Estimation, Solution and Analysis of Equilibrium Monetary Models

Lawrence J. Christiano
Questions

• What role does monetary policy play in asset market fluctuations? How should monetary policy react?

• Japan's ‘Lost Decade’ of 1990s: Why?
 – Banking system?
 – Poor monetary policy?
 – Something else?

• How should monetary policy react to a financial crisis?
• Ways to Answer Questions Like These:
 – Look at Historical Episodes (limited use)
 – Experiment (not an option!)
 – Experiment in Model Economies.

• Issues to Confront in Analysis of Model Economies
 – Empirical: Formulate and Estimate a Model
 – Analytic
 • Appropriate Equilibrium Concepts for the Issue Studied
 • Relevant Computational Strategies
 • Other Issues.
Objectives

• Provide Exposure to Key Aspects of Formulation, Estimation and Analysis of Equilibrium Models

• Provide Tutorials and MATLAB Software for Analysis of a Range of Models, Which You May Find Useful as Templates for Future Research

• Target Audience:
 – People with Little Exposure to this Material
 – People Currently Already Actively Applying the Material in their Research.
Part I: Formulating and Estimating Models

• Vector Autoregressions (1.5 lectures)
 – Identifying the Role of Shocks in Data
 • Monetary Policy Shocks
 • Technology Shocks
 • Fiscal Shocks
 – What fraction of business fluctuations do these shocks account for?
 – What is their dynamic effect on the economy?
 – Assignments.
Part I: Formulating and Estimating Models, cnt’d…

- Methods for Solving and Simulating DSGE Models (0.5 lectures)
 - Three exercises:
 - Exploring the ‘Hours Worked Hypothesis’ About Japanese Economic Slowdown in 1990s.
 - ‘Overinvestment Boom’, An Interpretation of the 1990s ‘Bubble’
 - Output Gap – what it is and how it relates to HP-filtered output
Part I: Formulating and Estimating Models, cnt’d…

• Use of VARs to Estimate DSGE Models (1.5 lectures)

 – Substantive Issue – apparent conflict between macro evidence of price inertia and micro evidence of volatility

 – Importance of various frictions

 • Investment Adjustment Costs, Habit Persistence, Variable Capital Utilization

 • The Importance of Firm-Specificity of Capital

 • Assignment: Can Replicate All Aspects of ACEL Analysis, and Explore Robustness.

• Bayesian Estimation
Part II: Analysis of Models

• Optimal Monetary and Fiscal Policy
 – Basic Ramsey analysis in an economy without price-setting frictions
 – Lucas-Stokey cash-credit good model
 – Survey of what happens with frictions…

• Policy Rule Analysis:
 – Was the Surge of Inflation in the 1970s the Result of a Bad Taylor Rule?
 • ‘Limited Participation Models’
 – Can an ‘Escape Clause’ Help Correct Some of the Pathologies Associated with the Taylor Rule?
 • Possible rationale for ECB ‘Twin Pillar’ policy.
 – Should a Central Bank Raise or Lower the Interest Rate in the Wake of a Financial Crisis?
 • Small open economy model
 – Could Monetary Policy be the Culprit Behind Stock-Market Boom-Bust Cycles?
 – Could Rigid Adherence to a Low Inflation Target Cause an Economy to Fall Into A Liquidity Trap?
 • Claim –
 – Low Inflation Target and Zero Lower Bound
 – Risk: Fall into a Downward Spiral of Deflation and Low Output
 • Does Claim Hold Water In Reasonably Constructed Models of Economy?
Vector Autoregressions

- Proposed by Chris Sims in 1970s, 1980s
- Major subsequent contributions by many others

Useful Way to Organize Data
 - VARs serve as a ‘Battleground’ between alternative economic theories
 - VARs can be used to quantitatively construct a particular model

Question that can (in principle) be addressed by VAR:
 - ‘How does the economy respond to a particular shock?’
 - Answer can be very useful:
 - for discriminating between models
 - For estimating the parameters of a given model

- We will see, VARs can’t actually address such a question
 - Identification problem
 - Need extra assumptions….Structural VAR (SVAR).
Outline of SVAR discussion

• What is a VAR?

• The Identification Problem

• Long run restrictions as a way to solve the problem
 – Bivariate Blanchard-Quah Example
 – The Multivariate Case

• Short Run Restrictions: Identification of Monetary Policy Shocks

• Results

• Historical Decompositions of Data
Estimating the Effects of Shocks to the Economy

- Vector Autoregression for a $N \times 1$ vector of observed variables:

$$Y_t = B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + u_t,$$

$$E u_t u_t' = V$$

- Bs, u's and V are Easily Obtained by OLS.
- Problem: u's are statistical innovations.
 - We want impulse response functions to fundamental economic shocks, e_t.
 $$u_t = C e_t,$$

$$E e_t e_t' = I,$$

$$CC' = V$$
Estimating the Effects of a Shock to the Economy...

\[\text{VAR: } Y_t = B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + C e_t \]

- Impulse Response to \(i^{th} \) Shock:

\[Y_t - E_{t-1} Y_t = C_i e_{it}, \]

\[E_t Y_{t+1} - E_{t-1} Y_{t+1} = B_1 C_i e_{it} \]

\[\ldots \]

- To Compute Dynamic Response of \(Y_t \) to \(i^{th} \) Element of \(e_t \) We Need

\[B_1, \ldots, B_p \text{ and } C_i. \]
Identification Problem

\[Y_t = B_1 Y_{t-1} + ... + B_p Y_{t-p} + u_t \]

\[u_t = C e_t, \ E u_t u_t' = C C' = V \]

• We know \(B' \)'s and \(V \), we need \(C \).
• Problem
 – \(N^2 \) Unknown Elements in \(C \),
 – Only \(N(N+1)/2 \) Equations in

\[C C' = V \]

• Identification Problem: Not Enough Restrictions to Pin Down \(C \)
• Need More Identifying Restrictions!
Bivariate Blanchard and Quah Example

- Identification Assumption:
 Technology Shock is *Only* Shock that Has Long-Run Impact on (Forecast of) Level of Labor Productivity:

 $\lim_{j \to \infty} \left[E_t y_{t+j} - E_{t-1} y_{t+j} \right] = f(\text{technology shock only})$

 (sign restriction) $f' > 0$

- Blanchard-Quah/Jordi Gali:
 This Assumption Makes it Possible to Estimate Technology Shock, Even Without Direct Observations on Technology
Bivariate Blanchard and Quah Example...

- Bivariate VAR:

\[Y_t = BY_{t-1} + u_t, \ E u_t u_t' = V \]

\[u_t = C e_t \]

\[Y_t = \begin{pmatrix} \Delta y_t \\ x_t \end{pmatrix}, \ C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}, \ e_t = \begin{pmatrix} e_{1t} \\ e_{2t} \end{pmatrix} \]

\[e_{zt} \sim \text{Technology Shock.} \]

- From Applying OLS To Both Equations in VAR, We Know:

\[B, \ V \]

- Problem: \(CC' = V \) Provides only Three Equations in Four Unknowns in \(C \).

- Result: Assumption that \(e_{2t} \) Has No Long Run Impact on \(y_t \) Supplies the Extra Required Equation
Bivariate Blanchard and Quah Example ...

- Easy to Verify:

\[
E_t[y_{t+1}] - E_{t-1}[y_{t+1}] = (1, 0) [B + I] C e_t
\]
Bivariate Blanchard and Quah Example ...

- Easy to Verify:

\[
\frac{E_t[\Delta y_{t+1} + \Delta y_t] - E_{t-1}[\Delta y_{t+1} + \Delta y_t]}{E_t[y_{t+1}] - E_{t-1}[y_{t+1}]} = (1, 0) [B + I] C e_t
\]
Bivariate Blanchard and Quah Example ...

- Easy to Verify:

\[
\frac{[E_t \Delta y_{t+1} - E_{t-1} \Delta y_{t+1}] + [E_t \Delta y_t - E_{t-1} \Delta y_t]}{E_t[\Delta y_{t+1} + \Delta y_t] - E_{t-1}[\Delta y_{t+1} + \Delta y_t]}
\frac{\widehat{E_t}[y_{t+1}] - E_{t-1}[y_{t+1}]}{E_t[y_{t+1}] - E_{t-1}[y_{t+1}]}
= (1, 0) [B + I] Ce_t
\]
Bivariate Blanchard and Quah Example ...

- Easy to Verify:

\[\frac{[E_t \Delta y_{t+1} - E_{t-1} \Delta y_{t+1}]}{E_t[\Delta y_{t+1} + \Delta y_t] - E_{t-1}[\Delta y_{t+1} + \Delta y_t]} + \frac{[E_t \Delta y_t - E_{t-1} \Delta y_t]}{E_t[y_{t+1}] - E_{t-1}[y_{t+1}]} = (1, 0) [B + I] C e_t \]

\[E_t[y_{t+2}] - E_{t-1}[y_{t+2}] = (1, 0) [B^2 + B + I] C e_t \]
Bivariate Blanchard and Quah Example ...

- Easy to Verify:

\[
\left(\frac{E_t [\Delta y_{t+1} + \Delta y_t] - E_{t-1} [\Delta y_{t+1} + \Delta y_t]}{E_t [y_{t+1}] - E_{t-1} [y_{t+1}]} \right) = (1, 0) \begin{bmatrix} B + I \end{bmatrix} C e_t
\]

\[
E_t [y_{t+2}] - E_{t-1} [y_{t+2}] = (1, 0) \begin{bmatrix} B^2 + B + I \end{bmatrix} C e_t
\]

\[
E_t [y_{t+j}] - E_{t-1} [y_{t+j}] = (1, 0) \begin{bmatrix} B^j + B^{j-1} + \ldots + B^2 + B + I \end{bmatrix} C e_t
\]
Bivariate Blanchard and Quah Example ...

- Easy to Verify:

\[
\begin{align*}
\frac{[E_t \Delta y_{t+1} - E_{t-1} \Delta y_{t+1}] + [E_t \Delta y_t - E_{t-1} \Delta y_t]}{E_t[\Delta y_{t+1} + \Delta y_t] - E_{t-1}[\Delta y_{t+1} + \Delta y_t]} & = (1, 0) [B + I] C e_t \\
E_t[y_{t+2}] - E_{t-1}[y_{t+2}] & = (1, 0) [B^2 + B + I] C e_t \\
E_t[y_{t+j}] - E_{t-1}[y_{t+j}] & = (1, 0) [B^j + B^{j-1} + \ldots + B^2 + B + I] C e_t
\end{align*}
\]

as \(j \to \infty \):

\[
\lim_{j \to \infty} E_t[y_{t+j}] - E_{t-1}[y_{t+j}] = (1, 0) \lim_{j \to \infty} \left[B^j + B^{j-1} + \ldots + B^2 + B + I \right] C e_t
\]

\[
= (1, 0) [I - B]^{-1} C e_t
\]
Bivariate Blanchard and Quah Example ...

- As $j \to \infty$:
 \[\lim_{j \to \infty} E_t[y_{t+j}] - E_{t-1}[y_{t+j}] = (1, 0) [I - B]^{-1} C \epsilon_t \]

- Identification Assumption About Technology:
 \[[I - B]^{-1} C = \begin{bmatrix} \text{number} & 0 \\ \text{number} & \text{number} \end{bmatrix} \]

- Final Result: Solve for C Using

 (exclusion restriction) 1, 2 element of $[I - B]^{-1} C$ is zero

 (sign restriction) 1, 1 element of $[I - B]^{-1} C$ is positive

 \[CC'' = V \]

- Conclude: Long-Run Restriction Supplies Extra Equation Needed to Achieve Identification.
Arbitrary Variables, Arbitrary Lags

- More General Case of Arbitrary Number \((N) \) of Variables and Lags:

\[
X_t = B_1 X_{t-1} + B_2 X_{t-2} + \ldots + B_p X_{t-p} + u_t
\]

- To Compute Impulse Response to Technology Shock,
 - Require: \(B_1, \ldots, B_p \) and \(C_1 \), First Column of \(C \) in \(CC'^\prime = V \)
 - Can Obtain by OLS: \(B_1, \ldots, B_p \) and \(V \)
 - Identification Problem: Find \(C_1 \)

- Solution: Use Restriction, as \(j \to \infty \):

\[
\lim_{j \to \infty} E_t[y_{t+j}] - E_{t-1}[y_{t+j}] = (1, 0, \ldots, 0) [I - B(1)]^{-1} C e_t
\]

\[
B(1) \equiv B_1 + B_2 + \ldots + B_p.
\]
Arbitrary Variables, Arbitrary Lags ...

• VAR:

\[X_t = B_1 X_{t-1} + B_2 X_{t-2} + \ldots + B_p X_{t-p} + u_t \]

• Long-Run Restriction:

(cexclusion restriction) \([I - B(1)]^{-1} C = \begin{bmatrix} \text{number} & 0, \ldots, 0 \\ \text{numbers} & \text{numbers} \end{bmatrix} \)

(sign restriction) \((1, 1)\) element of \([I - B(1)]^{-1} C\) is positive

\[C'C'' = V \]

• There Are Many \(C\) That Satisfy These Constraints. All Have the Same \(C_1\).
Arbitrary Variables, Arbitrary Lags ...

- Using the Restrictions to Uniquely Pin Down C_1
- Let

$$D \equiv [I - B(1)]^{-1} C$$
Arbitrary Variables, Arbitrary Lags ...

- Using the Restrictions to Uniquely Pin Down C_1
- Let

\[
D \equiv [I - B(1)]^{-1} C
\]

so, \(DD' = [I - B(1)]^{-1} V [I - B(1)']^{-1} \equiv S_0 \) (Since \(CC' = V\))
Arbitrary Variables, Arbitrary Lags ...

- Using the Restrictions to Uniquely Pin Down C_1
- Let
 \[D \equiv [I - B(1)]^{-1} C \]
 so, \[DD' = [I - B(1)]^{-1} V [I - B(1)']^{-1} \equiv S_0 \text{ (Since } CC' = V) \]
- Exclusion Restriction Requires:
 \[D = \begin{bmatrix} d_{11} & 0, \ldots, 0 \\ D_{21} & D_{22} \end{bmatrix} \]
- So
 \[DD' = \begin{bmatrix} d_{11}^2 & d_{11}D'_{21} \\ D_{21}d_{11} & D_{21}D'_{21} + D_{22}D'_{22} \end{bmatrix} = \begin{bmatrix} S_{011} & S_{021}' \\ S_{021} & S_{022} \end{bmatrix}. \]
Arbitrary Variables, Arbitrary Lags ...

- Using the Restrictions to Uniquely Pin Down C_1
- Let
 \[D \equiv [I - B(1)]^{-1} C \]
 so, \[DD' = [I - B(1)]^{-1} V [I - B(1)']^{-1} \equiv S_0 \] (Since $CC' = V$)
- Exclusion Restriction Requires:
 \[D = \begin{bmatrix} d_{11} & 0, \ldots, 0 \\ D_{21} & D_{22} \end{bmatrix} \]
- So
 \[DD' = \begin{bmatrix} d_{11}^2 & d_{11}D'_{21} \\ D_{21}d_{11} & D_{21}D'_{21} + D_{22}D'_{22} \end{bmatrix} = \begin{bmatrix} S^{11}_0 & S^{21'}_0 \\ S^{21}_0 & S^{22}_0 \end{bmatrix}. \]
- Sign Restriction:
 \[d_{11} > 0. \]
- Then, First Column of D Uniquely Pinned Down:
 \[d_{11} = \sqrt{S^{11}_0}, \ D_{21} = S^{21}_0 / d_{11} \]
Arbitrary Variables, Arbitrary Lags ...

- Using the Restrictions to Uniquely Pin Down C_1
- Let
 \[
 D \equiv [I - B(1)]^{-1} C
 \]
 so, $DD' = [I - B(1)]^{-1} V [I - B(1)']^{-1} \equiv S_0$ (Since $CC' = V$)
- Exclusion Restriction Requires:
 \[
 D = \begin{bmatrix}
 d_{11} & 0, \ldots, 0 \\
 D_{21} & D_{22}
 \end{bmatrix}
 \]
- So
 \[
 DD' = \begin{bmatrix}
 d_{11}^2 & d_{11}D_{21}' \\
 D_{21}d_{11} & D_{21}D_{21}' + D_{22}D_{22}'
 \end{bmatrix}
 = \begin{bmatrix}
 S_0^{11} & S_0^{21}' \\
 S_0^{21} & S_0^{22}
 \end{bmatrix}.
 \]
- Sign Restriction:
 \[
 d_{11} > 0.
 \]
- Then, First Column of D Uniquely Pinned Down:
 \[
 d_{11} = \sqrt{S_0^{11}}, \ D_{21} = S_0^{21}/d_{11}
 \]
- First Column of C Uniquely Pinned Down:
 \[
 C_1 = [I - B(1)] D_1.
 \]
VAR estimation with the following data:

\[
\begin{align*}
Y_t &= \begin{pmatrix}
\Delta \ln \left(\text{relative price of investment}_t \right) \\
\Delta \ln \left(\frac{GDP_t}{Hours_t} \right) \\
\Delta \ln \left(\frac{GDP \text{ deflator}}{t} \right) \\
\text{capacity utilization}_t \\
\ln \left(\text{Hours}_t \right) \\
\ln \left(\frac{GDP_t}{Hours_t} \right) - \ln \left(\frac{W_t}{P_t} \right) \\
\ln \left(\frac{C_t}{GDP_t} \right) \\
\ln \left(\frac{I_t}{GDP_t} \right) \\
\text{Federal Funds Rate}_t \\
\ln \left(\frac{GDP \text{ deflator}}{t} \right) + \ln \left(GDP_t \right) - \ln \left(MZM_t \right)
\end{pmatrix}
\end{align*}
\]

The data have been transformed to ensure stationarity
Sample period: 1959Q1-2001Q3
data used in the analysis

- P1 growth
- Inflation
- Capacity Util
- APL / Real Wage
- C/Y
- I/Y
- Fed Funds
- MZM velocity
p_1 tends to be high in recessions
Inflation a Little non-stationary
data used in the analysis

US trade Balance issue

Sort of stationary
Note how high rates Tend to precede recessions
data used in the analysis

Moves with Interest rate
Shocks and Identification Assumptions

- Monetary Policy Shock
- Neutral Technology Shock
- Capital-Embodied Shock to Technology
- Fiscal Policy Shock
Identifying Monetary Policy Shocks

- One strategy: estimate parameters of Fed’s feedback rule
 - Rule that relates Fed’s actions to state of the economy.

\[R_t = f(\Omega_t) + e_t^R \]

- \(f \) is a linear function
- \(\Omega_t \): set of variables that Fed looks at.
- \(e_t^R \): time \(t \) policy shock
What does this rule represent?

• Literal interpretation: structural policy rule of central bank.

• Combination of structural rule and other “stuff”

• Example: Clarida – Gertler
 – True policy rule

\[
R_t = \alpha E_t X_{t+1} + e_t^R = f(\text{all time } t \text{ data used in } E_t X_{t+1}) + e_t^R
\]
What is a Monetary Policy Shock?

• Shocks to preferences of monetary authority

• Strategic considerations can lead to exogenous variation in policy
 – Self-fulfilling expectation traps (Albanesi, Chari, Christiano)

• Technical factors like measurement error (Bernanke and Mihov)
Recursiveness Assumption

• Policy rule: $R_t = f(\Omega_t) + e_t^R$.

• Problem: not enough assumptions, yet, to identify e_t^R

• Assume:
 – Policy shocks, e_t^R are orthogonal to Ω_t.
 – Ω_t contains current prices and wages, aggregate quantities, lagged stuff

• Economic content of this assumption:
 – Fed sees prices and output when it makes its choice of R_t.
 – Prices and output don’t respond at time t to e_t^R.

• Assumption implies e_t^R can be estimated by OLS

• Response of other variables can be obtained by regressing them on current and lagged e_t^R
Using VAR to Estimate Impulse Response Functions Under Recursiveness Assumption

- Vector autoregression:

\[Y_t = B_1 Y_{t-1} + B_2 Y_{t-2} + \ldots + B_q Y_{t-q} + u_t \]

\[u_t = C e_t. \]

- To think about recursiveness assumption, it is convenient to work with

\[A_0 \equiv C^{-1} \]

so that:

\[A_0 Y_t = A_0 B_1 Y_{t-1} + A_0 B_2 Y_{t-2} + \ldots + A_0 B_q Y_{t-q} + e_t, \]

\[A_0^{-1} (A_0^{-1})' = V \]
Using VAR to Estimate Impulse Response Functions Under recursiveness assumption ...

- Consider:
 \[
 Y_t = \begin{pmatrix}
 X_{1t} \\
 R_t \\
 X_{2t}
 \end{pmatrix}_{(k_1 \times k_1)} \quad A_0 = \begin{bmatrix}
 a_{11} & 0 & 0 \\
 (k_1 \times k_1) & (k_1 \times 1) & (k_1 \times k_2) \\
 a_{21} & a_{22} & 0 \\
 (1 \times k_1) & (1 \times 1) & (1 \times k_2) \\
 a_{31} & a_{32} & a_{33} \\
 (k_2 \times k_1) & (k_2 \times 1) & (k_2 \times k_2)
 \end{bmatrix}
 \]

 where
 - \(R_t \) interest rate (middle equation is policy rule)
 - \(X_{1t} \sim k_1 \) variables whose current and lagged values do appear in policy rule
 - \(X_{2t} \sim k_2 \) variables whose current values do no appear in the policy rule.

- Zero restrictions on \(A_0 \) are implied by recursiveness assumption:
 - Zero in middle row: current values of \(X_{2t} \) do not appear in policy rule
 - Zeros in first block of rows ensure that monetary policy shock does not affect \(X_{1t} \)
 - First block of zeros: prevents direct effect, via \(R_t \)
 - Second block of zeros: prevents indirect effect, via \(X_{2t} \)
Using VAR to Estimate Impulse Response Functions Under Recursiveness Assumption ...

- There are many A_0 matrices with given pattern of zeros, which satisfy

\[(*) \quad A_0^{-1} (A_0^{-1})' = V \]

- One example: lower triangular A_0 with positive diagonal elements.
- In this case, A_0^{-1} is lower triangular Choleski decomposition of V.

- Proposition:
 a. All A_0 matrices that satisfy (*) and zero restrictions imply same value for column of A_0^{-1} which corresponds to e_t^R.
 * So, we can work with lower triangular Choleski decomposition of V without loss of generality
 b. Suppose we change the ordering of the variables in X_{1t} and X_{2t}, but always pick lower triangular Choleski decomposition of V
 * dynamic response of impulse reponse of variables to e_t^R unaffected

- Proof: see Christiano, Eichenbaum and Evans (Handbook of Macro).
• We will now estimate impulse responses to a monetary policy shock using a VAR

• First, however, we have to talk about the computation of standard errors

• We’ll discuss a standard bootstrap procedure
Confidence Intervals and the Bootstrap

- Estimation Produces:
 \[Y_t = \hat{B}(L)Y_{t-1} + \hat{u}_t, \]
 \[\hat{u}_t, \ t = 1, ..., T, \]
 where
 \[\hat{B}(L) = \hat{B}_1 + \hat{B}_2L + ... + \hat{B}_pL^{p-1}. \]

- Bootstrap
 - Generate \(r = 1, ..., R \) Artificial Data Sets, Each of Length \(T \)
 * For \(r^{th} \) Dataset:
 \[\lambda^r_t \in Uniform[0, 1], \ t = 1, ..., T \]
 * Draw Integers:
 \[\tilde{\lambda}^r_t = \text{integer}(\lambda^r_t \times T), \ t = 1, ..., T \]
 * Draw Shocks:
 \[\hat{u}_{\tilde{\lambda}^r_1}, ..., \hat{u}_{\tilde{\lambda}^r_T} \]
Confidence Intervals and the Bootstrap ...

* Generate Artificial Data:
 \[Y_t^r = \hat{B}(L)Y_{t-1}^r + \hat{\mu}_{\chi_t}, \quad t = 1, ..., T. \]

- Suppose Statistic of Interest is \(\psi \) (could be vector of impulse response functions, serial correlation coefficients, etc.)
 \[\psi^r = f(Y_1^r, ..., Y_T^r), \quad r = 1, ..., R \]

* Compute
 \[\sigma_\psi = \left\{ \frac{1}{T} \sum_{t=1}^{T} (\psi_t^r - \bar{\psi})^2 \right\}^{1/2} \]

* Report
 \[\hat{\psi} \pm 2 \times \sigma_\psi. \]

* Or, \(p - value \)
 \[\text{prob}(\psi^r > \hat{\psi}). \]

* Impulse Response Functions, \(\psi = (\psi_1, ..., \psi_{600}) \)

* \(\psi \) Measures of Serial Correlation, etc.
Figure 3: dynamic response of US economy to a monetary policy shock
Interesting Properties of Monetary Policy Shocks

• Plenty of endogenous persistence:
 – money growth and interest rate over in 1 year, but other variables keep going….

• Significant liquidity effect

• Inflation slow to get off the ground: peaks in roughly two years
 – It has been conjectured that explaining this is a major challenge for economics
 – Kills models in which movements in P are key to monetary transmission mechanism (Lucas misperception model, pure sticky wage model)

• Output, consumption, investment, hours worked and capacity utilization hump-shaped

• Velocity comoves with the interest rate
Timing Assumptions

• ‘Extreme’ Assumption:
 – Output Does Not Respond Instantly to Policy Shock
 – Policy Responds Instantly to Output

• Could Make a Continuum of Alternative Assumptions: Is Our Choice Arbitrary?

• Fact: Innovations in Output and Interest Rate are Positively Correlated
Timing Assumptions…

• Identification Has to Come to Terms with Direction of Causation Underlying Positive Correlation

• Does it Reflect:

 1. Output Responding to Policy?
 2. Policy Responding to Output?
 3. Something in Between?

• We adopt interpretation (2)

• Choices (1) or (3) Imply:

 – Monetary Policy Induced Rise in R Drives Output Up
 – Standard Monetary Models Inconsistent With This Implication

• Example: Presence of ambulances highly correlated with wounded people

 – Interpretation #1: ambulances cause people to be hurt
 – Interpretation #2: hurt people cause ambulances to come to them
 – Tough to go far with interpretation #1; prefer #2
Result of Allowing Output to Respond to Policy

- A rise in R induced by policy, e_t^R, produces a rise in Y:

 ![Graph showing the effect of MP shock on Y](image)

- Seems difficult to build a theory around this
Neutral Technology Shocks

\[Y_t = Z_t F(K_t, L_t) \]

- Technology shock is one of two shocks (we’ll see the other one later) that has a long run impact on the level of labor productivity, \(a_t \).

\[
\lim_{j \to \infty} \left[E_t a_{t+j} - E_{t-1} a_{t+j} \right] = f(\varepsilon_t^z \, \text{only})
\]

- This assumption makes it possible to identify dynamic effects of a technology shock

- Identifying assumption satisfied by a large class of models.
Technology Shocks…

• Advantage of this approach:
 – Don’t need to make all the usual assumptions required to construct Solow-residual based measures of technology shocks.
 • Functional form assumptions for production function, corrections for labor hoarding, capital utilization, and time-varying markups.

• Disadvantage: some models don’t satisfy our identifying assumption.
 – endogenous growth models where all shocks affect productivity in the long run.
 – Standard models when there are permanent shocks to the tax rate on capital income.
Figure 4: dynamic response of US economy to a neutral technology shock
Extension (Fisher, JPE 2007)

• There are two types of technology shocks: neutral and capital embodied

\[X_t = Z_t F(K_t, L_t) \]

\[K_{t+1} = (1 - \delta)K_t + V_t I_t \]

• Both shocks can affect the long level of labor productivity and the growth rate of output.

• The only shock which affects the relative price of capital is a capital embodied technology shock \(V_t \)
VAR Diagnostics

- Whether or not to First Difference Hours Worked Important
- Choosing VAR Lag Length

\[s(p) = \log(\det \hat{V}_p) + (m + m^2 p) \frac{2}{T} \]

Hannan-Quinn: \[s(p) = \log(\det \hat{V}_p) \cdot (m \cdot m^2 p) \frac{2 \log(\log(T))}{T} \]

Schwarz: \[s(p) = \log(\det \hat{V}_p) + (m + m^2 p) \frac{\log(T)}{Y} \]

\(T \) sample size, \(m \); Number of Variables (10); \(p \) Number of Lags

Choice:
\[\hat{p} = \min_p s(p). \]
VAR Diagnostics ...

- With $T = 170$:

$$\frac{2}{T} = 0.0118, \quad \frac{2 \log(\log(T))}{T} = 0.0192, \quad \frac{\log(T)}{Y} = 0.0302$$

- Akaike Penalizes p the Least

 * Known: In Population, Akaike Has Positive Probability of Overshooting True p

 * Hannan-Quinn and Schwarz are Consistent.
VAR Diagnostics ...

- Results (see picklag.m): HQ and SC Choose $p = 1$, AIC Chooses $p = 2$:

<table>
<thead>
<tr>
<th>h</th>
<th>AIC</th>
<th>HQ</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-101.24</td>
<td>-100.42</td>
<td>-99.21</td>
</tr>
<tr>
<td>2</td>
<td>-101.42</td>
<td>-99.84</td>
<td>-97.53</td>
</tr>
<tr>
<td>3</td>
<td>-101.28</td>
<td>-98.94</td>
<td>-95.52</td>
</tr>
<tr>
<td>4</td>
<td>-101.23</td>
<td>-98.13</td>
<td>-93.58</td>
</tr>
<tr>
<td>5</td>
<td>-101.02</td>
<td>-97.14</td>
<td>-91.46</td>
</tr>
<tr>
<td>6</td>
<td>-101.04</td>
<td>-96.37</td>
<td>-89.55</td>
</tr>
<tr>
<td>7</td>
<td>-101.02</td>
<td>-95.57</td>
<td>-87.60</td>
</tr>
<tr>
<td>8</td>
<td>-101.12</td>
<td>-94.88</td>
<td>-85.75</td>
</tr>
</tbody>
</table>
VAR Diagnostics ...

- **Multivariate $Q(s)$ Statistic**
 - Measure of Serial Correlation In Fitted Disturbances
 - Null Hypothesis: the First s Autocorrelations Are Zero:

 $Q(s) = T(T + 2) \sum_{j=1}^{s} \frac{1}{T-j} \text{tracc} \left[C_j C_0^{-1} C_j' C_0^{-1} \right],$

 where

 $C_j = \frac{1}{T} \sum_{t=j+1}^{T} \hat{u}_t \hat{u}_{t-j}'.$

 - In the Scalar Case, It is the Weighted Sum of the Squares of the First s Correlations.
 - Null Distribution:

 $Q(s) \sim \chi^2_{m^2(s-p)}$
VAR Diagnostics ...

- Results (see mkqmv.m):

<table>
<thead>
<tr>
<th>s</th>
<th>Q(s)</th>
<th>degrees of freedom</th>
<th>asymptotic p-value</th>
<th>bootstrap p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>166.81</td>
<td>0</td>
<td>NaN</td>
<td>0.89</td>
</tr>
<tr>
<td>6</td>
<td>350.41</td>
<td>200</td>
<td>0.00</td>
<td>0.92</td>
</tr>
<tr>
<td>8</td>
<td>551.56</td>
<td>400</td>
<td>0.00</td>
<td>0.83</td>
</tr>
<tr>
<td>10</td>
<td>795.67</td>
<td>600</td>
<td>0.00</td>
<td>0.39</td>
</tr>
</tbody>
</table>

- Strikingly Different Between Bootstrap and Asymptotics!

- Conclusion of Lag Length Diagnostics: Go With $p = 4$ Lags, But Redo Everything with $p = 6$, To be Safe
Historical Decomposition of Data into Shocks

• We can ask:
 – What would have happened if only monetary policy shocks had driven the data?

 – We can ask this about other identified shocks, or about combinations of shocks

 – We find that the three shocks together account for a large part of fluctuations
Historical decomposition of US GDP

Technology shocks specific to capital goods

Dark line: detrended actual GDP

Thin line: what GDP would have been if there had only been one type of technology shock, the type that affects only the capital goods industry

These shocks have some effect, but not terribly important
Type of technology shock that affects all industries

This has very large impact on broad trends in the data, and a smaller impact on business cycles.

Has big impact on trend in data, and 2000 boom-bust
Monetary policy shocks have a big impact on 1980 ‘Volcker recession’
Historical decomposition of US GDP

Technology shocks specific to capital goods

General (neutral) technology shocks only

Monetary Policy Shocks Only

Monetary policy and technology shocks

All three shocks together account for large part of business cycle
Table 1
Combined Impact of Shocks To Cyclical Variance

<table>
<thead>
<tr>
<th>Variable</th>
<th>HP 1600</th>
<th>BP 8-32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>64.40</td>
<td>74.74</td>
</tr>
<tr>
<td>MZM Growth</td>
<td>27.70</td>
<td>40.93</td>
</tr>
<tr>
<td>Inflation</td>
<td>53.98</td>
<td>63.70</td>
</tr>
<tr>
<td>Fed Funds</td>
<td>52.30</td>
<td>60.70</td>
</tr>
<tr>
<td>Capacity Util.</td>
<td>50.94</td>
<td>56.46</td>
</tr>
<tr>
<td>Avg. Hours</td>
<td>58.11</td>
<td>75.78</td>
</tr>
<tr>
<td>Real Wage</td>
<td>4.87</td>
<td>2.98</td>
</tr>
<tr>
<td>Consumption</td>
<td>74.22</td>
<td>95.26</td>
</tr>
<tr>
<td>Investment</td>
<td>55.87</td>
<td>63.26</td>
</tr>
<tr>
<td>Velocity</td>
<td>39.56</td>
<td>55.77</td>
</tr>
<tr>
<td>Price of Inv.</td>
<td>59.10</td>
<td>56.16</td>
</tr>
</tbody>
</table>
Fiscal Shocks

• SVAR analysis of dynamic effects of fiscal shocks useful for discriminating between models

 – Neoclassical models suggest:
 • hours worked and aggregate output rise
 • real wages and consumption fall after an increase in gov’t purchases.

 – Models with countercyclical markups suggest that hours worked and output rise, and real wages rise (Rotemberg and Woodford).

Fiscal Shocks…

• Key empirical issue: identifying exogenous changes in fiscal policy.

• Hard to do standard VAR identification of fiscal shocks
 – In practice, people know that a fiscal shock is on the way, before it hits the data
Burnside, Eichenbaum and Fisher

- Ramey and Shapiro identify three political events that led to large military buildups:

 - Weakness: only three episodes.
 - Advantage: assumption that war episodes are exogenous is compelling

- How does economy respond to these shocks?
• Evidence consistent with neoclassical model (real wage falls)

• When consumption is included, it turns out to rise, or remain unchanged.

• Problem: this contradicts neoclassical model.
 – Gali, Lopez-Salido, Valles have explored presence of liquidity constrained consumers
 – May be consistent with Sims-Woodford fiscal theory of the price level
Fiscal Theory

• Equation depicting payments to government bondholders:

\[
\frac{B_0}{P_0} = \sum_{t=0}^{\infty} \left(\frac{1}{1+r} \right)^t [T_t - G_t]
\]

• Standard Fiscal Theory
 – Price level flexible
 – When \(G \) or \(T \) changes, \(P_0 \) adjusts immediately

• Fiscal Theory with sticky prices
 – \(G \) jumps or \(T \) drops implies \(r \) falls
 – Low \(r \) stimulates consumption

• To explore Fiscal Theory story, must check what happens to \(r \) after fiscal shock.
• Fiscal policy shocks
 – Example of Sims’ suggestion that VARs can be a ‘battleground’ for discriminating between different theories.
Conclusions of VAR discussion

- We have reviewed identification of shocks with VARs.
- We identified three shocks which together account for a large fraction of output fluctuations.
- We also identified their dynamic effects on the economy.
- We discussed their usefulness in debates.

Next:
- Show how to estimate a model using impulse response functions
- Before that, must study model solution methods.