Optimal Fiscal and Monetary Policy

Outline

(1) Background: Phelps-Friedman Debate

(2) Some Ideas from Public Finance - Ramsey Theory
 - Policy
 - Private Sector Equilibrium
 - Private Sector Allocation Rule
 - Ramsey Problem
 - Ramsey Equilibrium
 - Implementability Constraint
 - Ramsey Allocation Problem
 - Ramsey Allocations

(3) Simple One-Period Example
(4) Evaluating Phelps-Friedman Debate
Using Lucas-Stokey Cash-Credit Good Model
(a) General Remarks
(b) Model
(c) Ramsey Problem, Ramsey Allocation Problem
(d) Surprising Result:
Friedman is “Right” for Lots of Parameterizations (Used Homotheticity and Separability).

(5) Interpretation of Result
(a) Uniform Taxation Result in Public Finance for Non-Monetary Economies
(b) Homotheticity and Separability Corresponds to Unit Consumption Elasticity of Money Demand
(c) What Happens When You Don’t Have Unit Elasticity?
(d) Who Is Right, Friedman or Phelps?
(6) What Happens When $g, \ z$ Are Random?
 (Answer: Make P Random)

(7) Financing a War: Barro versus Ramsey.
Friedman-Phelps Debate

- Money Demand:

\[\frac{M}{P} = \exp[-\alpha R] \]

- Friedman:

 (a) Efforts to Economize Cash Balances when R High is Socially Wasteful

 (b) Set R as Low As Possible: $R = 1$.

 (c) Since $R = 1 + r + \pi$, Friedman Recommends $\pi = -r$.

 (i) $r \sim$ exogenous (net) real interest rate

 (ii) $\pi \sim$ inflation rate, $\pi = (P - P_{-1})/P_{-1}$
Phelps:

(a) Inflation Acts Like a Tax on Cash Balances -

\[
\text{Seignorage} = \frac{M_t - M_{t-1}}{P_t} = \frac{M_t}{P_t} - \frac{P_{t-1}M_{t-1}}{P_t P_{t-1}} \\
\approx \frac{M \pi}{P (1 + \pi)}
\]

(b) Use of Inflation Tax Permits Reducing Some Other Tax Rate

(c) Extra Distortion in Economizing Cash Balances Compensated by Reduced Distortion Elsewhere.

(d) With Distortions a Convex Function of Tax Rates, Would Always Want to Tax All Goods (Including Money) At Least A Little.

(e) Inflation Tax Particularly Attractive if Interest Elasticity of Money Demand Low.
Question: Who is Right, Friedman or Phelps?

- Answer: Friedman Right Surprisingly Often
- Depends on Income Elasticity of Demand for Money
- Will Address the Issue From a Straight Public Finance Perspective, In the Spirit of Phelps.
- Easy to Develop an Answer, Exploiting a Basic Insight From Public Finance.
Some Basic Ideas from Ramsey Theory

- **Policy**, \(\pi \), Belonging to the Set of ‘Budget Feasible’ Policies, \(A \).

- **Private Sector Equilibrium Allocations**, Equilibrium Allocations, \(x \), Associated with a Given \(\pi \); \(x \in B \).

- **Private Sector Allocation Rule**, mapping from \(\pi \) to \(x \) (i.e., \(\pi : A \to B \)).

- **Ramsey Problem**: Maximize, w.r.t. \(\pi \), \(U(x(\pi)) \).

- **Ramsey Equilibrium**: \(\pi^* \in A \) and \(x^* \), such that \(\pi^* \) solves Ramsey Problem and \(x^* = x(\pi^*) \). ‘Best Private Sector Equilibrium’.
• **Ramsey Allocation Problem**: Solve, \(\tilde{x} = \arg \max U(x) \) for \(x \in B \)

• **Alternative Strategy for Solving the Ramsey Problem**:

 (a) Solve Ramsey Allocation Problem, to Find \(\tilde{x} \).

 (b) Execute the Inverse Mapping, \(\tilde{\pi} = x^{-1}(\tilde{x}) \).

 (c) \(\tilde{\pi} \) and \(\tilde{x} \) Represent a Ramsey Equilibrium.

• **Implementability Constraint**: Equations that Summarize Restrictions on Achievable Allocations, \(B \), Due to Distortionary Tax System.
Policy, π

Set, A, of Budget-Feasible Policies

Private sector Allocation Rule, $x(\pi)$

Private Sector Equilibrium Allocations, x

Set, B, of Private Sector Allocations Achievable by Some Budget-Feasible Policy

Utility
Example

- Households:

\[
\max_{c,l} u(c, l) \\
\text{subject to}: \quad c \leq z(1 - \tau)l, \\
z \sim \text{wage rate} \\
\tau \sim \text{labor tax rate}
\]
Household Problem Implies Private Sector Allocation Rules, \(l(\tau), c(\tau) \), defined by:

\[
u_c z (1 - l) + u_l = 0, \quad c = (1 - \tau)zl
\]

Private Sector Allocation Rules:

\(l(\tau), \quad c(\tau) = z(1-\tau)l \)
• Ramsey Problem:

$$\max_{\tau} u(c(\tau), l(\tau))$$
subject to $g \leq zl(\tau)\tau$

• Ramsey Equilibrium: τ^*, c^*, l^* such that

(a) $c^* = c(\tau^*), l^* = l(\tau^*)$
 ‘Private Sector Allocations are a Private Sector Equilibrium’

(b) τ^* Solves Ramsey Problem
 ‘Best Private Sector Equilibrium’
Analysis of Ramsey Equilibrium

• Simple Utility Specification:

\[u(c, l) = c - \frac{1}{2}l^2 \]

• Two Ways to Compute the Ramsey Equilibrium

 (a) Direct Way: Solve Ramsey Problem (In Practice, Hard)

 (b) Indirect Way: Solve Ramsey Allocation Problem (Can Be Easy)
Direct Approach

- Private Sector Allocation Rules:

\[u_c z(1 - \tau) + u_l = 0, \quad c = (1 - \tau) z l \]

\[\Rightarrow z(1 - \tau) = l(\tau) \]

\[\Rightarrow c(\tau) = z(1 - \tau) l(\tau) = z^2 (1 - \tau)^2 \]
• Ramsey Problem:

\[
\max_{\tau} \frac{1}{2}z^2(1 - \tau)^2
\]

subject to:

\[
g \leq \tau z^2 l(\tau) = \tau z^2(1 - \tau).
\]

\[
\tau^* = \tau_1 = \frac{1}{2} - \frac{1}{2}\left[1 - 4\frac{g}{z^2}\right]^{\frac{1}{2}} \quad \tau_2 = \frac{1}{2} + \frac{1}{2}\left[1 - 4\frac{g}{z^2}\right]^{\frac{1}{2}}
\]

\[
l(\tau^*) = \frac{1}{2}\left\{z + \left[z^2 - 4\frac{g}{z^2}\right]^{\frac{1}{2}}\right\}
\]
Indirect Approach

- Approach: Solve Ramsey Allocation Problem, Then ‘Inverse Map’ Back into Policies

- Problem: Would Like a Characterization of B that Only Has (c, l), Not the Policies

\[
B = \{ c, l : \exists \tau, \text{ with } u_c z (1 - \tau) + u_l = 0, \\
\quad c = (1 - \tau) z l, \ g \leq \tau z l \}
\]
Solution: Rearrange Equations in B, So That Only (c, l) Appears

(a) Multiply Household Budget Equation by u_c:

$$u_cc - u_c(1 - \tau)zl = 0$$

(b) Substitute out for $u_c(1 - \tau)z$ From Labor First Order Condition:

$$(*) u_cc + u_il = 0.$$

(c) Combine Household Budget Equation With Government Budget Constraint:

$$(**) c + g \leqzl.$$
• Previous Manipulations Suggest Candidate Alternative Representation of B:

\[
D = \left\{ (c, l) : \begin{array}{l}
\text{resource constraint} \\
(\underbrace{c + g \leq zl}, \quad \underbrace{u_c c + u_l l = 0}) \\
\text{implementability constraint}
\end{array}\right\}
\]

• Want, $D = B$,

 (a) Have Shown $(c, l) \in B \rightarrow (c, l) \in D$

 (b) Still Need to Verify $(c, l) \in D \rightarrow (c, l) \in B$
Proof that \((c, l) \in D \implies (c, l) \in B\)

- Suppose \((c, l) \in D\), i.e., \(u_c c + u_l l = 0\), \(c + g \leq zl\)
- Need to show:

 \[\exists \tau \text{ s.t. } (i) \ u_c (1-\tau)z + u_l = 0, \ (ii) \ c = (1-\tau)zl, \ (iii) \ g \leq \tau zl\]

- Set \(\tau\) so that

 \[1 - \tau = \frac{-u_l}{u_c z}, \ \text{so (i) holds.}\]

- Multiply Both Sides by \(lz\) and rewrite:

 \[(1 - \tau)lz = \frac{-u_l l}{u_c} = c, \ \text{so (ii) holds.}\]

- \((iii)\) follows (ii) and \(c + g \leq zl\).
• Conclude:

\[B = D \]

• Express Ramsey Allocation Problem:

\[
\max_{c,l} u(c, l) \\
\text{s.t. } u_c c + u_l l = 0, \ c + g \leq zl \\
\]

or

\[
\max_{l} l^2 \\
\text{s.t. } l^2 + g \leq zl \\
\]
Ramsey Allocation Problem:

Max $\frac{1}{2}l^2$
Subject to $l^2 + g \leq zl$

Solution:

$l_2 = \frac{1}{2}\{ z + [z^2 - 4g]^{\frac{1}{2}} \}$

Same Result as Before!
Lucas-Stokey Cash-Credit Good Model

- Households
- Firms
- Government
Households

- Household Preferences:

\[\sum_{t=0}^{\infty} \beta^t u(c_{1t}, c_{2t}, l_t), \]

\(c_{1t} \sim \) cash goods, \(c_{2t} \sim \) credit goods, \(l_t \sim \) labor

- Distinction Between Cash and Credit Goods:
 - All Goods Paid With Cash At the Same Time, After Goods Market, in Asset Market
 - Cash Good: Must Carry Cash In Pocket Before Consuming It

\[M_t \geq P_t c_{1t} \]

- Credit Good: No Need to Carry Cash Before Purchase.
Household Participation in Asset and Good Markets

- Goods Market: Second Half of Period, Goods are Consumed, Labor Effort is Applied, Production Occurs.
Sources of Cash for Household:
- $M_{t-1}^d - P_{t-1}c_{1,t-1} - P_{t-1}c_{2,t-1}$
- $R_{t-1}B_{t-1}^d$
- $(1 - \tau_{t-1})z_{t-1}$

Uses of Cash
- Bonds, B_t^d
- Cash, M_t^d

- Constraint On Households in Asset Market (Budget Constraint)

\[
M_t^d + B_t^d \\
\leq M_{t-1}^d - P_{t-1}c_{1,t-1} - P_{t-1}c_{2,t-1} \\
+ R_{t-1}B_{t-1}^d + (1 - \tau_{t-1})z_{t-1}
\]
Household First Order Conditions

- Cash versus Credit Goods:
 \[
 \frac{u_{1t}}{u_{2t}} = R_t
 \]

- Cash Goods Today versus Cash Goods Tomorrow:
 \[
 u_{1t} = \beta u_{1t+1} R_t \frac{P_t}{P_{t+1}}
 \]

- Credit Goods versus Leisure:
 \[
 u_{3t} + (1 - \tau_t) z u_{2t} = 0.
 \]
Firms

- Technology: \(y = zl \)
- Competition Guarantees Real Wage = \(z \).
Government

- Inflows and Outflows in Asset Market (Budget Constraint):

\[
M_t^s - M_{t-1}^s + B_t^s \geq R_{t-1}B_{t-1}^s + P_{t-1}g_{t-1} - P_{t-1}\tau_{t-1}z_{t-1}l_{t-1}
\]

Sources of Funds \hspace{1cm} Uses of Funds

- Policy:

\[
\pi = (M_0^s, M_1^s, ..., B_0^s, B_1^s, ..., \tau_0, \tau_1, ...)
\]
Ramsey Equilibrium

- Private Sector Allocation Rule:

For each policy, $\pi \in A$, there is a Private Sector Equilibrium:

$$x = (\{c_{1t}\}, \{c_{2t}\}, \{l_t\}, \{M_t\}, \{B_t\})$$

$$p = (\{P_t\}, \{R_t\})$$

$$M_t = M_t^s = M_t^d$$

$$B_t = B_t^s = B_t^d$$

$$R_t \geq 1 \text{ (i.e., } u_{1t}/u_{2t} \geq 1)$$

- Ramsey Problem:

$$\max_{\pi \in A} U(x(\pi))$$

- Ramsey Equilibrium:

$$\pi^*, x(\pi^*), p(\pi^*),$$

Such that π^* Solves Ramsey Problem.
Finding The Ramsey Equilibrium By Solving the Ramsey Allocation Problem

$$\max_{\{c_{1t},c_{2t},l_t\} \in D} \sum_{t=0}^{\infty} \beta^t u(c_{1t}, c_{2t}, l_t),$$

where D is the set of allocations, c_{1t}, c_{2t}, l_t, $t = 0, 1, 2, \ldots$, such that

$$\sum_{t=0}^{\infty} \beta^t [u_{1t}c_{1t} + u_{2t}c_{2t} + u_{3t}l_t] = u_{2,0}a_0,$$

$$c_{1t} + c_{2t} + g \leq zl_t, \quad \frac{u_{1t}}{u_{2t}} \geq 1,$$

$$a_0 = \frac{R_{-1}B_{-1}}{P_0} \sim \text{real value of initial government debt}$$

Assumption: $B_{-1} = 0.$
Lagrangian Representation of Ramsey Allocation Problem:

- There is a $\lambda \geq 0$, Such that the Solution to the RA Problem and the Following Problem Coincide:

$$\max_{\{c_{1t},c_{2t},l_t\}} \sum_{t=0}^{\infty} \beta^t W(c_{1t}, c_{2t}, l_t; \lambda)$$

subject to : $c_{1t} + c_{2t} + g \leq z_l, \frac{u_{1t}}{u_{2t}} \geq 1,$

$W(c_{1t}, c_{2t}, l_t; \lambda) = u(c_{1t}, c_{2t}, l_t) + \lambda [u_{1t}c_{1t} + u_{2t}c_{2t} + u_{3t}l_t].$

- Note that If You Could Ignore $\frac{u_{1t}}{u_{2t}} \geq 1,$ Optimization Implies

$$\frac{W_{1t}}{W_{2t}} = 1$$
Restricting the Utility Function

- Utility Function:

\[u(c_1, c_2, l) = h(c_1, c_2)v(l), \]
\[h \sim \text{homogeneous of degree } k \]
\[v \sim \text{strictly decreasing}. \]

- Then, \(u_1c_1 + u_2c_2 + u_3l = h[kv + v'], \) so

\[W(c_1, c_2, l; \lambda) = hv + \lambda h[kv + v'] \]
\[= h(c_1, c_2)Q(l, \lambda). \]

- Conclude - Homogeneity and Separability Imply:

\[\frac{W_1(c_1, c_2, l; \lambda)}{W_2(c_1, c_2, l; \lambda)} = \frac{u_1(c_1, c_2, l)}{u_2(c_1, c_2, l)}. \]
Surprising Result: Friedman is Right More Often Than You Might Expect

• Suppose You Can Ignore $u_{1t}/u_{2t} \geq 1$ Constraint. Then, Necessary Condition of Solution to Ramsey Allocation Problem:

\[
\frac{W_1(c_1, c_2, l; \lambda)}{W_2(c_1, c_2, l; \lambda)} = 1.
\]

• This, In Conjunction with Homogeneity and Separability, Implies:

\[
\frac{u_1(c_1, c_2, l)}{u_2(c_1, c_2, l)} = 1.
\]

• Note: $u_{1t}/u_{2t} \geq 1$ is Satisfied, So Restriction is Redundant Under Homogeneity and Separability.

• Conclude: $R = 1$, So Friedman Right!
Generality of the Result

- Result is True for the Following More General Class of Utility Functions:

\[u(c_1, c_2, l) = V(h(c_1, c_2), l), \]

where \(h \) is homothetic.

- Actually, strict homotheticity and separability are not necessary.
Interpretation of the Result

• ‘Looking Beyond the Monetary Veil’ - The Connection Between The $R = 1$ Result and the Uniform Taxation Result for Non-Monetary Economies
• The Importance of Homotheticity
• The Link Between Homotheticity and Separability, and The Consumption Elasticity of Money Demand.
Uniform Taxation Result from Public Finance For Non-Monetary Economies

- Households:

\[
\max_{c_1, c_2, l} u(c_1, c_2, l) \\
\text{s.t. } zl \geq c_1(1 + \tau_1) + c_2(1 + \tau_2) \\
\Rightarrow c_1 = c_1(\tau_1, \tau_2), \ c_2 = c_2(\tau_1, \tau_2), \ l = l(\tau_1, \tau_2).
\]

- Ramsey Problem:

\[
\max_{\tau_1, \tau_2} u(c_1(\tau_1, \tau_2), c_2(\tau_1, \tau_2), l(\tau_1, \tau_2)) \\
\text{s.t. } g \geq c_1(\tau_1, \tau_2)\tau_1 + c_2(\tau_1, \tau_2)\tau_2
\]

- Uniform Taxation Result:

if \(u = V(h(c_1, c_2), l), \ h \sim \text{homothetic} \)

then \(\tau_1 = \tau_2 \).

Proof: trivial! (just study Ramsey Allocation Problem)
Similarities to Monetary Economy

- Rewrite Budget Constraint:
 \[
 \frac{zl}{1 + \tau_2} \geq c_1 \frac{1 + \tau_1}{1 + \tau_2} + c_2.
 \]

- Similarities:
 \[
 \frac{1}{1 + \tau_2} \sim 1 - \tau, \quad \frac{1 + \tau_1}{1 + \tau_2} \sim R.
 \]

- Positive Interest Rate ‘Looks’ Like a Differential Tax Rate on Cash and Credit Goods.

- Have the Same Ramsey Allocation Problem, Except Monetary Economy Also Has:
 \[
 \frac{u_1}{u_2} \geq 1.
 \]
What Happens if You Don’t Have Homotheticity?

- Utility Function:

\[u(c_1, c_2, l) = \frac{c_1^{1-\sigma}}{1 - \sigma} + \frac{c_2^{1-\delta}}{1 - \delta} + v(l) \]

- ‘Utility Function’ in Ramsey Allocation Problem:

\[W(c_1, c_2, l) = [1 + (1 - \sigma)\lambda] \frac{c_1^{1-\sigma}}{1 - \sigma} \]

\[+ [1 + (1 - \delta)\lambda] \frac{c_2^{1-\delta}}{1 - \delta} + v(l) + \lambda v'(l)l \]
• Marginal Rate of Substitution in Ramsey Allocation Problem That Ignores \(\frac{u_1}{u_2} \geq 1 \) Condition:

\[
1 = \frac{W_1(c_1, c_2, l; \lambda)}{W_2(c_1, c_2, l; \lambda)} = \frac{1 + (1 - \sigma)\lambda}{1 + (1 - \delta)\lambda} \times \frac{u_1}{u_2},
\]

or, since \(\frac{u_1}{u_2} = R \):

\[
R = \frac{1 + (1 - \delta)\lambda}{1 + (1 - \sigma)\lambda}
\]

• Finding:

\[
\delta = \sigma \Rightarrow R = 1 \text{ (homotheticity case)}
\]

\[
\delta > \sigma \Rightarrow R \geq 1 \text{ Binds, so } R = 1
\]

\[
\delta < \sigma \Rightarrow R > 1.
\]

Note: Friedman Right More Often Than Uniform Taxation Result, Because \(\frac{u_1}{u_2} \geq 1 \) is a Restriction on the Monetary Economy, Not the Barter Economy.
Consumption Elasticity of Demand

- Homotheticity and Separability Correspond to Unit Consumption Elasticity of Money Demand.

- Money Demand:

\[R = \frac{u_1}{u_2} = \frac{h_1}{h_2} = f \left(\frac{c_2}{c_1} \right) \]

\[= f \left(\frac{c - \frac{M}{P}}{\frac{M}{P}} \right) \]

\[= \tilde{f} \left(\frac{c}{\frac{M}{P}} \right). \]

- Note: Holding \(R \) Fixed, Doubling \(c \) Implies Doubling \(\frac{M}{P} \)
Elasticity of Money Demand and Failure of Homotheticity

- Money Demand:

\[R = \frac{u_1}{u_2} = \frac{c_1^{-\sigma}}{c_2^{-\delta}} = \frac{(\frac{M}{P})^{-\sigma}}{(c - \frac{M}{P})^{-\delta}} \]

- Taylor Series Approximation About Steady State (\(m \equiv M/P \) in steady state):

\[\hat{m} = \frac{1}{m} \left(\frac{c}{\delta} \right) \times \hat{c} \quad - \quad \frac{1}{\delta \frac{m}{c-m} + \sigma} \times \hat{R} \]

\(\hat{c} \) Consumption Money Demand Elasticity, \(\varepsilon_M \)

\(\hat{R} \) Interest Elasticity

- Can Verify:

<table>
<thead>
<tr>
<th>Utility Function</th>
<th>Non-Monetary Economy</th>
<th>Monetary Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>(\varepsilon_M)</td>
<td>(R = 1)</td>
</tr>
<tr>
<td>(\delta > \sigma)</td>
<td>(\varepsilon_M > 1 \quad \tau_2 \geq \tau_1)</td>
<td>(R = 1)</td>
</tr>
<tr>
<td>(\delta < \sigma)</td>
<td>(\varepsilon_M < 1 \quad \tau_2 < \tau_1)</td>
<td>(R > 1)</td>
</tr>
<tr>
<td>(\delta = \sigma)</td>
<td>(\varepsilon_M = 1 \quad \tau_1 = \tau_2)</td>
<td>(R = 1)</td>
</tr>
</tbody>
</table>
Bottom Line:

- Friedman is Right ($R = 1$) When Consumption Elasticity of Money Demand is Unity or Greater
- Implicitly, High Interest Rates Tax Some Goods More Heavily than Others. Under Homotheticity and Separability Conditions, Want to Tax Goods at Same Rate.
- What is Consumption Elasticity in the Data?
What To Do, When $g, \ z$ Are Random?

- Ramsey Principle: Minimize Tax Distortions
- If There is A Low Elasticity Item, Tax It
- If a Bad Shock Hits: Tax Capital (i.e., hit things that reflect past decisions like physical capital)
- Important If a Good Shock Hits: Subsidize Capital (that minimizes ex ante distortions to capital accumulation)
- Movements in P May Be Best Thing (see Simulations)
 This Conclusion Will Be Dependent on Degree of Price Stickiness
TABLE 3

Properties of the Monetary Models

<table>
<thead>
<tr>
<th>Rates</th>
<th>Models</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Autocorrelation</th>
<th>Correlation with Government Consumption</th>
<th>Technology Shock</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>.11</td>
<td>19.05</td>
<td>.89</td>
<td>.93</td>
<td>-.36</td>
<td>.03</td>
</tr>
<tr>
<td></td>
<td>High Risk Aversion</td>
<td>20.05</td>
<td>.06</td>
<td>.89</td>
<td>-.93</td>
<td>.35</td>
<td>-.06</td>
</tr>
<tr>
<td></td>
<td>I.I.D.</td>
<td>20.05</td>
<td>.11</td>
<td>.00</td>
<td>.93</td>
<td>-.36</td>
<td>.02</td>
</tr>
</tbody>
</table>

Labor Tax

Inflation

<table>
<thead>
<tr>
<th>Mean</th>
<th>Baseline</th>
<th>-.44</th>
<th>4.78</th>
<th>.02</th>
<th>.37</th>
<th>-.21</th>
<th>-.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Deviation</td>
<td>19.93</td>
<td>60.37</td>
<td>9.83</td>
<td>-.41</td>
<td>.26</td>
<td>-.21</td>
<td>-.08</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>.02</td>
<td>.06</td>
<td></td>
<td></td>
<td>.43</td>
<td>-.70</td>
<td>-.48</td>
</tr>
</tbody>
</table>

Money Growth

<table>
<thead>
<tr>
<th>Mean</th>
<th>Baseline</th>
<th>-.70</th>
<th>4.03</th>
<th>.04</th>
<th>.40</th>
<th>-.17</th>
<th>.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Deviation</td>
<td>18.00</td>
<td>54.43</td>
<td>3.74</td>
<td>.00</td>
<td>.28</td>
<td>-.20</td>
<td>-.07</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>.04</td>
<td>.07</td>
<td></td>
<td></td>
<td>.92</td>
<td>-.36</td>
<td>.02</td>
</tr>
<tr>
<td>Correlation with Government Consumption</td>
<td>.40</td>
<td>.28</td>
<td></td>
<td></td>
<td>.92</td>
<td>-.36</td>
<td>.02</td>
</tr>
<tr>
<td>Technology Shock</td>
<td>-.17</td>
<td>-.20</td>
<td></td>
<td></td>
<td>-.36</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>.00</td>
<td>-.07</td>
<td></td>
<td></td>
<td>.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Financing War: Barro versus Ramsey

When War (or Other Large Financing Need) Suddenly Strikes:

- Barro:
 - Raise Labor and Other Tax Rates a Small Amount So That When Held Constant at That Level, Expected Value of War is Financed
 - This Minimizes Intertemporal Substitution Distortions
 - Involves a Big *Increase* in Debt in Short Run
 - Prediction for Labor Tax Rate: Random Walk.
• Ramsey:
 – Tax Existing Capital Assets (Human, Physical, etc) For Full Amount of Expected Value of War. Do This at the First Sign of War.
 – This Minimizes Intertemporal and Intratemporal Distortions (Don’t Change Tax Rates on Income at all).
 – Example:
 * Suppose War is Expected to Last Two Periods, Cost: $1 Per Period
 * Suppose Gross Rate of Interest is 1.05 (i.e., 5%)
 * Tax Capital $1 + 1/1.05 = 1.95 Right Away.
 * Debt Falls $0.95 in Period When War Strikes.
 – Involves a Reduction of Outstanding Debt in Short Run.
 – Prediction for Labor Tax Rate: Roughly Constant.