
Christiano
Assignment 9

Tutorial on Forecasting, Output Gap Estimation, DSGE Model Estimation
and the MCMC Algorithm Using Dynare

As a reminder of example 5 from the model-solution handout, following
are the equations of the Clarida-Gali-Gertler model.

βEtπt+1 + κxt − πt = 0 (Calvo pricing equation)

− [rt −Etπt+1 − rr∗t ] +Etxt+1 − xt = 0 (intertemporal equation)

αrt−1 + ut + (1− α)φππt + (1− α)φxxt − rt = 0 (policy rule)

rr∗t − ρ∆at −
1

1 + ϕ
(1− λ) τt = 0 (definition of natural rate)

y∗t = at −
1

1 + ϕ
τt (natural output)

xt = yt − y∗t (output gap)

The baseline model parameters are:

β = 0.99, φx = 0.15, φπ = 1.5, α = 0.8, ρ = 0.9, λ = 0.5, δ = 0.2,

ϕ = 1, θ = 0.75, σa = στ = σu = 0.02.

You will need the Dynare files, ccgsim.mod and ccgest.mod, as well as the
MATLABm files, plots.m, analyzegap.m, suptitle.m, compareMCMCLaplace.m
and HPFAST.m, to do this assignment.
The HP filter is defined as follows:

min
{yTt }t=1

TX
t=1

³
yt − yTt

´2
+ λ

T−1X
t=2

h³
yTt+1 − yTt

´
−
³
yTt − yTt−1

´i2
The parameter, λ, controls how ‘smooth’ yTt is. If λ = 0, then yt = yTt . If
λ =∞, then yTt is a time trend (i.e., a line whose second derivative is zero).

1



In the analysis of business cycle data, it is customary to set λ = 1600. The
MATLAB m-file, [y hp,y hptrend]=HPFAST(y,lambda) takes y as input and
puts out y hp=yt − yTt , y hptrend=y

T
t .

This assignment accomplishes three things: (i) it evaluates the common
practice of estimating the output gap using the HP filter; (ii) it asks the
student to estimate the parameters of a DSGE model by Bayesian methods;
and (iii) it explores the MCMC algorithm as a device for approximating a
posterior distribution.

1. For our first exercise, we explore the MCMC algorithm and the Laplace
approximation in a simple example. We ask two questions: (i) what
value of k generates the best approximation with the MCMC algorithm,
with the least number of replications (the conventional recommendation
is that k be selected to obtain an acceptance rate of roughly 20 percent);
and (ii) how well does the Laplace approximation work. Technical
details about the MCMC algorithm and the Laplace approximation are
discussed in the lecture notes on the econometrics of DSGE models.

Hopefully, it is apparent that the MCMC algorithm is quite simple, and
can be programmed by anyone with just a small amount of experience
with MATLAB. A useful exercise to understand how the algorithm
works, is to see how well it approximates a simple known function.
Thus, consider the Weibull probability distribution function (pdf),

g (θ) = ba−bθb−1e−(
θ
a)

2

, x ≥ 0,

where a, b are parameters. (For an explanation of this pdf, see the
MATLAB documentation of [g] = wblpdf(θ, a, b).) Consider a = 10,
b = 20. Graph this pdf over the grid, [7, 11.5] , with intervals 0.001
(i.e., graph g on the vertical axis, where g = wblpdf(x, 10, 20), and x
on the horizontal axis, where x = 7 : .001 : 11.5).

(a) Compute the mode of this pdf by finding the element in your grid
with the highest value of g. Compute the second derivative of the
Weibull at the mode point numerically, using the formula,

f 00 (x) =
f (x+ 2ε)− 2f (x) + f (x− 2ε)

4ε2
,

2



for ε small (for example, you could set ε = 0.000001.) Here, x
plays the role of θ∗ and f plays the role of the MATLAB function,
wblpdf. Set V = −f 00 (θ∗)−1 .

(b) SetM = 1, 000 and set k = 1. Graph the density function implied
by the MCMC approximation, the actual density function, and
the one implied by the Laplace approximation. The value of k,
k = 1, produces a large acceptance rate (I obtained an acceptance
rate of 69%). In any case, the MCMC algorithm produces a poor
approximation with such a low value of M.

(c) Consider M = 10, 000. The acceptance rate (69 percent) is quite
a bit higher than what is recommended. To get the acceptance
rate down, consider a higher value of k, say k = 5. In this case,
I obtained an acceptance rate near the recommended one of 20
percent. The results are as follows:

3



7 7.5 8 8.5 9 9.5 10 10.5 11 11.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Weibull distribution, mode = 9.974, a = 10, b = 20, number of MCMC simulations = 9900

Weibull
Laplace approximation
MCMC, k = 5, acceptance rate (%) = 23.5734

Note how ‘choppy’ this distribution looks. With a larger M the
MCMC approximation would be smoother. Alternatively, one
could smooth the approximation by filtering the results. For ex-
ample, when the results are filtered with the HP filter with a
smoothing parameter of λ = 100, I obtained the following result1:

1Roughly the same results were obtained using the MATLAB kernel smoothing routine,
ksdensity, using its default settings. That is, letting θ̄ =

£
θ (1) · · · θ (M)

¤
denote the

draws from the MCMC algorithm, I computed [f,xi]=kdensity(θ̃) and plotted the result
using plot(xi,f).

4



7 7.5 8 8.5 9 9.5 10 10.5 11 11.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Weibull distribution, mode = 9.974, a = 10, b = 20, number of MCMC simulations = 9900

Weibull
Laplace approximation
MCMC (with smoothing), k = 5, acceptance rate (%) = 23.5734

Evidently, the smoothed MCMC approximation works reasonably
well. It works better than the Laplace approximation, because
the Weibull distribution we are working with is slightly asymmet-
ric, and the Normal distribution can never approximate such a
distribution well.

(d) To understand better the implications of the example for the op-
timal choice of k, consider now a higher acceptance rate. To this
end, set k = 0.8. In this case, I obtained an acceptance rate of 74
percent:

5



7 7.5 8 8.5 9 9.5 10 10.5 11 11.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Weibull distribution, mode = 9.974, a = 10, b = 20, number of MCMC simulations = 9900

Weibull
Laplace approximation
MCMC, k = 0.8, acceptance rate (%) = 74.447

Interestingly, the unsmoothed results seem to lie closer to the true
distribution when the acceptance rate is high, because they are less
noisy. However, when the results are smoothed, it appears that
the results are more accurate when the acceptance rate is low. We
can see this by comparing the following figure with the smoothed
results obtained with k = 0.8 :

6



6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Weibull distribution, mode = 9.974, a = 10, b = 20, number of MCMC simulations = 9900

Weibull
Laplace approximation
MCMC (HP smoothing), k = 0.8, acceptance rate (%) = 74.0228

Note how the peak of the smoothed MCMC rises well above the
peak of the Weibull distribution. These results appear to support
the conventional recommendation regarding k. In any case, the
precise choice of k does not matter when M is very large. For
example, when I set M = 1, 000, 000 with k = 5, I obtained the
following result:

7



7 7.5 8 8.5 9 9.5 10 10.5 11 11.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Weibull distribution, mode = 9.974, a = 10, b = 20, number of MCMC simulations = 999000

Weibull
Laplace approximation
MCMC, k = 5, acceptance rate (%) = 22.8739

Our findings for the quality of the Laplace approximation are that
it assigns too much density near the mode, and lacks the skewness
of the Weibull. Still, for practical purposes the Laplace may be
workable, at least as a first approximation in the initial stages of a
research project. This could be verified in the early stages of the
project by doing a run using the MCMC algorithm and comparing
the results with those of the Laplace approximation. It’s perhaps
clear that the MCMC algorithm is very time intensive becauseM
must be set high. So, if a workable alternative is available during
the development stages of a project, this is useful.

8



2. For the remainder of this assignment, it will be useful to have a sense of
how the CGG economy responds to a shock. In the parameterization
above, we have specified that there are no monetary policy shocks, and
the standard deviation of the other shocks is 2 percent, each.

(a) In the case of each shock, use Dynare to compute the impulse
response functions of the variables to each shock. The m file,
plots.m, produces these in a format that resembles the one in
the model-solving lecture notes. You may want to use these. In
particular, note whether the economy over- or under- responds to
the shock compared to what natural output does. What is the
economic intuition in each case?

(b) Do the calculations with φπ = 0.99. What sort of message does
Dynare generate, and can you provide the economic intuition for
it?

(c) Return to the parameterization, φπ = 1.5. Now, insert rt into
the Cavlo pricing equation. Redo the calculations and note how
Dynare reports indeterminacy. Provide economic intuition for
your result.

3. Generate T = 5000 artificial observations on the ‘endogenous’ (in the
sense of Dynare) variables of the model. These are the variables in the
‘var’ list. The mod file provided, cggsim.mod, has 7 variables. Before
doing the simulation, you should add the growth rate of output to the
equations of the model and to the var list (call it ‘dy’.) That way,
Dynare will also simulate output growth. The variables simulated by
Dynare are placed in the n×T matrix, y . The n rows of y correspond
to the n = 8 variables in var, listed in alphabetical order from the first
to the last row. In particular, the order of the variables will not be
the same as the order in which you listed them in the var statement, if
you didn’t enter them in alphabetical order. To verify the order that
Dynare puts the variables in, see how they are ordered in lgy in the
Dynare-created file, cggsim.m.

Retrieve output growth from (the second row of) y and get the log
level of output, y, using y =cumsum(dysim), where dysim is the name
I arbitrarily assigned to the second row of y . Also, retrieve x from

9



(the eighth row of) y and create natural output from the relation,
y∗ = y − x.

(a) Compute the HP filter of y with λ = 1 and display a graph with
y and yT . Do this also for λ = 1600 and for λ =160,000,000. Do
the results accord with what you would expect, given the formula
for the HP filter above?

(b) Graph the HP filter trend, yT , (λ = 1600) along with y and y∗.
Note how natural output is somewhat smoother than the hp trend.
That is, the hp trend with λ = 1600 oversmooths the data. Still,
the two are relatively close and the two implied gaps have a cor-
relation of 0.59. Following is a graph of the results:

220 230 240 250 260 270 280 290 300

−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

hp trend
natural output
actual output

220 230 240 250 260 270 280 290 300

−0.2

−0.1

0

0.1

0.2

correlation, hp−filtered output and actual output gap = 0.5887 std(gap) = 0.10306 std(yhp) = 0.10959

hp−filtered output
actual gap

Not surprisingly, when λ is reduced, the two gap measures corre-
spond more closely. For example, with λ = 50, one obtains the

10



following results:

220 230 240 250 260 270 280 290 300

−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

hp trend
natural output
actual output

220 230 240 250 260 270 280 290 300
−0.2

−0.1

0

0.1

0.2

correlation, hp−filtered output and actual output gap = 0.72854 std(gap) = 0.10306 std(yhp) = 0.077911

hp−filtered output
actual gap

Note how the correlation between the two gap measures has jumped
from 0.59 to 0.73.

The reason that the hp filter works well as a gap measure is that
the nature of the economic inefficiency in the economy is such that
it over-reacts to shocks. This is evident in the impulse response
functions computed in question 2 above. If φπ is increased and
there are no monetary policy shocks, then the economy is more
efficient, and the gap is smaller. For example, when φπ = 50 and
σu = 0, then one obtains the following results:

11



220 230 240 250 260 270 280 290 300

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

hp trend
natural output
actual output

220 230 240 250 260 270 280 290 300

−0.05

0

0.05

correlation, hp−filtered output and actual output gap = −0.088539 std(gap) = 0.0057217 std(yhp) = 0.02692

hp−filtered output
actual gap

Evidently, whether the hp filter approximates the gap well depends
on parameters. Since the HP filter is often used to measure gaps,
it would be useful to conduct the above exercise generating data
from models that fit the data well.

4. Now we will do some estimation. First, we generate artificial data from
the baseline parameterization of the model, except that σu should be
set to zero (it would be good to verify that the model parameters are
set at the correct values). Place the MATLAB instruction, save data y
at the end of cggsim.mod. Also, set periods = 5000 in the stoch simul
command. Run the mod file using Dynare. This saves the simulated
data. Second, open cggest.mod.

(a) First, do maximum likelihood estimation. Use 4,000 observations
to verify that everything is working properly. Consistency of max-
imum likelihood implies that with this many observations, the
probability that the estimates are far from the true parameter val-
ues is low. Try doing the estimation when you start far from the

12



true parameter value, say with rho=lambda=0.2, σa = στ = .1.
Despite the bad initial guess about the parameter values, you
should end up roughly at the true values.

(b) Redo (a), but now with 30 observations, and you should see that
maximum likelihood still works well.

5. Now do Bayesian estimation, using the inverted gamma distribution as
the prior on the two standard deviations and the beta distribution as
the prior on the two autocorrelations. The beta distribution is nice be-
cause it is restricted to the zero-one interval, while the inverted gamma
is convenient because it is restricted to be positive. Dynare automati-
cally displays graphs of the prior distributions, so that you can visualize
their shape.

(a) Set the mean of the priors over the parameters to the correspond-
ing true values. Set the standard deviation of the inverted gamma
and the beta to 10 and 0.04, respectively. Use 30 observations in
the estimation. Adjust the value of k, so that you get a reasonable
acceptance rate. I found I had to set k = 1.2. Have a look at the
posteriors, and notice how they are tighter than the priors. An ex-
ception is λ, where the posterior is roughly the same as the prior.
This suggests that the data contain very little information about
this parameter. Set the number of replications in the MCMC al-
gorith to 1,000 and compare the results with what you get with
10,000.

(b) Now set the mean of the priors on the standard deviations to
0.1, far from the truth. Set the prior standard deviation on the
inverted gamma distributions to 1. Keep the observations at 30,
and see how the posteriors compare with the priors.

(c) Repeat (b) with 4,000 observations. Compare the priors and pos-
teriors. Note how the posteriors become spikes, as consistency of
the maximum likelihood estimator implies (actually, there is again
relatively little information about λ).

6. It is of interest to compare the posterior densities approximated by
the MCMC algorithm with the Laplace approximation. Consider the

13



setup in 5 (a). You can recover all the information you need for
these calculations from the structure, oo . The posterior distribu-
tions of the parameters and shock standard errors are in the struc-
ture oo .posterior density (first column represents various values of the
parameter, and second column is the MCMC estimate of the associ-
ated density). Posterior modes are in oo .posterior mode. Posterior
standard deviations (taken from the relevant diagonal parts of the in-
verse of the hessian of the log criterion) appear in oo .posterior std (my
code for recovering these objects is compareMCMCLaplace.m.) Setting
M = 1, 000, I found

0.01 0.015 0.02 0.025 0.03

50

100

150

Standard deviation of technology innovation

MCMC
Laplace

0.015 0.02 0.025 0.03 0.035

20

40

60

80

100

120

140

Standard deviation of preference innovation

0.88 0.9 0.92 0.94

10

20

30

40

50

60

Rho

0.75 0.8 0.85 0.9 0.95 1

2

4

6

8

10

Lambda

Note that the Laplace and MCMC posteriors differ substantially, espe-
cially for στ . I then increased the number of replications toM = 10, 000,
I found

14



0.01 0.02 0.03 0.04
0

50

100

150

Standard deviation of technology innovation

MCMC
Laplace

0.01 0.02 0.03 0.04
0

20

40

60

80

100

120

140

Standard deviation of preference innovation

0.86 0.88 0.9 0.92
0

10

20

30

40

50

60

Rho

0.7 0.8 0.9 1
0

2

4

6

8

10

Lambda

Note how much more similar the MCMC and Laplace posteriors are.
The Laplace and MCMC approximations deliver very similar results,
consistent with the conclusion that the Laplace approach can used in
the middle of a research project, while the MCMC can be done later
on. Note that in any particular project, you can check this proposition
out by periodically comparing the posterior distribution obtained by
the Laplace approximation with the posterior distribution obtained by
MCMC.

7. The output gap is not in the dataset used in the econometric estimation.
However, as noted in the handout, it is possible to use the Kalman filter
to estimate the output gap (actually, everything in the state) from the
available data. There are two ways to do this: ‘smoothing’ uses the
entire data set and ‘filtering’ only uses the part of the dataset prior to
the date for which the estimate of the gap is formed. To activate the
Kalman smoother in Dynare, include the argument, smoother, in the
estimation argument list. The smoothed estimates will then be placed
in the MATLAB structure, oo . This structure can be accessed either

15



directly from the command line, or by selecting >desktop>workspace
from the pull down menu available in the command window. You will
see that inside oo there are a number of subcategories, with output
related to the Bayesian estimation.

To see how well the Dynare-estimated version of the model does at pro-
ducing a good guess of the output gap, include the code, analyze.m, at
the end of your mod file. This shows you how to recover the smoothed
output gap from Dynare, and allows you to compare it with the actual
output gap, as well as with the hp-filtered estimate of the output gap.

I obtained this result with the estimated model:

5 10 15 20 25 30

−0.1

−0.05

0

0.05

0.1

Comparison of Actual and DSGE−Based Estimated Output Gap

Median estimate of output gap
upper 95% probability interval
lower 95% probability interval
actual data

The estimate of the gap, and the actual output gap are hard to distin-
guish in the above graph and this is because they are very close! In
addition, Dynare provides a confidence interval for the gap. Note how
the confidence interval widens at the beginning and the end of the data

16



set. This is because there is less information there about the gap. For
example, at the beginning of the data set you only have the later data
to use in estimating the gap, while the earlier data are not available. (I
believe that the confidence integral integrates both parameter uncer-
tainty as well as the uncertainty you would have even if you knew the
true values of the parameters.)

8. The analysis in the previous question suggests that the output gap can
be estimated reliably using the estimated dsge model. However, in
practice one needs the output gap in real time. For this, the smoothed
estimates of the output gap are not a reliable indicator. Instead, it
is useful to look at the filtered estimates. These are found by running
analyze.m to line 49 (the code shows how these are recovered from oo ).
Note that there is a systematic phase shift between the estimated and
actual gaps. This is as expected. Turning points are hard to ‘see’ in
real time. They become evident only after the fact.

9. It is interesting to see how the HP filter works in real time. By running
analyze.m down to line 65 one obtains an estimate of this.

10. Dynare will also do forecasting. For this, one includes the argument,
forecast=xx, where xx indicates how many periods in the future you
want to forecast. (Put in xx=12.) To obtain the forecasts, as well as
forecast uncertainty, execute the rest of analyze.m. You can see from
the analyze.m code where in oo the forecasts as well as the forecast
uncertainty is stored.

17


