\frac{\mu_{t}}{p_{t}^{*}} Y_{t}\right)^{1-\gamma} \\
& \longrightarrow Y_{t}=\left(p_{t}^{*} A_{t}\left(\frac{\mu_{t}}{p_{t}^{*}}\right)^{1-\gamma}\right)^{\frac{1}{\gamma}} N_{t}
\end{aligned}
$$

Value Added (GDP) Production Function

- We have

$$
\begin{aligned}
& G D P_{t}=Y_{t}-I_{t}=\left(1-\frac{\mu_{t}}{p_{t}^{*}}\right) Y_{t} \\
&=\left(1-\frac{\mu_{t}}{p_{t}^{*}}\right)\left(p_{t}^{*} A_{t}\left(\frac{\mu_{t}}{p_{t}^{*}}\right)^{1-\gamma}\right)^{\frac{1}{\gamma}} N_{t} \\
&=\overbrace{\left(p_{t}^{*} A_{t}\left(1-\frac{\mu_{t}}{p_{t}^{*}}\right)^{\gamma}\left(\frac{\mu_{t}}{p_{t}^{*}}\right)^{1-\gamma}\right)^{\frac{1}{\gamma}} N_{t}}
\end{aligned}
$$

- Note how an increase in technology at the firm level, by A_{t}, gives rise to a bigger increase in TFP by $A_{t}^{1 / \gamma}$.
- In the literature on networks, $1 / \gamma$ is referred to as a 'multiplier effect' (see Jones, 2011).
- The Tack Yun distortion, p_{t}^{*}, is associated with the same multiolier phenomenon.

Decomposition for TFP

- To maximize GDP for given aggregate N_{t} and A_{t} :

$$
\begin{aligned}
& \max _{0<p_{t}^{*} \leq 1,0 \leq \lambda_{t} \leq 1}\left(p_{t}^{*} A_{t}\left(1-\lambda_{t}\right)^{\gamma}\left(\lambda_{t}\right)^{1-\gamma}\right)^{\frac{1}{\gamma}} \\
\rightarrow \quad & \lambda_{t}=1-\gamma, p_{t}^{*}=1 .
\end{aligned}
$$

- So,

$$
\begin{aligned}
T F P_{t}= & \overbrace{\left(p_{t}^{*}\left(\frac{1-\frac{\mu_{t}}{p_{t}^{*}}}{\gamma}\right)^{\gamma}\left(\frac{\mu_{t}}{p_{t}^{*}}\right)^{1-\gamma}\right)^{\frac{1}{\gamma}}}^{\text {Component due to market distortions }=\chi_{t}} \\
& \times \overbrace{\left(A_{t}(\gamma)^{\gamma}(1-\gamma)^{1-\gamma}\right)^{\frac{1}{\gamma}}}^{\text {Exogenous, technology component }=\tilde{A}_{t}}
\end{aligned}
$$

Allocative Cost of Inflation

- Could decompose TFP even more:

$$
T F P_{t}=\tilde{A}_{t} \times \chi_{t}, \chi_{t}=\chi_{t}^{\pi} \times \chi_{t}^{\text {monopoly }}
$$

where

$$
\begin{aligned}
& \chi_{t}^{\text {monopoly }} \sim \text { what } \chi_{t} \text { would be if prices were flexible, } \theta=0 . \\
& \qquad \chi_{t}^{\pi} \sim \frac{\chi_{t}}{\chi_{t}^{\text {monopoly }}}
\end{aligned}
$$

- Allocative cost of inflation:

$$
100\left(1-\chi_{t}^{\pi}\right)
$$

- Total allocative costs ($1^{\text {st }}$ order Taylor expansion about

$$
\left.\chi_{t}^{\pi}=\chi_{t}^{\text {monopoly }}=1\right):
$$

$$
100\left(1-\chi_{t}\right) \simeq 100\left(1-\chi_{t}^{\pi}\right)+100\left(1-\chi_{t}^{\text {monopoly }}\right)
$$

Evaluating the Distortions

- The equations characterizing the TFP distortion, χ_{t} :

$$
\begin{aligned}
& \chi_{t}=\left(p_{t}^{*}\left(\frac{1-\frac{\mu_{t}}{p_{t}^{*}}}{\gamma}\right)^{\gamma}\left(\frac{\frac{\mu_{t}}{p_{t}^{*}}}{1-\gamma}\right)^{1-\gamma}\right)^{\frac{1}{\gamma}} \\
& p_{t}^{*}=\left[(1-\theta)\left(\frac{1-\theta \bar{\pi}_{t}^{(\varepsilon-1)}}{1-\theta}\right)^{\frac{\varepsilon}{\varepsilon-1}}+\frac{\theta \bar{\pi}_{t}^{\varepsilon}}{p_{t-1}^{*}}\right]^{-1} .
\end{aligned}
$$

- Potentially, NK model provides an 'endogenous theory of TFP'.
- Standard practice in NK literature is to set $\chi_{t}=1$ for all t.
- Set $\gamma=1$ and linearize around $\bar{\pi}_{t}=p_{t}^{*}=1$.
- With $\gamma=1, \chi_{t}=p_{t}^{*}$, and first order expansion of p_{t}^{*} around $\bar{\pi}_{t}=p_{t}^{*}=1$ is:

$$
p_{t}^{*}=p^{*}+0 \times\left(\bar{\pi}_{t}-1\right)+\theta\left(p_{t-1}^{*}-p^{*}\right), \text { with } p^{*}=1
$$

so $p_{t}^{*} \rightarrow 1$ and is invariant to shocks.

Empirical Assessment of the Distortions

- The TFP distortion, χ_{t} :

$$
\chi_{t}=\left(p_{t}^{*}\left(\frac{1-\frac{\mu_{t}}{p_{t}^{*}}}{\gamma}\right)^{\gamma}\left(\frac{\frac{\mu_{t}}{p_{t}^{*}}}{1-\gamma}\right)^{1-\gamma}\right)^{\frac{1}{\gamma}}
$$

- Problem: the objects, χ_{t} and p_{t}^{*}, are not quite observable.
- Still, if we assume μ_{t} is constant, at $1-\gamma$, we can get a feel about the magnitudes using US inflation data.
- Will consider $\gamma=1 / 2$ (Basu's empirical estimate) and $\gamma=1$ (standard assumption in NK literature).
- Will consider two values for the markup:
$-\varepsilon /(\varepsilon-1)=1.20$, the baseline estimate in CEE (JPE, 2005), which corresponds to $\varepsilon=6$,
$-\varepsilon /(\varepsilon-1)=1.15$, more competition, i.e., $\varepsilon=7.7$.

Empirical Assessment of the Distortions

- First, do 'back of the envelope' calculations in a steady state when inflation is constant and p^{*} is constant.

$$
\begin{array}{r}
p^{*}=\left[(1-\theta)\left(\frac{1-\theta \bar{\pi}^{(\varepsilon-1)}}{1-\theta}\right)^{\frac{\varepsilon}{\varepsilon-1}}+\frac{\theta \bar{\pi}^{\varepsilon}}{p^{*}}\right]^{-1} \\
\rightarrow p^{*}=\frac{1-\theta \bar{\pi}^{\varepsilon}}{1-\theta}\left(\frac{1-\theta}{1-\theta \bar{\pi}^{(\varepsilon-1)}}\right)^{\frac{\varepsilon}{\varepsilon-1}}
\end{array}
$$

- Approximate TFP distortion, χ :

$$
\chi_{t}=\left(p_{t}^{*}\left(\frac{1-\frac{\mu_{t}}{p_{t}^{*}}}{\gamma}\right)^{\gamma}\left(\frac{\frac{\mu_{t}}{p_{t}^{*}}}{1-\gamma}\right)^{1-\gamma}\right)^{\frac{1}{\gamma}} \overbrace{\simeq}^{\text {more on this later }}\left(p^{*}\right)^{1 / \gamma}
$$

Three Inflation Rates:

- Average inflation in the 1970s, 8 percent APR.
- Several people have suggested that the US raise its inflation target to 4 percent to raise the nominal rate of interest and thereby reduce the likelihood of the zero lower bound on the interest rate becoming binding again.
- http://www.voxeu.org/article/case-4-inflation
- Two percent inflation is the average in the recent (pre-2008) low inflation environment.

Cost of Three Alternative Permanent Levels of Inflation

$$
p^{*}=\frac{1-\theta \bar{\pi}^{\varepsilon}}{1-\theta}\left(\frac{1-\theta}{1-\theta \bar{\pi}^{(\varepsilon-1)}}\right)^{\frac{\varepsilon}{\varepsilon-1}}, \chi=\left(p^{*}\right)^{1 / \gamma}
$$

Table 1: Percent of GDP Lost 1 Due to Inflation, 100($1-\chi_{t}$)
Without networks $(\gamma=1) \quad$ With networks $(\gamma=1 / 2)$
a: Steady state inflation: 8 percent per year

$2.41^{2}(3.92)[10.85]$	$4.76(7.68)[20.53]$
b: Steady state inflation: 4 percent per year	

0.46 (0.64) [1.13] $\quad 0.91$ (1.27) [2.25]
c: Steady state inflation: 2 percent per year
$0.10(0.13)[0.21] \quad 0.20(0.27)[0.42]$

Note: number not in parentheses assumes a markup of 20 percent; number in parentheses: 15 percent; number in
square brackets: 10 percent

Next: Assess Costs of Inflation Using Non-Steady State Formulas

Figure 1a: Percent loss of GDP due to Inflation, assumed markup is 1.2

Figure 1b: Percent loss of GDP due to Inflation, assumed markup is 1.15

Inflation Distortions Displayed are Big

- With $\varepsilon=6$,
- mean $\left(\chi_{t}\right)=0.98$, a 2% loss of GDP.
- frequency, $\chi_{t}<0.955$, is 10% (i.e., 10% of the time, the output loss is greater than 4.5 percent).
- With more competition (i.e., ε higher), the losses are greater.
- with higher elasticity of demand, given movements in inflation imply much greater substitution away from high priced items, thus greater misallocation (caveat: this intuition is incomplete since with greater ε the consequences of a given amount of misallocation are smaller).
- Distortions with $\gamma=1 / 2$ are roughly twice the size of distortions in standard case, $\gamma=1$.
- To see this, note

$$
1-\chi_{t} \simeq 1-\left(p^{*}\right)^{\frac{1}{\gamma}} \overbrace{\simeq}^{\text {Taylor series expansion about } p^{*}=1} \frac{1}{\gamma}\left(1-p^{*}\right)
$$

Comparison of Steady State and Dynamic Costs of Inflation in 1970s

- Results

Table 1: Fraction of GDP Lost, $100(1-\chi)$, During High Inflation		
	No networks, $\gamma=1$	Networks, $\gamma=2$
Steady state lost output	$2.41(3.92)^{*}$	$4.76(7.68)$
Mean, 1972Q1-1982Q4	$3.13(5.22)$	$6.26(10.44)$
Note * number not in parentheses - markup of 20 percent (i.e., $\varepsilon=6)$		
number in parentheses - markup of 15 percent. (i.e., $\varepsilon=7.7)$		

- Evidently, distortions increase rapidly in inflation,

$$
E[\text { distortion (inflation) }]>\text { distortion (Einflation) }
$$

Next: RBC versus Sticky Price Equilibrium Conditions

- Two versions of the model:
- sticky price version of the model : $\theta, \psi>0$, free to choose v somehow.
- RBC version of the model: flexible prices, $\theta=0$; no working capital, $\psi=0$; no monopoly power, $\varepsilon=+\infty$; no subsidy to intermediate good firms, $v=0$.
- Sticky price equilibrium incomplete.
- One equation short because real allocations in private economy co-determined along with the nominal quantities.
- Impossible to think about equilibrium allocations without thinking about monetary policy.
- RBC version of model exhibits classical dichotomy.
- real allocations in flexible price model are determined and monetary policy only delivers inflation and the nominal interest rate, things that have no impact on welfare.
- Fyaluato dictortinnc in ctoady ctato

Summarizing the Equilibrium Conditions

- Break up the equilibrium conditions into three sets:
(1) Conditions (1)-(4) for prices: $K_{t}, F_{t}, \bar{\pi}_{t}, p_{t}^{*}, s_{t}$
(2) Conditions (6)-(10) for: $C_{t}, Y_{t}, N_{t}, I_{t}, \mu_{t}$

3 Conditions (5) and (11) for R_{t} and χ_{t}.

- Consider
- conditions for the sticky price case.
- conditions for RBC case: equilibrium allocations are first best, they are what a benevolent planner would choose.

First set of Equilibrium Conditions

$$
\begin{gather*}
K_{t}=\frac{\varepsilon}{\varepsilon-1} \frac{Y_{t}}{C_{t}} s_{t}+\beta \theta E_{t} \bar{\pi}_{t+1}^{\varepsilon} K_{t+1}(1) \\
F_{t}=\frac{Y_{t}}{C_{t}}+\beta \theta E_{t} \bar{\pi}_{t+1}^{\varepsilon-1} F_{t+1} \tag{2}\\
\frac{K_{t}}{F_{t}}=\left[\frac{1-\theta \bar{\pi}_{t}^{(\varepsilon-1)}}{1-\theta}\right]^{\frac{1}{1-\varepsilon}} \tag{3}\\
p_{t}^{*}=\left[(1-\theta)\left(\frac{1-\theta \bar{\pi}_{t}^{(\varepsilon-1)}}{1-\theta}\right)^{\frac{\varepsilon}{\varepsilon-1}}+\frac{\theta \bar{\pi}_{t}^{\varepsilon}}{p_{t-1}^{*}}\right]^{-1} \tag{4}
\end{gather*}
$$

- RBC case $(\varepsilon=+\infty, v=\theta=0)$: (i) zero price dispersion and (ii) everyone sets price equal to marginal cost $(\varepsilon /(\varepsilon-1)=1)$: $p_{t}^{*}=1, s_{t}=1, K_{t}=F_{t}=C_{t} / Y_{t}$, no restriction on $\bar{\pi}_{t}$

Second Set of Equilibrium Conditions

- Equations:

$$
\begin{aligned}
Y_{t}= & p_{t}^{*} A_{t} N_{t}^{\gamma} I_{t}^{1-\gamma}(6), C_{t}+I_{t}=Y_{t}(7), I_{t}=\mu_{t} \frac{Y_{t}}{p_{t}^{*}}(8) \\
s_{t}= & (1-v)\left(1-\psi+\psi R_{t}\right)\left(\frac{1}{1-\gamma}\right)^{1-\gamma} \\
& \times\left(\frac{1}{\gamma}\right)^{\text {used household Euler equation to substitute out } W_{t} / P_{t}} \overbrace{\exp \left(\tau_{t}\right) C_{t} N_{t}^{\varphi}}^{\gamma} \frac{1}{A_{t}} \\
\mu_{t}= & \frac{(1-\gamma) s_{t}}{(1-v)\left(1-\psi+\psi R_{t}\right)}(10),
\end{aligned}
$$

Second Set of Equilibrium Conditions, RBC

Case

- Suppose $v=\theta=\psi=0, \varepsilon=+\infty$:

$$
\begin{aligned}
1 & =\left(\frac{1}{1-\gamma}\right)^{1-\gamma}\left(\frac{1}{\gamma} \exp \left(\tau_{t}\right) C_{t} N_{t}^{\varphi}\right)^{\gamma} \frac{1}{A_{t}}(9) \\
\mu_{t} & =1-\gamma(10), \\
Y_{t} & =\left[A_{t}(1-\gamma)^{1-\gamma}\right]^{\frac{1}{\gamma}} N_{t}(6), \\
C_{t} & =\overbrace{\left[A_{t} \gamma^{\gamma}(1-\gamma)^{1-\gamma}\right]^{\frac{1}{\gamma}}}^{\tilde{A}_{t}} N_{t}(6,7,8)
\end{aligned}
$$

- RBC practice of setting $\gamma=1$ and backing out technology from aggregate production function involves no error if true $\gamma=1 / 2$.

Second Set of Equilibrium Conditions, RBC Case, cnt'd

- Suppose $v=\theta=\psi=0, \varepsilon=+\infty$.
- Solve equation (9) for cost of working, $\exp \left(\tau_{t}\right) C_{t} N_{t}^{\varphi}$,

$$
\begin{equation*}
\overbrace{\exp \left(\tau_{t}\right) C_{t} N_{t}^{\varphi}}^{\text {cost of working }}=\overbrace{\left[A_{t}(\gamma)^{\gamma}(1-\gamma)^{1-\gamma}\right]^{\frac{1}{\gamma}}}^{\text {benefit of working }} \tag{9}
\end{equation*}
$$

- Conditions $(6,7,8,10)$ and (9) imply that first-best levels of consumption and employment occur:

$$
\begin{aligned}
N_{t} & =\exp \left(-\frac{\tau_{t}}{1+\varphi}\right) \\
C_{t}(& \left.=G D P_{t}\right)=\left[A_{t}(\gamma)^{\gamma}(1-\gamma)^{1-\gamma}\right]^{\frac{1}{\gamma}} \exp \left(-\frac{\tau_{t}}{1+\varphi}\right)
\end{aligned}
$$

Third Set of Equilibrium Conditions

- Allocative distortion:

$$
\begin{equation*}
\chi_{t}=\left(p_{t}^{*}\left(\frac{1-\frac{\mu_{t}^{*}}{p_{t}^{*}}}{\gamma}\right)^{\gamma}\left(\frac{\frac{\mu_{t}^{*}}{p_{t}^{*}}}{1-\gamma}\right)^{1-\gamma}\right)^{\frac{1}{\gamma}} \tag{11}
\end{equation*}
$$

in RBC case, i.e., $v=\theta=\psi=0, \varepsilon=+\infty$,

$$
\chi_{t}=1, \text { for all } t .
$$

- Intertemporal equation

$$
\frac{1}{C_{t}}=\beta E_{t} \frac{1}{C_{t+1}} \frac{R_{t}}{\bar{\pi}_{t+1}}
$$

Third Set of Equil. Cond., RBC Case

- Absent uncertainty, $R_{t} / \bar{\pi}_{t+1}$ determined uniquely from C_{t} :

$$
\frac{1}{C_{t}}=\beta \frac{1}{C_{t+1}} \frac{R_{t}}{\bar{\pi}_{t+1}}
$$

- With uncertainty, household intertemporal condition simply places a single linear restriction across all the period $t+1$ values for $R_{t} / \bar{\pi}_{t+1}$ that are possible given period t.
- The real interest rate, \tilde{r}_{t}, on a risk free one-period bond that pays in $t+1$ is uniquely determined:

$$
\frac{1}{C_{t}}=\tilde{r}_{t} \beta E_{t} \frac{1}{C_{t+1}}
$$

- By no-arbitrage, only the following weighted average of $R_{t} / \bar{\pi}_{t+1}$ across period $t+1$ states of nature is determined:

$$
\tilde{r}_{t}=\frac{E_{t} \frac{1}{C_{t+1}} \frac{R_{t}}{\bar{\pi}_{t+1}}}{E_{t} \frac{1}{C_{t+1}}}=E_{t} \frac{\frac{1}{C_{t+1}}}{E_{t} \frac{1}{C_{t+1}}} \frac{R_{t}}{\bar{\pi}_{t+1}}=E_{t} v_{t+1} \frac{R_{t}}{\bar{\pi}_{t+1}}
$$

Classical Dichotomy

- Exhibited by RBC version of model ($v=\theta=\psi=0, \varepsilon=+\infty$.)
- Real variables determined independent of monetary policy.
- The things that matter - consumption, employment - are first best and there is no constructive role for monetary policy.
- Monetary policy irrelevant. Money is a veil, is neutral.
- Sticky price version of model.
- Now, all aspects of the system are interrelated and jointly determined.
- Whole system depends on the nature of monetary policy.
- Within the context of a market system, monetary policy has an essential role as a potential 'lubricant', to help the economy to get as close as possible to the first best.
- Monetary policy:
- has the potential to do a good job.
- or, if mismanaged, could get very bad outcomes.
- Monetary Policy Rule

$$
R_{t} / R=\left(R_{t-1} / R\right)^{\rho} \exp \left[(1-\rho) \phi_{\pi}\left(\bar{\pi}_{t}-\bar{\pi}\right)+u_{t}\right]
$$

- Smoothing parameter: ρ.
- Bigger is ρ the more persistent are policy-induced changes in the interest rate.
- Monetary policy shock: u_{t}.

Next: Steady State

- Need steady state for model solution methods.
- We have:

$$
\begin{aligned}
L & =\frac{\text { marginal utility cost of working }}{\text { marginal product of working }}=\frac{C N^{\varphi}}{\chi \tilde{A}} \\
T F P & =\chi \tilde{A} .
\end{aligned}
$$

- Chari-Kehoe-McGrattan (Econometrica, 'Business Cycle Accounting'):
- $1-\chi$ is the 'efficiency wedge', $1-L$ is the 'labor wedge'.
- First best: wedges are zero, $L=1, \chi=1$.
- First best in steady state can be accomplished by suitable choice of $\bar{\pi}$ and ν.

Steady State

- Equilibrium conditions (1), (2), (3), (4), (5) imply:

$$
\begin{gathered}
R=\frac{\bar{\pi}}{\beta}, K_{f} \equiv \frac{K}{\bar{F}}=\left[\frac{1-\theta}{1-\theta \bar{\pi}^{(\varepsilon-1)}}\right]^{\frac{1}{\varepsilon-1}}, \\
s=K_{f} \frac{\varepsilon-1}{\varepsilon} \frac{1-\beta \theta \bar{\pi}^{\varepsilon}}{1-\beta \theta \bar{\pi}^{\varepsilon-1}}, p^{*}=\frac{1-\theta \bar{\pi}^{\varepsilon}}{1-\theta}\left(\frac{1-\theta}{1-\theta \bar{\pi}^{(\varepsilon-1)}}\right)^{\frac{\varepsilon}{\varepsilon-1}}
\end{gathered}
$$

Equilibrium condition (10) implies steady state materials to gross output ratio:

$$
\frac{\mu}{p^{*}}=\frac{(1-\gamma) s / p^{*}}{(1-v)(1-\psi+\psi R)},(+)
$$

Steady State

- Let v^{*} be defined by,

$$
\frac{\mu}{p^{*}}=(1-\gamma) \frac{1-v^{*}}{1-v},(++)
$$

so v^{*} is the value of the subsidy that puts steady state materials-to-cost ratio to first-best level.

- Solving for v^{*} :

$$
1-v^{*}=\frac{\varepsilon-1}{(1-\psi+\psi R) \varepsilon} \frac{1-\beta \theta \bar{\pi}^{\varepsilon}}{1-\theta \bar{\pi}^{\varepsilon}} \frac{1-\theta \bar{\pi}^{(\varepsilon-1)}}{1-\beta \theta \bar{\pi}^{(\varepsilon-1)}}
$$

Steady State

- From (11),

$$
\begin{aligned}
T F P= & \overbrace{\left(p^{*}\left(\frac{1-(1-\gamma) \frac{1-v^{*}}{1-v}}{\gamma}\right)^{\gamma}\left(\frac{1-v^{*}}{1-v}\right)^{1-\gamma}\right)^{\frac{1}{\gamma}}}^{\chi} \\
& \times \overbrace{\left(\gamma^{\gamma}(1-\gamma)^{1-\gamma}\right)^{\frac{1}{\gamma}}}^{\tilde{A}}
\end{aligned}
$$

- Thus,
- when $v=v^{*}, \chi=\chi^{\pi}=\left(p^{*}\right)^{1 / \gamma}, \chi^{\text {monopoly }}=1$.
- if also, $\bar{\pi}=1$, then $\chi=1$ and TFP at its first best level.

Steady State

- Combining (+) and (++),

$$
s=(1-\psi+\psi R)\left(1-v^{*}\right) p^{*} .
$$

- Use this to substitute out for s in steady state version of (9),

$$
\frac{1-v^{*}}{1-v} p^{*}(1-\gamma)^{1-\gamma}(\gamma)^{\gamma}=\left(C N^{\varphi}\right)^{\gamma}
$$

or, after rearranging:

$$
L=\frac{\gamma}{\gamma+\frac{v^{*}-v}{1-v^{*}}},
$$

- So, labor wedge set to zero (first-best) when $v=v^{*}$.

Steady State

- Solve for N using expression for L and $C=\chi \tilde{A} N$:

$$
\begin{aligned}
N & =\left[\frac{\gamma}{\gamma+\frac{v^{*}-v}{1-v^{*}}}\right]^{\frac{1}{1+\varphi}}, C=\chi \tilde{A} N, Y=\frac{C}{\gamma} \\
F & =\frac{1 / \gamma}{1-\beta \theta \bar{\pi}^{\varepsilon-1}}, K=K_{f} \times F .
\end{aligned}
$$

Networks Cut the Slope of the Phillips Curve in Half

- Networks promote strategic complementarity in price setting.
- Phillips curve requires concept of output gap.
- the log deviation of equilibrium output from a benchmark level of output.
- three possible benchmarks include: (i) output in the Ramsey equilibrium, (ii) the equilibrium when prices are flexible and (iii) the first best equilibrium, when output is chosen by a benevolent planner.
- When $\psi=0$ and $v=v^{*}$ then (i)-(iii) identical.
- When $\psi>0$ (i) and (ii) complicated and so I just go with (iii).
- Derive Phillips Curve
- Classic Phillips curve depends on absence of price distortions in steady state.

First Best Output

- First best equilibrium solves

$$
\max _{C_{t}, N_{t}} u\left(C_{t}\right)-\exp \left(\tau_{t}\right) \frac{N_{t}^{1+\varphi}}{1+\varphi}
$$

subject to the maximal consumption that can be produced by allocating resources efficiently across sectors and between materials and value-added:

$$
C_{t}=\left(A_{t} \gamma^{\gamma}(1-\gamma)^{1-\gamma}\right)^{\frac{1}{\gamma}} N_{t}
$$

- Solution:

$$
\begin{aligned}
C_{t}^{*} & =\left(A_{t} \gamma^{\gamma}(1-\gamma)^{1-\gamma}\right)^{\frac{1}{\gamma}} \exp \left(-\frac{\tau_{t}}{1+\varphi}\right) \\
N_{t}^{*} & =\exp \left(-\frac{\tau_{t}}{1+\varphi}\right)
\end{aligned}
$$

Output Gap

$$
X_{t}=\frac{C_{t}}{C_{t}^{*}} .
$$

The log deviation of output gap from steady state:

$$
\begin{aligned}
x_{t} & \equiv \hat{X}_{t}=\hat{C}_{t}-\hat{C}_{t}^{*} \\
& =\hat{C}_{t}-\left(\frac{1}{\gamma} \hat{A}_{t}-\frac{\tau_{t}}{1+\varphi}\right),
\end{aligned}
$$

where

$$
\hat{x}_{t}=\frac{X_{t}-X}{X}=\log \left(\frac{X_{t}}{X}\right),
$$

for X_{t} sufficiently close to X.

Phillips Curve

- Linearizing (1), (2) and (3), about steady state,

$$
\begin{align*}
\hat{K}_{t}= & \left(1-\beta \theta \bar{\pi}^{\varepsilon}\right)\left[\hat{Y}_{t}+\hat{s}_{t}-\hat{C}_{t}\right]+\beta \theta \bar{\pi}^{\varepsilon} E_{t}\left(\varepsilon \hat{\bar{\pi}}_{t+1}+\hat{K}_{t+1}\right) \\
\hat{F}_{t}= & \left(1-\beta \theta \bar{\pi}^{\varepsilon-1}\right)\left(\hat{Y}_{t}-\hat{C}_{t}\right) \\
& +\beta \theta \bar{\pi}^{\varepsilon-1} E_{t}\left((\varepsilon-1) \hat{\bar{\pi}}_{t+1}+\hat{F}_{t+1}\right) \quad(b) \tag{b}\\
\hat{K}_{t}= & \hat{F}_{t}+\frac{\theta \bar{\pi}^{(\varepsilon-1)}}{1-\theta \bar{\pi}^{(\varepsilon-1)}} \hat{\bar{\pi}}_{t} . \text { (c) }
\end{align*}
$$

- Substitute out for \hat{K}_{t} in (a) using (c) and then substitute out for \hat{F}_{t} from (b) to obtain the equation on the next slide.

Phillips Curve

- Performing the substitutions described on the previous slide:

$$
\begin{gathered}
\left(1-\beta \theta \bar{\pi}^{\varepsilon-1}\right)\left(\hat{Y}_{t}-\hat{C}_{t}\right)+\beta \theta \bar{\pi}^{\varepsilon-1} E_{t}\left((\varepsilon-1) \hat{\bar{\pi}}_{t+1}+\hat{F}_{t+1}\right) \\
+\frac{\theta \bar{\pi}^{(\varepsilon-1)}}{1-\theta \bar{\pi}^{(\varepsilon-1)}} \hat{\bar{\pi}}_{t}=\left(1-\beta \theta \bar{\pi}^{\varepsilon}\right)\left[\hat{Y}_{t}+\hat{s}_{t}-\hat{C}_{t}\right] \\
+\beta \theta \bar{\pi}^{\varepsilon} E_{t}\left(\varepsilon \hat{\bar{\pi}}_{t+1}+\hat{F}_{t+1}+\frac{\theta \bar{\pi}^{(\varepsilon-1)}}{1-\theta \bar{\pi}^{(\varepsilon-1)}} \hat{\bar{\pi}}_{t+1}\right)
\end{gathered}
$$

Phillips Curve

- Collecting terms,

$$
\begin{aligned}
& \overbrace{\hat{\bar{\pi}}_{t}=\frac{\left(1-\theta \bar{\pi}^{(\varepsilon-1)}\right)\left(1-\beta \theta \bar{\pi}^{\varepsilon}\right)}{\theta \bar{\pi}^{(\varepsilon-1)}} \hat{s}_{t}+\beta E_{t} \hat{\bar{\pi}}_{t+1}}^{\text {familiar Phillips curve }} \\
& +(1-\bar{\pi})\left(1-\theta \bar{\pi}^{(\varepsilon-1)}\right) \beta \\
& \times\left[\hat{Y}_{t}-\hat{C}_{t}+E_{t}\left(\hat{F}_{t+1}+\left(\varepsilon+\frac{\theta \bar{\pi}^{(\varepsilon-1)}}{1-\theta \bar{\pi}^{(\varepsilon-1)}}\right) \hat{\bar{\pi}}_{t+1}\right)\right] .
\end{aligned}
$$

- Don't actually get standard Phillips curve unless $\bar{\pi}=1$.
- More generally, get standard Phillips curve as long as there are no price distortions in steady state.
- Going for the Phillips curve in terms of the output gap.

Linearized Marginal Cost

- Equation (9):

$$
\begin{aligned}
s_{t}= & (1-v)\left(1-\psi+\psi R_{t}\right)\left(\frac{1}{1-\gamma}\right)^{1-\gamma} \\
& \times\left(\frac{1}{\gamma} \exp \left(\tau_{t}\right) C_{t} N_{t}^{\varphi}\right)^{\gamma} \frac{1}{A_{t}}
\end{aligned}
$$

- Using $C_{t}=\tilde{A}_{t} \chi_{t} N_{t}$,

$$
\begin{aligned}
s_{t}= & (1-v)\left(1-\psi+\psi R_{t}\right)\left(\frac{1}{1-\gamma}\right)^{1-\gamma} \\
& \times\left(\frac{1}{\gamma} \exp \left(\tau_{t}\right) C_{t}^{1+\varphi}\right)^{\gamma} \frac{\left(\tilde{A}_{t} \chi_{t}\right)^{-\gamma \varphi}}{A_{t}} .
\end{aligned}
$$

- Linearizing:

$$
\hat{s}_{t}=\frac{\psi R}{(1-\psi+\psi R)} \hat{R}_{t}+(1+\varphi) \gamma \hat{C}_{t}+\gamma \tau_{t}-\varphi \gamma \widehat{\left(\tilde{A}_{t} \chi_{t}\right)}-\hat{A}_{t}
$$

Linearized Marginal Cost

$$
\begin{aligned}
-\varphi \gamma\left(\widehat{\left.\widehat{A}_{t} \chi_{t}\right)}-\hat{A}_{t}\right. & =-\varphi \gamma \overbrace{\hat{A}_{t}}^{=\frac{1}{A_{t}}}-\varphi \gamma \hat{\chi}_{t}-\hat{A}_{t} \\
& =-(1+\varphi) \hat{A}_{t}-\varphi \gamma \hat{\chi}_{t}
\end{aligned}
$$

- Adopt the standard New Keynesian assumptions: $v=v^{*}$, $\psi=0, \bar{\pi}=1$, so that $\hat{\chi}_{t}=0$ and

$$
\hat{s}_{t}=(1+\varphi) \gamma[\overbrace{\hat{C}_{t}-\left(\frac{1}{\gamma} \hat{A}_{t}-\frac{\tau_{t}}{1+\varphi}\right)}^{x_{t}}]
$$

- Conclude that the Phillips curve is:

$$
\hat{\bar{\pi}}_{t}=\frac{(1-\theta)(1-\beta \theta)}{\theta}(1+\varphi) \gamma x_{t}+\beta E_{t} \hat{\bar{\pi}}_{t+1}
$$

with slope cut in half by networks with $\gamma=1 / 2$.

Conclusion

- Networks alter the New Keynesian model's implications for inflation.
- Doubles the cost of inflation.
- Phillips curve is flatter because of strategic complementarities (when there are price frictions, this makes materials prices inertial which makes marginal costs inertial, which reduces firms' interest in changing prices).
- For the result on the Taylor principle, see my 2011 handbook chapter and Christiano (2015).
- When the smoothing parameter in Taylor rule is set to zero and $\psi=1$, then the model has indeterminacy, even when the coefficient on inflation is 1.5 .
- So, the likelihood of the Taylor principle breaking down goes up when γ is reduced, consistent with intuition.
- When the smoothing parameter is at its empirically plausible value of 0.8 , then the solution of the model does not display indeterminacy.

Simulation

- Set

$$
\begin{aligned}
\phi_{x} & =0, \phi_{\bar{\pi}}=1.5, \beta=0.99, \varphi=1, \rho=0.2 \\
\theta & =3 / 4, \alpha=0, \lambda=0.5, \gamma=1, v=v^{*}, \bar{\pi}=1 \\
a_{t} & =\rho a_{t-1}+\varepsilon_{t}^{a}, \tau_{t}=\lambda \tau_{t-1}+\varepsilon_{t}^{\tau}
\end{aligned}
$$

- Solve the model by first order perturbation about steady state.
- Display the response to ε_{t}^{a} and ε_{t}^{τ}.

$$
\phi_{x}=0, \phi_{\pi}=1.5, \beta=0.99, \varphi=1, \rho=0.2, \theta=0.75, \alpha=0, \delta=0.2, \lambda=0.5 .
$$

Why Is Output Inefficiently High or Low Sometimes?

- Brief answer: the Taylor rule sets the wrong interest rate (should be the natural rate).
- Households equate costs with the private benefit of working, W_{t} :

$$
\frac{-u_{N, t}}{u_{c, t}}=\exp \left(\tau_{t}\right) C_{t} N_{t}^{\varphi}=\frac{W_{t}}{P_{t}}
$$

- So, one reason efficiency may not occur is if W_{t} / P_{t} does not correspond to the actual marginal product of labor (the other possibility is that there is an inefficiency wedge).
- The relationship between W_{t} / P_{t} and labor productivity may be understood by studying the markup of price over marginal cost.

Price over Marginal Cost (Markup)

- $i^{\text {th }}$ firm sets $P_{i, t}$ as a markup, $\mu_{i, t}$ over marginal cost

$$
P_{i, t}=\overbrace{\mu_{i, t}}^{\text {markup }} \times \overbrace{\frac{(1-v) W_{t}}{e^{a_{t}}}}^{\text {marginal cost }},
$$

where we have been setting $1-v=\frac{\varepsilon-1}{\varepsilon}$.

- In the flexible price version of the model the markup is trivial, $\mu_{i, t}=\frac{\varepsilon-1}{\varepsilon}$ so

$$
P_{i, t}=P_{t}=\frac{W_{t}}{e^{a_{t}}},
$$

and W_{t} / P_{t} corresponds to the marginal product of labor.

Price over Marginal Cost (Markup)

- In the sticky price version of the model, the markup is more complicated.
- firms currently setting prices, do so to get the markup to be $\varepsilon /(\varepsilon-1)$ on average in the current and future periods (see earlier discussion)
- for firms not able to set prices in the current period, the markup is

$$
\mu_{i, t}=\frac{P_{i, t-1}}{\frac{(1-v) W_{t}}{e^{a_{t}}}} .
$$

- for these firms the markup moves inversely with a shock to marginal cost.
- Need to look at some aggregate of all markups.

Price over Marginal Cost (Markup)

- Weighted average markup, μ_{t} :

$$
\begin{aligned}
\mu_{t} & \equiv\left(\int_{0}^{1} \mu_{i, t}^{(1-\varepsilon)} d i\right)^{\frac{1}{1-\varepsilon}}=\frac{P_{t}}{\frac{(1-v)_{t}}{e^{\rho_{t}}}}=\frac{1}{\frac{1-v}{e^{a_{t}}} e^{\tau_{t}} C_{t} N_{t}^{\varphi}} \\
& =\frac{1}{(1-v) e^{\tau_{t}} p_{t}^{*} N_{t}^{1+\varphi}}=\frac{1}{(1-v) p_{t}^{*}}\left(\frac{e^{-\frac{\tau_{t}}{1+\varphi}}}{N_{t}}\right)^{1+\varphi} .
\end{aligned}
$$

- Consider the output gap:

$$
X_{t}=\frac{C_{t}}{e^{a_{t}-\tau_{t} /(1+\varphi)}}=\frac{p_{t}^{*} e^{a_{t}} N_{t}}{e^{a_{t}-\tau_{t} /(1+\varphi)}}=p_{t}^{*} \frac{N_{t}}{e^{-\tau_{t} /(1+\varphi)}}
$$

- Use this to substitute into the markup

$$
\mu_{t}=\frac{\left(p_{t}^{*}\right)^{\varphi}}{(1-v)} X_{t}^{-(1+\varphi)} .
$$

μ_{t} moves inversely with the output gap.

Price over Marginal Cost (Markup)

- The preceding implies:

$$
\frac{-u_{N, t}}{u_{c, t}} \overbrace{=}^{\text {source of efficiency }} \frac{W_{t}}{P_{t}}=\frac{e^{a_{t}}}{(1-v) \mu_{t}}=e^{a_{t}}\left(p_{t}^{*}\right)^{-\varphi} X_{t}^{1+\varphi} .
$$

- Suppose $p_{t}^{*}=1$.
- When the output gap is high, $X>0$, then the markup is low and the real wage exceeds e^{a}.
- There is too much employment in this case because the private benefit to the workers of working exceeds the actual benefits (the difference comes out of lump sum profits).
- Why are firms willing to produce with a low markup? Because on average it is high $(\mu=\varepsilon /(\varepsilon-1))$ and so cutting it (not too much!) allows them to still get some profits out of the workers.
- Interpretation: model implies markups are countercyclical.
- Nekarda and Ramey ('The Cyclical Behavior of the Price-Cost Markup', UCSD 2013) argue that the evidence does not support this.

Wrap Up

- Suppose monetary policy puts the interest rate below the natural rate, driving up the output gap.
- The low interest rate gives people an incentive to spend more.
- Marginal cost rises and since prices sticky, markups

$$
\mu_{t}=\frac{P_{t}}{M C_{t}}
$$

go down $\left(M C_{t}=(1-v) W_{t} / e^{a_{t}}\right)$.

- Low markup means high wage when there is a monetary shock, encouraging more work.
- Profits are reduced, but presumably remain positive:

$$
\begin{aligned}
\text { profits } & =P_{i, t} Y_{i, t}-(1-v) W_{t} N_{i, t} \\
& =P_{i, t} Y_{i, t}-e^{a_{t}} M C_{t} \times N_{i, t} \\
& =\left[P_{i, t}-M C_{t}\right] Y_{i, t} \\
& =\left[\mu_{i, t}-1\right] M C_{t} \times Y_{i, t}
\end{aligned}
$$

