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1. Benchmark Small Open Economy ALLV Model

This manuscript describes the benchmark Adolfson, Laséen, Lindé, Villani, (2007) (AALV)

model, and presents a way to introduce financial frictions into the accumulation and man-

agement of capital, and search and matching in the labor market. Our benchmark model

makes the following small changes on the AALV model

• The price of investment goods is treated as a random variable with a unit root. Thus,
growth in the model is driven by two independent unit root processes, one for neutral

technology shocks and the other for technology shocks in the production of investment

goods.

• Capital maintenance costs are deducted from capital income taxes, and physical de-

preciation is deducted at historic cost.

• The capital income tax rate is realized at the time the investment decision is made,
not at the time when the payoff on investment is realized.

• Wages are indexed to the steady state growth rate of the economy, rather than to the
current realization of technology shocks.

• All producers of specialized goods are assumed to require working capital loans.

1.1. Scaling of Variables

We adopt the following scaling of variables. The nominal exchange rate is denoted by St and

its growth rate is st :

st =
St
St−1

.

The neutral shock to technology is zt and its growth rate is μz,t :

zt
zt−1

= μz,t.

The variable, Ψt, is an embodied shock to technology and it is convenient to define the

following combination of embodied and neutral technology:

z+t = Ψ
α

1−α
t zt, μz+,t = μ

α
1−α
Ψ,t μz,t.

Capital is scaled by z+t Ψt. Final investment goods, It, and domestically produced interme-

diate investment goods, Idt are also scaled by z+t Ψt. For reasons explained below, imported

investment goods, Imt , are scaled by a different factor, z
+
t . Consumption goods (C

m
t are
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imported intermediate consumption goods, Cd
t are domestically produced intermediate con-

sumption goods and Ct are final consumption goods) are scaled by z+t . Government con-

sumption, the real wage and real foreign assets are scaled by z+t . Exports (X
m
t are imported

intermediate goods for use in producing exports and Xt are final export goods) are scaled

z+t . Also, υt is the shadow value in utility terms to the household of domestic currency and

υtPt is the shadow value of one consumption good (i.e., the marginal utility of consumption).

The latter must be multiplied by z+t to induce stationarity. Thus,

kt+1 =
Kt+1

z+t Ψt

, k̄t+1 =
K̄t+1

z+t Ψt

, idt =
Idt

Ψtz
+
t

, it =
It

z+t Ψt

, imt =
Imt
z+t

cmt =
Cm
t

z+t
, cdt =

Cd
t

z+t
, ct =

Ct

z+t
, gt =

Gt

z+t
, w̄t =

Wt

z+t Pt

, at ≡
StB

∗
t+1

Ptz
+
t

,

xmt =
Xm

t

z+t
, xt =

Xt

z+t
, ψz+,t = υtPtz

+
t .

We define the scaled date t price of new installed physical capital for the start of period t+1

as pk0,t and we defined the scaled real rental rate of capital as r̄kt :

pk0,t = ΨtPk0,t, r̄
k
t = Ψtr

k
t .

where Pk0,t is in units of the domestic homogeneous good. We define the following inflation

rates:

πt =
Pt

Pt−1
, πct =

P c
t

P c
t−1

, π∗t =
P ∗t
P ∗t−1

,

πit =
P i
t

P i
t−1

, πxt =
P x
t

P x
t−1

, πm,j
t =

Pm,j
t

Pm,j
t−1

,

for j = c, x, i. Here, Pt is the price of a domestic homogeneous output good, P c
t is the

price of the domestic final consumption goods (i.e., the ‘CPI’), P ∗t is the price of a foreign

homogeneous good, P i
t is the price of the domestic final investment good and P

x
t is the price

(in foreign currency units) of a final export good.

With one exception, we define a lower case price as the corresponding uppercase price

divided by the price of the homogeneous good. When the price is denominated in domestic

currency units, we divide by the price of the domestic homogeneous good, Pt. When the

price is denominated in foreign currency units, we divide by P ∗t , the price of the foreign ho-

mogeneous good. The exceptional case has to do with out handling of the price of investment

goods, P i
t . This grows at a rate slower than Pt, and we therefore scale it by Pt/Ψt. Thus,

pm,x
t =

Pm,x
t

Pt
, pm,c

t =
Pm,c
t

Pt
, pm,i

t =
Pm,i
t

Pt
, (1.1)

pxt =
P x
t

P ∗t
, pct =

P c
t

Pt
, pit =

ΨtP
i
t

Pt
.
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Here, m, j means the price of an imported good which is subsequently used in the production

of exports in the case j = x, in the production of the final consumption good in the case of

j = c, and in the production of final investment goods in the case of j = i. When there is

just a single superscript the underlying good is a final good, with j = x, c, i corresponding

to exports, consumption and investment, respectively.

We denote the real exchange rate by qt :

qt =
StP

∗
t

P c
t

(1.2)

1.2. Firms

A homogeneous domestic good, Yt, is produced using

Yt =

∙Z 1

0

Y
1

λd,t

i,t di

¸λd,t
, 1 ≤ λd,t <∞. (1.3)

The domestic good is produced by a competitive, representative firm which takes the price

of output, Pt, and the price of inputs, Pi,t, as given.

The ith intermediate good producer has the following production function:

Yi,t = (ztHi,t)
1−α �tK

α
i,t − z+t φ,

where Ki,t denotes the labor services rented by the ith intermediate good producer. Firms

must borrow a fraction of the wage bill, so that one unit of labor costs

WtR
f
t ,

where

Rf
t = νftRt + 1− νft , (1.4)

where Wt is the aggregate wage rate, Rt is the interest rate on working capital loans, and ν
f
t

corresponds to the fraction that must be financed in advance.

The firm’s marginal cost, divided by the price of the homogeneous good is denoted by

mct :

mct =

¡
1
1−α
¢1−α ¡ 1

α

¢α ¡
rkt Pt

¢α ³
WtR

f
t

´1−α
1
�t

z1−αt Pt

(1.5)

=

µ
1

1− α

¶1−αµ
1

α

¶α ¡
r̄kt
¢α ³

w̄tR
f
t

´1−α 1
�t
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where rkt is the nominal rental rate of capital scaled by Pt. Productive efficiency dictates that

another expression for marginal cost must also be satisfied:

mct =
1

Pt

WtR
f
t

MPl,t

=
1

Pt

WtR
f
t

(1− α) z1−αt

¡
ki,tz

+
t−1Ψt−1/Hi,t

¢α
=

¡
μΨ,t

¢α
w̄tR

f
t

(1− α)
³

ki,t
μz+,t

/Hi,t

´α (1.6)

The ith firm is a monopolist in the production of the ith good and so it sets its price.

Price setting is subject Calvo frictions. With probability ξd the intermediate good firm

cannot change its price, in which case,

Pi,t = (πt−1)
κd (π̄ct)

1−κd Pi,t−1,

where κd is a parameter, πt−1 is the lagged inflation rate and π̄ct is the central bank’s target

inflation rate. With probability 1− ξd the firm can change its price. When we combine the

optimization conditions of the 1− ξd intermediate good firms which can optimize their price

with the usual cross-firm consistency condition on price, we obtain (after linearizing about

steady state):

π̂t − b̄πct =
β

1 + κdβ
Et

¡
π̂t+1 − b̄πct+1¢+ κd

1 + κdβ

¡
π̂t−1 − b̄πct¢ (1.7)

−κdβ (1− ρπ)

1 + κdβ
b̄πct

+
1

1 + κdβ

(1− βξd) (1− ξd)

ξd

³cmct + λ̂d,t
´
.

The domestic intermediate output good is allocated among alternative uses as follows:

Yt = Gt + Cd
t +

1

Ψt

£
Idt + a (ut) K̄t

¤
+

Z 1

0

Xd
i,t. (1.8)

Here, Cd
t denotes intermediate goods used (together with foreign consumption goods) to

produce final household consumption goods. The term in square brackets corresponds to

domestic investment expenditures. These are allocated to two activities. One, Idt , is used

in combination with imported foreign investment goods to produce a final investment good

which can be used to add to the physical stock of capital, K̄t. The other is a (ut) K̄t which is

used for maintenance costs arising from the utilization of physical capital. Here, ut denotes

the utilization rate of capital, with capital services being defined by:

Kt = utK̄t.
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We adopt the following functional form for a :

a(u) = 0.5σbσau
2 + σb (1− σa)u+ σb ((σa/2)− 1) , (1.9)

where σa and σb are the parameters of this function. Finally, the integral in (1.8) denotes

domestic resources allocated to exports. The determination of consumption, investment and

export demand is discussed below.

1.3. Exports and Imports

This section reviews the structure of imports and exports. Both activities involve Calvo

price setting frictions, and so require the presence of market power. In each case, we follow

the Dixit-Stiglitz strategy of introducing a range of specialized goods. This allows there

to be market power without the counterfactual implication that there is a small number of

firms in the export and import sector. Thus, exports involve a continuum of exporters, each

of which is a monopolist which converts a homogeneous domestically produced good and a

homogeneous good derived from imports into specialized exports. The exports are sold to

foreign, competitive retailers which create a homogenous export good that is sold to foreign

citizens.

In the case of imports, specialized domestic importers purchase a homogeneous foreign

good, which they turn into a specialized input and sell to domestic retailers. There are three

types of domestic retailers. One uses the specialized import goods to create the homogeneous

good used as an input into the production of specialized exports. Another uses the specialized

import goods to create an input used in the production of investment goods. The third

type uses specialized imports to produce a homogeneous input used in the production of

consumption goods.

We emphasize two features of this setup. First, before passing to final domestic users,

imported goods must first be combined with domestic inputs. This is consistent with the

view emphasized by Burstein and Rebelo and Burstein, Eichenbaum and Rebelo, that there

are substantial distribution costs associated with imports. Second, say something about

“pricing to market versus xx”.

1.3.1. Exports

We assume there is a total demand by foreigners for domestic goods, which takes on the

following form:

Xt =

µ
P x
t

P ∗t

¶−ηf
Y ∗t .

In scaled form, this is

xt = (p
x
t )
−ηf y∗t (1.10)
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Here, Y ∗t is foreign GDP and P
∗
t is the foreign currency price of foreign homogeneous goods.

Also, P x
t is an index of export prices, whose determination is discussed below. The goods, Xt,

are produced by a representative, competitive foreign retailer firm using specialized inputs

as follows:

Xt =

∙Z 1

0

X
1

λx,t

i,t di

¸λx,t
. (1.11)

Here, Xi,t, i ∈ (0, 1) , are exports of specialized goods. The retailer that produces Xt takes

its output price, P x
t , and its input prices, P

x
i,t, as given. Optimization leads to the following

demand for specialized exports:

Xi,t =

µ
P x
i,t

P x
t

¶ −λx,t
λx,t−1

Xt. (1.12)

Combining (1.11) and (1.12), we obtain:

P x
t =

∙Z 1

0

¡
P x
i,t

¢ 1
1−λx,t di

¸1−λx,t
.

The ith specialized export is produced by a monopolist using the following technology:

Xi,t =

∙
ω

1
ηx
x

¡
Xm

i,t

¢ ηx−1
ηx + (1− ωx)

1
ηx

¡
Xd

i,t

¢ ηx−1
ηx

¸ ηx
ηx−1

,

where Xm
i,t and Xd

i,t are the i
th exporter’s use of the imported and domestically produced

goods, respectively. We derive the marginal cost associated with the CES production function

from the multiplier associated with the Lagrangian representation of the cost minimization

problem:

C = minPm,x
t Rx

tX
m
i,t +PtR

x
tX

d
i,t + λ

(
Xi,t −

∙
ω

1
ηx
x

¡
Xm

i,t

¢ ηx−1
ηx + (1− ωx)

1
ηx

¡
Xd

i,t

¢ηx−1
ηx

¸ ηx
ηx−1

)
,

where Pm,x
t is the price of the homogeneous import good and Pt is the price of the homogenous

domestic output good. The first order conditions are:

Rx
t P

m,x
t = λX

1
ηx
i,t ω

1
ηx
x

¡
Xm

i,t

¢−1
ηx

Rx
tPt = λX

1
ηx
i,t (1− ωx)

1
ηx

¡
Xd

i,t

¢−1
ηx

Xi,t =

∙
ω

1
ηx
x

¡
Xm

i,t

¢ηx−1
ηx + (1− ωx)

1
ηx

¡
Xd

i,t

¢ηx−1
ηx

¸ ηx
ηx−1

Use the first two conditions to solve for the inputs as a function of the exogenous variables
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and the multiplier:

¡
Xm

i,t

¢ηx−1
ηx =

ληx−1X
ηx−1
ηx

i,t ω
ηx−1
ηx

x

(Rx
tP

m,x
t )ηx−1

¡
Xd

i,t

¢ηx−1
ηx =

ληx−1X
ηx−1
ηx

i,t (1− ωx)
ηx−1
ηx

(Rx
tPt)

ηx−1
. (1.13)

Substitute these into the production function, to get:

Xi,t = ληxXi,t

µ
ωx

(Rx
tP

m,x
t )ηx−1

+
(1− ωx)

(Rx
t Pt)

ηx−1

¶ ηx
ηx−1

.

Nominal marginal cost is λ, so that real (in terms of the homogeneous final export good)

marginal cost, mcxt , is

mcxt =
λ

StP x
t

=
Rx
t

StP x
t

h
ωx (P

m,x
t )1−ηx + (1− ωx) (Pt)

1−ηx
i 1
1−ηx ,

where

Rx
t = νxtRt + 1− νxt . (1.14)

We rewrite the expression for marginal cost to get it in terms of stationary variables

mcxt =
λ

StP x
t

=
Rx
t

qtpctp
x
t

h
ωx (p

m,x
t )1−ηx + (1− ωx)

i 1
1−ηx , (1.15)

where we have used
StP

x
t

Pt
=

StP
∗
t

P c
t

P c
t

Pt

P x
t

P ∗t
= qtp

c
tp

x
t . (1.16)

The ith, i ∈ (0, 1) , domestic exporting firm takes (1.12) as its demand curve. This producer
sets prices subject to a Calvo sticky-price mechanism. In a given period, 1 − ξx producers

can reoptimize their price and ξx cannot. The firms that cannot optimize price, do so as

follows:

P x
i,t =

¡
πxt−1

¢κx (πx)1−κx P x
i,t−1.

This leads to the following Phillips curve for export prices:

π̂xt =
β

1 + κxβ
Etπ̂

x
t+1 +

κx
1 + κxβ

π̂xt−1 (1.17)

+
1

1 + κxβ

(1− βξx) (1− ξx)

ξx

³cmcxt + λ̂x,t
´
.

The domestic resources used by specialized exporters are equal to:Z 1

0

Xd
i,tdi,
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and this needs to be expressed in terms of aggregates. Rewriting (1.13), one of the first order

conditions of the foreign retailer who purchases the specialized export goods:

Xd
i,t =

ληxXi,t (1− ωx)

(Pt)
ηx

.

Integrating this expression:Z 1

0

Xd
i,tdi =

µ
λ

Pt

¶ηx

(1− ωx)

Z 1

0

Xi,tdi

=

µ
λ

Pt

¶ηx

(1− ωx)Xt

R 1
0

¡
P x
i,t

¢ −λx,t
λx,t−1 di

(P x
t )

−λx,t
λx,t−1

.

Define P̄t, a linear homogeneous function of P x
i,t :

P̄t =

∙Z 1

0

¡
P x
i,t

¢ −λx,t
λx,t−1 di

¸λx,t−1
−λx,t

.

Then,

P̄

−λx,t
λx,t−1
t =

Z 1

0

¡
P x
i,t

¢ −λx,t
λx,t−1 di,

and Z 1

0

Xd
i,tdi =

µ
λ

Pt

¶ηx

(1− ωx)Xt

µ
P̄t

P x
t

¶ −λx,t
λx,t−1

. (1.18)

Recall the definition of the price index of exports,

P x
t =

∙Z 1

0

¡
P x
i,t

¢ 1
1−λx,t di

¸1−λx,t
,

so that P̄t/P
x
t is the ratio of two linear homogeneous functions of P

x
i,t, where each weights P

x
i,t

for different i ∈ (0, 1) in different ways. As argued in a similar context by Yun ( ), P̄t/P
x
t can

be replaced by unity when studying the first order properties of this model about its steady

state. This is guaranteed by our assumption about the form of the price updating equation,

which implies that there are no price distortions in steady state, that it, that P̄t/P
x
t = 1 in

steady state.

Substituting out for λ in (1.18), we obtain:

Z 1

0

Xd
i,tdi =

µ
λ

Pt

¶ηx

(1− ωx)Xt

µ
P̄t

P x
t

¶ −λx,t
λx,t−1

= (mcxt qtp
c
tp

x
t )

ηx (1− ωx)Xt

µ
P̄t

P x
t

¶ −λx,t
λx,t−1

. (1.19)
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Using (1.15), we obtain:

Substituting the latter into (1.19):

Z 1

0

Xd
i,tdi = (mcxt qtp

c
tp

x
t )

ηx (1− ωx)Xt

µ
P̄t

P x
t

¶ −λx,t
λx,t−1

(1.20)

= (Rx
t )

ηx
h
ωx (p

m,x
t )1−ηx + (1− ωx)

i ηx
1−ηx (1− ωx)

µ
P̄t

P x
t

¶ −λx,t
λx,t−1

(pxt )
−ηf Y ∗t

1.3.2. Imports

We now turn to a discussion of imports. Foreign firms sell a homogeneous good to domestic

importers. The importers convert the homogeneous good into a specialized input and supply

that input monopolistically to domestic retailers. These importers are subject to Calvo price

setting frictions. There are three types of importing firms: (i) one produces goods used to

produce an intermediate good for the production of consumption, (ii) one produces goods

used to produce an intermediate good for the production of investment goods, and (iii) one

produces an intermediate good used for the production of an input into the production of

export goods.

Consider (i) first. The production function is:

Cm
t =

∙Z 1

0

¡
Cm
i,t

¢ 1

λ
m,C
t di

¸λm,C
t

,

where Cm
i,t is the output of the specialized producer and Cm

t is an intermediate good used

in the production of consumption goods. Let Pm,c
t denote the price index of Cm

t and let

Pm,c
i,t denote the price of the ith intermediate input. The marginal cost, in domestic currency

units, of the firm that produces Cm
i,t is

StP
∗
t R

ν,∗
t , (1.21)

where

Rν,∗
t = ν∗tR

∗
t + 1− ν∗t , (1.22)

and R∗t is the foreign nominal, intratemporal rate of interest. The notion here is that the firm

must pay the inputs with foreign currency and because they have no resources themselves at

the beginning of the period, they must borrow those resources if they are to buy the foreign

inputs needed to produce Cm
i,t. There is no risk to this firm, because all shocks are realized

at the beginning of the period, and so there is no uncertainty within the duration of the

working capital loan about the realization of prices and exchanges rates. We are somewhat

uncomfortable with this feature of the model. The fact that interest is due and matters
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indicates that some time evolves over the duration of the loan. Our assumption that no

uncertainty is realized over a period of significant duration of time seems implausible. We

suspect that a more realistic representation would involve some risk. Our timing assumptions

in effect abstract away from this risk, and we conjecture that this does not affect the first

order properties of the model.

Now consider (ii). The production function for, Imt , the intermediate good used in the

production of investment goods is:

Imt =

∙Z 1

0

¡
Imi,t
¢ 1

λ
m,I
t di

¸λm,I
t

,

where Imi,t is the output of the specialized producer. The marginal cost of the specialized pro-

ducer is also (1.21). Note that we implicitly assume the importing firm’s cost is P ∗t (before

borrowing costs and exchange rate conversion), which is the same cost for the specialized

inputs used to produce Cm
t . This may seem inconsistent with the property of the domestic

economy that domestically produced consumption and investment goods have different rel-

ative prices. We assume that (1.21) applies to both types of producer in order to simplify

notation. Below, we suppose that the efficiency of imported investment goods grows over

time, in a way that makes our assumptions about the relative costs of consumption and

investment, whether imported or domestically produced.

Now consider (iii). The production function for, Xm
t , the intermediate good used in the

production of exports goods is:

Xm
t =

∙Z 1

0

¡
Xm

i,t

¢ 1

λ
m,X
t di

¸λm,X
t

.

This importer is competitive, and takes the prices of Xm
t and Xm

i,t as given. This importer’s

marginal cost is (1.21).

Each of the above three types of intermediate good firm is subject to Calvo price-setting

frictions. With probability 1 − ξm,j, the j
th type of firm can reoptimize its price and with

probability ξm,j it sets price according to the following relation:

Pm,j
i,t =

¡
πm,j
t−1
¢κm,j

¡b̄πct¢1−κm,j
Pm,j
i,t−1,

for j = c, i, x.

The usual Phillips curve argument applies to each of the above producers, so that,

π̂m,j
t − b̄πct =

β

1 + κm,jβ
Et

¡
π̂m,j
t+1 − b̄πct+1¢+ κm,j

1 + κm,jβ

¡
π̂m,j
t−1 − b̄πct¢ (1.23)

−κm,jβ (1− ρπ)

1 + κm,jβ
b̄πct

+
1

1 + κm,jβ

¡
1− βξm,j

¢ ¡
1− ξm,j

¢
ξm,j

³cmcm,j
t + λ̂

m,j

t

´
,
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for j = c, i, x. Real marginal cost is

mcm,j
t =

StP
∗
t

Pm,j
t

Rν,∗
t =

StP
∗
t P

c
t Pt

P c
t P

m,j
t Pt

Rν,∗
t (1.24)

=
qtp

c
t

pm,j
t

Rν,∗
t

for j = c, i, x.

1.4. Households

Household preferences are given by:

Ej
0

∞X
t=0

βt

"
ζct ln (Ct − bCt−1)− ζhtAL

(hj,t)
1+σL

1 + σL

#
, (1.25)

where

Ct =

∙
(1− ωc)

1
ηc

¡
Cd
t

¢ (ηc−1)
ηc + ω

1
ηc
c (Cm

t )
(ηc−1)
ηc

¸ ηc
ηc−1

, (1.26)

which (under competition) results in demand equations

Cd
t = (1− ωc) (p

c
t)
ηc Ct

Cm
t = ωm (p

m,c
t )ηcCt.

The price of Ct is

P c
t =

h
(1− ωc) (Pt)

1−ηc + ωc (P
m,c
t )1−ηc

i 1
1−ηc .

After dividing by Pt, this becomes

pct =
h
(1− ωc) + ωc (p

m,c
t )1−ηc

i 1
1−ηc . (1.27)

The rate of inflation of the consumption good is:

πct =
P c
t

P c
t−1

= πt

"
(1− ωc) + ωc (p

m,c
t )1−ηc

(1− ωc) + ωc

¡
pm,c
t−1
¢1−ηc

# 1
1−ηc

. (1.28)

Households do the economy’s investment, using the following technology:

It =

∙
(1− ωi)

1
ηi

¡
Idt
¢ηi−1

ηi + ω
1
ηi
i (ΨtI

m
t )

ηi−1
ηi

¸ ηi
ηi−1

.

To obtain the demand for the two inputs we use the fact that this technology is operated by

a representative, competitive firm which takes the output price, P i
t , and the prices of I

d
t and

12



Imt , (Pt/Ψt) and Pm,i
t respectively, as given. Profit maximization implies:

P i
t

µ
It
Idt

¶ 1
ηi

(1− ωi)
1
ηi =

Pt

Ψt

P i
t

µ
It
Imt

¶ 1
ηi

ω
1
ηi
i (Ψt)

ηi−1
ηi = Pm,i

t ,

or,

I
ηi−1
ηi

t

(1− ωi)
ηi−1
ηi³

Pt
P i
tΨt

´ηi−1 =
¡
Idt
¢ηi−1

ηi

(ωiIt)
ηi−1
ηi

µ
Ψt

Pm,i
t /P i

t

¶(ηi−1)
= (ΨtI

m
t )

ηi−1
ηi .

Substituting these into the production function:

It =

"
(1− ωi)

1
ηi I

ηi−1
ηi

t (1− ωi)
ηi−1
ηi

µ
P i
tΨt

Pt

¶ηi−1

+ ω
1
ηi
i (ωiIt)

ηi−1
ηi

µ
P i
tΨt

Pm,i
t

¶(ηi−1)# ηi
ηi−1

= It
¡
P i
tΨt

¢ηi "(1− ωi)

µ
1

Pt

¶ηi−1
+ ωi

µ
1

Pm,i
t

¶(ηi−1)# ηi
ηi−1

,

so that ¡
P i
t

¢−ηi = (Ψt)
ηi

"
(1− ωi)

µ
1

Pt

¶ηi−1
+ ωi

µ
1

Pm,i
t

¶(ηi−1)# ηi
ηi−1

Dividing the last equation by Pt and rearranging:

pit =
h
(1− ωi) + ωi

¡
pm,i
t

¢1−ηii 1
1−ηi . (1.29)

Then, the inflation in the price of investment goods is:

πit =
πt
μΨ,t

"
(1− ωi) + ωi

¡
pm,i
t

¢1−ηi
(1− ωi) + ωi

¡
pm,i
t−1
¢1−ηi

# 1
1−ηi

. (1.30)

The law of motion of the physical stock of capital is:

K̄t+1 = (1− δ) K̄t +ΥtF (It, It−1) ,

where

F (It, It−1) =

µ
1− S̃

µ
It
It−1

¶¶
It,

13



and

S̃ (x) =
1

2

n
exp

hp
S̃00 (x− μz+μΨ)

i
+ exp

h
−
p
S̃00 (x− μz+μΨ)

i
− 2
o

= 0, x = μz+μΨ.

Also,

S̃0 (x) =
1

2

p
S̃00
n
exp

hp
S̃00 (x− μz+μΨ)

i
− exp

h
−
p
S̃00 (x− μz+μΨ)

io
= 0, x = μz+μΨ.

and

S̃00 (x) =
1

2
S̃00
n
exp

hp
S̃00 (x− μz+μΨ)

i
+ exp

h
−
p
S̃00 (x− μz+μΨ)

io
= S̃00, x = μz+μΨ.

Also,

F1 (It, It−1) =

µ
1− S̃

µ
It
It−1

¶¶
− S̃0

µ
It
It−1

¶
It
It−1

= 1,
It
It−1

= μz+μΨ,

and,

F2 (It, It−1) = S̃0
µ

It
It−1

¶µ
It
It−1

¶2
= 0,

It
It−1

= μz+μΨ.

Scaling,

F (It, It−1) =

µ
1− S̃

µ
μz+,tμΨ,tit

it−1

¶¶
z+t Ψtit

F1 (It, It−1) =

µ
1− S̃

µ
μz+,tμΨ,tit

it−1

¶¶
− S̃0

µ
μz+,tμΨ,tit

it−1

¶
μz+,tμΨ,tit

it−1

F2 (It, It−1) = S̃0
µ
μz+,tμΨ,tit

it−1

¶µ
μz+,tμΨ,tit

it−1

¶2
In this notation, the law of motion of capital is written,

k̄t+1z
+
t Ψt = (1− δ) K̄tz

+
t−1Ψt−1 +Υt

µ
1− S̃

µ
μz+,tμΨ,tit

it−1

¶¶
z+t Ψtit,

or,

k̄t+1 =
1− δ

μz+,tμΨ,t
k̄t +Υt

µ
1− S̃

µ
μz+,tμΨ,tit

it−1

¶¶
it. (1.31)
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The household’s first order conditions are as follows. The first order condition for con-

sumption is:

ζct
ct − bct−1

1
μz+,t

− βbEt

ζct+1
ct+1μz+,t+1 − bct

− ψz+,tp
c
t (1 + τ ct) = 0. (1.32)

To define the intertemporal Euler equation associated with the household’s capital accumu-

lation decision, we need to define the rate of return on a period t investment in a unit of

physical capital, Rk
t+1 :

Rk
t+1 =

(1− τkt )
h
ut+1r

k
t+1 − 1

Υt+1
a(ut+1)

i
Pt+1 + (1− δ)Pt+1Pk0,t+1 + τkt δPtPk0,t

PtPk0,t
(1.33)

Here, Pk0,t denotes the price of a unit of newly installed physical capital, which operates

in period t + 1. This price is expressed in units of the homogeneous good, so that PtPk0,t

is the domestic currency price of physical capital. The numerator in the expression for Rk
t

represents the period t + 1 payoff from a unit of additional physical capital. The timing of

the capital tax rate reflects the assumption that the relevant tax rate is known at the time

the investment decision is made. The expression in square brackets in (1.33) captures the

idea that maintenance expenses associated with the operation of capital are deductible from

taxes. The last expression in the numerator expresses the idea that physical depreciation is

deductible at historical cost. It is convenient to express Rk
t in terms of scaled variables:

Rk
t =

Pt+1Ψt+1

PtΨt+1

(1− τkt )
h
ut+1r

k
t+1 − 1

Υt+1
a(ut+1)

i
+ (1− δ)Pk0,t+1 + τkt δ

Pt
Pt+1

Pk0,t

Pk0,t

= πt+1
(1− τkt )

£
ut+1r̄

k
t+1 − a(ut+1)

¤
+ (1− δ)Ψt+1Pk0,t+1 + τkt δ

Pt
Pt+1

Ψt+1Pk0,t

Ψt+1Pk0,t
.

so that

Rk
t+1 =

πt+1
μΨ,t+1

(1− τkt )
£
ut+1r̄

k
t+1 − a(ut+1)

¤
+ (1− δ)pk0,t+1 + τkt δ

μΨ,t+1
πt+1

pk0,t

pk0,t
. (1.34)

Capital is a good hedge against inflation, except for the way depreciation is treated. A

rise in inflation effectively raises the tax rate on capital because of the practice of valuing

depreciation at historical cost. The first order condition for capital implies:

ψz+,t = βEtψz+,t+1

Rk
t+1

πt+1μz+,t+1
,

or, after substituting out for Rk
t+1 from (1.34):

ψz+,t = βEt

ψz+,t+1

μz+,t+1μΨ,t+1

(1− τkt )
£
ut+1r̄

k
t+1 − a(ut+1)

¤
+ (1− δ)pk0,t+1 + τkt δ

μΨ,t+1
πt+1

pk0,t

pk0,t
.

(1.35)
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We differentiate the Lagrangian representation of the household’s problem as displayed

in ALLV, p. 15 with respect to It :

−υtP i
t + ωtΥtF1 (It, It−1) + βωt+1Υt+1F2 (It+1, It) = 0,

where υt denotes the multiplier on the household’s nominal budget constraint and ωt denotes

the multiplier on the capital accumulation technology. In addition, the price of capital is the

ratio of these multipliers:

PtPk0,t =
ωt

υt
.

Expressing the investment first order condition in terms of scaled variables,

−
ψz+,t

z+t

pit
Ψt
+ υtPtPk0,tΥt

∙
1− S̃

µ
μz+,tμΨ,tit

it−1

¶
− S̃0

µ
μz+,tμΨ,tit

it−1

¶
μz+,tμΨ,tit

it−1

¸
+βυt+1Pt+1Pk0,t+1Υt+1S̃

0
µ
μz+,t+1μΨ,t+1it+1

it

¶µ
μz+,t+1μΨ,t+1it+1

it

¶2
= 0.

Now multiply by z+t Ψt

−ψz+,tp
i
t + ψz+,tpk0,tΥt

∙
1− S̃

µ
μz+,tμΨ,tit

it−1

¶
− S̃0

µ
μz+,tμΨ,tit

it−1

¶
μz+,tμΨ,tit

it−1

¸
(1.36)

+βψz+,t+1pk0,t+1Υt+1S̃
0
µ
μz+,t+1μΨ,t+1it+1

it

¶µ
it+1
it

¶2
μΨ,t+1μz+,t+1 = 0.

Our first order condition for It appears to differ slightly from the first order condition in

ALLV, equation (2.55), but the two actually coincide when we take into account the definition

of f.

The first order condition associated with capital utilization is:

Ψtr
k
t = a0 (ut) ,

or, in scaled terms,

r̄kt = a0 (ut) . (1.37)

The tax rate on capital income does not enter here because of the deductibility of maintenance

costs. The first order condition associated with foreign bond holdings is:

−ψz+,t + βEt[
ψz+,t+1

μz+,t+1πt+1
(st+1R

∗
tΦ
³
at, Etst+1st, φ̃t

´
−τkt+1st+1

³
R∗tΦ

³
at, Etst+1st, φ̃t

´
− 1
´
− τkt+1 (st+1 − 1))] = 0,

(1.38)

where

Φ
³
at, Etst+1st, φ̃t

´
= exp

³
−φ̃a (at − ā)− φ̃s (Etst+1st − 1) + φ̃t

´
. (1.39)
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This expression is zero in steady state. This reflects that in the model, St is constant in

steady state and our assumption that φ̃t is zero in steady state.

Note that the interest rate on foreign bonds acquired in period t is:

R∗tΦ
³
at, Etst+1st, φ̃t

´
.

Recall that R∗t is the intratemporal rate of interest. The intertemporal rate of interest on

bonds is different from R∗t because there is uncertainty between the time that bonds are

purchased and the time that they pay off. In the case of intratemporal loans (i.e., the

working capital loans) there is no risk because no uncertainty is realized during the duration

of the loan.

The Fisher equation is:

−ψz+,t + βEt

∙
ψz+,t+1

μz+,t+1

Rt − τkt+1 (Rt − 1)
πt+1

¸
= 0, (1.40)

where Rt is the state non-contingent return on a domestic bond acquired in period t, which

pays off in period t+ 1. Finally, we consider wage setting. We suppose that the specialized

labor supplied by households is combined by labor contractors into a homogeneous labor

service as follows:

Ht =

∙Z 1

0

(hj,t)
1
λw dj

¸λw
, 1 ≤ λw <∞,

where hj denotes the jth household supply of labor services. Households are subject to

Calvo wage setting frictions as in EHL. With probability 1− ξw the j
th household is able to

reoptimize its wage and with probability ξw it sets its wage according to:

Wj,t+1 = (π
c
t)
κw
¡
π̄ct+1

¢(1−κw) μz+Wj,t. (1.41)

If we combine the first order optimality condition of optimizing households with the cross

household wage restriction, we obtain the familiar dynamic expression for the scaled wage

rate:

Et

⎡⎢⎢⎢⎣
η0 b̄wt−1 + η1 b̄wt + η2 b̄wt+1 + η3

¡
π̂t − b̄πct¢+ η4

¡
π̂t+1 − ρπ̄c b̄πct¢

+η5
¡
π̂ct−1 − b̄πct¢+ η6

¡
π̂ct − ρπ̄c b̄πct¢

+η7ψ̂z+,t + η8Ĥt + η9τ̂
y
t + η10τ̂

w
t + η11ζ̂

h

t

+η12μ̂z+,t + η13μ̂z+,t+1

⎤⎥⎥⎥⎦ = 0, (1.42)

where

bw =
[λwσL − (1− λw)]

[(1− βξw) (1− ξw)]

and
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η0
η1
η2
η3
η4
η5
η6
η7
η8
η9
η10
η11
η12
η13

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bwξw¡
σLλw − bw

¡
1 + βξ2w

¢¢
bwβξw
−bwξw
bwβξw
bwξwκw
−bwβξwκw
(1− λw)
−(1− λw)σL
−(1− λw)

τy

(1−τy)
−(1− λw)

τw

(1+τw)

−(1− λw)
−bwξw
bwβξw

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

With one exception, this reduced form expression was obtained from ALLV, equation B.5.

The exception stems from the fact that ALLV index the wage to current realized technology

growth, while in our specification the wage is indexed to steady state technology growth. Our

indexation strategy necessitates adding technology growth to the dynamic wage equation.

In doing this, we followed the formula in the technical appendix of ACEL, which shows that

technology growth appears in the manner indicated when the wage is not indexed to realized

technology (and which also shows that technology growth does not appear in the event that

there is full indexation). We did not re-derive this dynamic equation because both ALLV

and ACEL address essentially the same environment.

1.5. Fiscal and Monetary Authorities

We suppose that the central bank pursues the following Taylor rule:

bRt = ρR bRt−1 + (1− ρR) [b̄πct + rπ
n
Et

£¡
π̂ct+1 − b̄πct+1¢+ ...+

¡
π̂ct+n − b̄πct+n¢¤ (1.43)

+ryŷt−1 + rqq̂t−1] + r∆π∆π̂ct + r∆y∆ŷt + εR,t.

The fiscal authorities have access to lump sum taxes which are used to redistribute the

revenues from distortionary taxes, τ c, τ y, τw, τk, and raise revenues to cover government

consumption, gt.
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1.6. Resource Constraints

The market clearing condition for the homogeneous domestic output good is, using (1.20),

Yt = Gt + Cd
t +

1

Ψt

£
Idt + a (ut) K̄t

¤
+(Rx

t )
ηx
h
ωx (p

m,x
t )1−ηx + (1− ωx)

i ηx
1−ηx (1− ωx)

µ
P̄t

P x
t

¶ −λx,t
λx,t−1

(pxt )
−ηf Y ∗t .

and we need to express the last variable in terms of an observable. Applying the production

function: £
ϑ (·) (ztHt)

1−α �tK
α
t − z+t φ

¤
= Gt + Cd

t +
1

Ψt

£
Idt + a (ut) K̄t

¤
+(Rx

t )
ηx
h
ωx (p

m,x
t )1−ηx + (1− ωx)

i ηx
1−ηx (1− ωx)

µ
P̄t

P x
t

¶ −λx,t
λx,t−1

(pxt )
−ηf Y ∗t .

where ϑ (·) is a function of wage and price dispersion. Following the logic of Tak Yun, we
ignore these in our analysis of the first order approximation of the model. So, the resource

constraint that we work with is:

(ztHt)
1−α �tK

α
t − z+t φ = Gt + Cd

t +
1

Ψt

£
Idt + a (ut) K̄t

¤
+(Rx

t )
ηx
h
ωx (p

m,x
t )1−ηx + (1− ωx)

i ηx
1−ηx (1− ωx) (p

x
t )
−ηf Y ∗t .

We now express this in terms of stationary variables:

(ztHt)
1−α �t

¡
ktz

+
t−1Ψt−1

¢α − z+t φ = z+t gt + z+t c
d
t +

1

Ψt

£
z+t Ψti

d
t + z+t−1Ψt−1a (ut) k̄t

¤
+(Rx

t )
ηx
h
ωx (p

m,x
t )1−ηx + (1− ωx)

i ηx
1−ηx (1− ωx) (p

x
t )
−ηf z+t y

∗
t ,

or, after division by z+t :

yt = gt + cdt + idt (1.44)

+(Rx
t )

ηx
h
ωx (p

m,x
t )1−ηx + (1− ωx)

i ηx
1−ηx (1− ωx) (p

x
t )
−ηf y∗t .

where

yt = (Ht)
1−α �t

µ
kt

μz+,tμΨ,t

¶α

− φ− 1

μz+,tμΨ,t
a (ut) k̄t (1.45)

kt = k̄tut (1.46)

We obtain the current account by combining the resource constraint, the government

budget constraint (which says that G = taxes + seignorage) and the household’s budget
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constraint. According to the resource constraint and the government budget constraint,

household accumulation of foreign assets plus acquisition of foreign goods must equal foreign

acquisition of domestic output:

StB
∗
t+1−R∗t−1Φ

µ
at−1,

Et−1St
St−2

, φ̃t−1

¶
StB

∗
t+exp enses on importst = receipts from exp ortst.

The expenses on imports is the amount spent by the three types of domestic importers of

specialized import goods. These three types make zero profits, so that the amount that they

spend on imports equals the receipts from their sales. Their sales are the sum of sales to

households of consumption goods, Cm
t , sales to businesses of investment goods, I

m
t , and sales

to domestic exporters, Xm
t :

exp enses on importst = StP
∗
t R

ν,∗
t (Cm

t + Imt +Xm
t ) .

A similar reasoning based on zero profits implies that

receipts from exp ortst = StP
x
t Xt.

We conclude that the current account can be written as follows:

StB
∗
t+1 −R∗t−1Φ

µ
at−1,

Et−1St
St−2

, φ̃t−1

¶
StB

∗
t + StP

∗
t R

ν,∗
t (Cm

t + Imt +Xm
t ) = StP

x
t Xt.

Expressing this in scaled form,

atPtz
+
t −R∗t−1Φ

µ
at−1,

Et−1St
St−2

, φ̃t−1

¶
St
Pt−1z

+
t−1at−1

St−1
+StP

∗
t z

+
t R

ν,∗
t (cmt + imt + xmt ) = z+t StP

x
t xt.

Dividing by Ptz
+
t , we obtain

at −R∗t−1Φ
³
at−1, Et−1stst−1, φ̃t−1

´
st

at−1
πtμz+,t

+ qtp
c
tR

ν,∗
t (cmt + imt + xmt ) = qtp

c
tp

x
t xt, (1.47)

using (1.16).

We define GDP as the sum of final consumption, investment, government consumption

and net exports:

nominal GDPt = P c
t Ct + P i

t It + PtGt +NXt,

where NXt denotes net exports and

NXt = StP
x
t Xt − StP

∗
t (C

m
t + Imt +Xm

t ) .
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Gross exports is StP x
t Xt and gross imports is StP ∗t (C

m
t + Imt +Xm

t ) . We model real GDP

as nominal GDP divided by Pt. After scaling real GDP by z+t , we obtain:

cmt + imt + xmt =
pctct + pitit + gt + qtp

c
tp

x
t xt − yt

qtpct
,

after rearranging. We use this equation to substitute out for cmt + imt + xmt in (1.47),

at −R∗t−1Φ
³
at−1, st−1Et−1st, φ̃t−1

´
st

at−1
πtμz+,t

+Rν,∗
t

£
pctct + pitit + gt + qtp

c
tp

x
t xt − yt

¤
(1.48)

= qtp
c
tp

x
t xt,

In addition to the above equations we also include the restrictions across inflation rates

implied by our relative price formulas. In terms of the expressions in (1.1) there are the

restrictions implied by pm,j
t /pm,j

t−1, j = x, c, i, and pxt . The restrictions implied by the other

two relative prices in (1.1), pit and pct , have already been exploited in (1.30) and (1.31),

respectively. Finally, we also exploit the restriction across inflation rates implied by qt/qt−1
and (1.2). Thus,

pm,x
t

pm,x
t−1

=
πm,x
t

πt
(1.49)

pm,c
t

pm,c
t−1

=
πm,c
t

πt
(1.50)

pm,i
t

pm,i
t−1

=
πm,i
t

πt
(1.51)

pxt
pxt−1

=
πxt
π∗t

(1.52)

qt
qt−1

=
stπ

∗
t

πct
. (1.53)

1.7. Solving the Model

In the previous section we derived 37 equations, which can be used to solve for the following

37 unknowns:

r̄kt , w̄t, R
ν,∗
t , Rf

t , R
x
t , Rt,mct,mcxt ,mcm,c

t ,mcm,i
t ,mcm,x

t , πt, π
x
t , π

c
t , π

i
t, π

m,c
t , πm,i

t , πm,x
t ,

pct , p
x
t , p

i
t, p

m,x
t , pm,c

t , pm,i
t , pk0,t, kt+1, k̄t+1, ut, Ht, qt, it, ct, xt, at, st, ψz+,t, yt.
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1.7.1. Steady State

For our steady state calculations, we remove ut from the list of unknowns and replace it with

σb. We assign ut a value of unity in steady state. With this replacement, we still have 37

equations in 37 unknowns.

In steady state, we lose the equations specified in terms of deviations from steady state.

This includes the central bank policy rule, (1.43). We replace this equation with the re-

striction that πc equals an exogenously specified number. We also lose the six Phillips curve

relations, (1.7), (1.23), for j = c, x, i, equation (1.17) and equation (1.42). Each of these

equations is replaced with the relevant ‘price equals markup over marginal cost relation’.

Thus, we remain with 37 equations and 37 unknowns in steady state.

In our system, π∗ is an exogenous variable, and we suppose foreign policy implements

π∗ = πc, so that

πc = π∗, s = 1,

using (1.53). Equations (1.28), (1.30) and (1.49)-(1.53) imply:

πm,x = πm,c = πm,i = μΨπ
i = π = πc, πx = π∗.

We obtain R from the steady state Fisher equation, (1.40) (the intertemporal Euler

equation for bonds is the same in steady state):

R =

μz+π

β
− τk

(1− τk)
.

Applying equations (1.38) and (1.39) in steady state, we obtain

1 = β
1

μz+π
(R∗ − τk (R∗ − 1)),

so that, in light of the steady state Fisher equation,

R∗ = R.

Also,

Rν,∗
t = ν∗R∗ + 1− ν∗

Rf = νfR+ 1− νf

Rx = νxR+ 1− νx.

In the case of the specialized domestic producers, we have

mc =
1

λd
.
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We now describe our strategy for computing the steady state. We start by computing all

the variables down to the equation for mc above. Now, fix a value for ϕ. In the case of the

three types of price-setting monopolist in the import sector, we obtain, after rearranging,

pm,j = λm,jϕRν,∗, j = x, c, i. (1.54)

We solve for pc using the consumption price equation and pm,c obtained from (1.54):

pc =
£
(1− ωc) + ωc (p

m,c)1−ηc
¤ 1
1−ηc . (1.55)

We solve for pi using the investment price equation:

pi =
h
(1− ωi) + ωi

¡
pm,i

¢1−ηii 1
1−ηi , (1.56)

and pm,i from (1.54).

Because F1 = 1 and F2 = 0 in steady state, the intertemporal Euler equation for invest-

ment reduces to:

pk0 =
pi

Υ
,

giving us an expression for pk0 . The household’s intertemporal Euler equation in steady state

is:

pk0 = β
1

μz+μΨ

h
(1− τk)r̄k + (1− δ)pk0 + τkδ

μΨ
π
pk0
i

which can be solved for r̄k :

r̄k =

pk0μz+μΨ
β

− (1− δ)pk0 − τkδ μΨ
π
pk0

1− τk

The following expression can be used to solve for w̄ :

1

λd
=

µ
1

1− α

¶1−αµ
1

α

¶α ¡
r̄k
¢α ¡

w̄Rf
¢1−α 1

�
.

In particular:

w̄ =
(1− α)

Rf

"
�

λd

µ
r̄k

α

¶−α# 1
1−α

(1.57)

From (1.6) we can solve for the steady state capital labor ratio, k/H :

mc =
1

λd
=

(μΨ)
α w̄Rf

(1− α)
³

1
μz+

k̄
H

´α ,
or,

k̄

H
= μz+

µ
λd (μΨ)

α w̄Rf

1− α

¶1/α
(1.58)
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Consider the specialized, monopolist exporters. In steady state, they are unconstrained

by the Calvo price frictions, and they set their price as a markup over their marginal cost.

That is, they set

mcx =
1

λx
,

or, from (1.15),
1

λx
=

Rx

ϕpx
£
ωx (p

m,x)1−ηx + (1− ωx)
¤ 1
1−ηx .

Rearranging and using (1.54) to determine pm,x, we obtain,

px = λx
Rx

ϕ

£
ωx (p

m,x)1−ηx + (1− ωx)
¤ 1
1−ηx . (1.59)

We solve for q using

q =
ϕ

pc
. (1.60)

In steady state,

y = (H)1−α �

µ
k̄

μz+μΨ

¶α

− φ

=
1

λd
H�

µ
k̄/H

μz+μΨ

¶α

. (1.61)

Combining this with the steady state expression for the resource constraint:

1

λd
H�

µ
k/H

μz+μΨ

¶α

= g + cd + id

+(Rx)ηx
£
ωx (p

m,x)1−ηx + (1− ωx)
¤ ηx
1−ηx (1− ωx) (p

x)−ηf y∗,

or, if

g = ηgy,

where ηg is a given number (danger: if you do an experiment and change taxes or inflation,

you have to realize that if ηg constant, the experiment necessarily involves a simultaneous

change in g). Then,

1− ηg

λd
H�

µ
k/H

μz+μΨ

¶α

= cd + id

+(Rx)ηx
£
ωx (p

m,x)1−ηx + (1− ωx)
¤ ηx
1−ηx (1− ωx) (p

x)−ηf y∗,

The steady state demand for the intermediate consumption goods, Idt and Cd
t , after scaling

is:

cd = (1− ωc) (p
c)ηc c (1.62)

id = (1− ωi)
¡
pi
¢ηi i, (1.63)
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so that, after substituting into the resource constraint:

1− ηg

λd
H�

µ
k/H

μz+μΨ

¶α

= (1− ωc) (p
c)ηc c+ (1− ωi)

¡
pi
¢ηi k̄

H

h
1− 1−δ

μz+μΨ

i
Υ

H (1.64)

+(Rx)ηx
£
ωx (p

m,x)1−ηx + (1− ωx)
¤ ηx
1−ηx (1− ωx) (p

x)−ηf y∗.

As noted above, in the steady state we lose the Phillips curve expressions and we replace

them by the condition that price is a markup over marginal cost. In the case of the household,

this implies:
Wt (1− τ y)

Pt (1 + τw)
= λw

1

ψt

ζhtALH
σL
t ,

or, after scaling this reduces, in steady state, to:

w̄ (1− τ y)

1 + τw
= λw

ζhALH
σL

ψz+
, (1.65)

The steady state expression for

ψz+ =
1

c

ζc (μz+ − βb)

pc (1 + τ c) (μz+ − b)
, (1.66)

which after using this to substitute out for ψz+ in (1.65) yields, after rearranging:

c =
H−σL

λwζ
hAL

ζc (μz+ − βb)

pc (1 + τ c) (μz+ − b)

w̄ (1− τy)

1 + τw
. (1.67)

Use this to substitute out for c in the resource constraint:

H

⎧⎨⎩1− ηg

λd
�

µ
k/H

μz+μΨ

¶α

− (1− ωi)
¡
pi
¢ηi k̄

H

h
1− 1−δ

μz+μΨ

i
Υ

⎫⎬⎭
=

∙
(1− ωc) (p

c)ηc

λwζ
hAL

ζc (μz+ − βb)

pc (1 + τ c) (μz+ − b)

w̄ (1− τ y)

1 + τw

¸
H−σL

+(Rx)ηx
£
ωx (p

m,x)1−ηx + (1− ωx)
¤ ηx
1−ηx (1− ωx) (p

x)−ηf y∗.

Note that the expression on the left of the equality is linear function of H with positive slope

(if the object in braces is not positive, then positive consumption is not feasible in steady

state and the model parameterization chosen is not a good one). With H = 0 the object is

zero, and as H →∞ the object goes to ∞. The right side goes to +∞ as H → 0 and to a

finite number as H →∞. Because these functions are monotone and continuous, they must

have a single crossing. This crossing is easily found by first looking for a sign switch on a

grid for H and then assigning the zero-finding algorithm to an interval over with the sign

switch occurs.
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We consider two alternatives. In the first, we calibrate y∗ so that it is some large multiple

of y, say

y∗ = ηyy.

In the second, we calibrate y∗ so that net foreign assets, a, is zero in steady state.

Consider the first alternative. The resource constraint is:

[
�

λd

µ
k/H

μz+μΨ

¶α n
1− ηg − (Rx)ηx

£
ωx (p

m,x)1−ηx + (1− ωx)
¤ ηx
1−ηx (1− ωx) (p

x)−ηf ηy

o
− (1− ωi)

¡
pi
¢ηi k̄

H

h
1− 1−δ

μz+μΨ

i
Υ

]H

= (1− ωc) (p
c)ηc

H−σL

λwζ
hAL

ζc (μz+ − βb)

pc (1 + τ c) (μz+ − b)

w̄ (1− τ y)

1 + τw

= BH−σL,

in obvious notation. Then,

H =

µ
B

A

¶ 1
1+σL

,

where A is the coefficient on H on the left of the above equality. Note that

AH = y − g − homogeneous goods assigned to exports− id and BH−σL = cd.

As a result, by choosing H to solve the previous expression, we are enforcing clearing in the

market for the intermediate homogeneous good, y.

We compute y using (1.61) and k̄ using

k̄ =
k̄

H
H.

We can obtain i from

i = k̄

h
1− 1−δ

μz+μΨ

i
Υ

.

The variable, x, can be obtained from

x = (px)−ηf y∗ = (px)−ηf ηyy.

We solve for ψz+ from the intratemporal Euler equation:

ψz+ = (1 + τw)λw
ζhALH

σL

w̄ (1− τ y)
.

We can then solve for c from the steady state formula for the multiplier:

c =
1

ψz+

ζc (μz+ − βb)

pc (1 + τ c) (μz+ − b)
,
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and cd, id can be obtained from (1.62) and (1.63), respectively. Compute

g = ηgy.

We adjust ϕ until trade is balanced in steady state:

Rν,∗ £pcc+ pii+ g + qpcpxx− y
¤
− qpcpxx = 0, (1.68)

a = 0.

We solve for σb to ensure (1.37) is satisfied for ut = 1 :

a0(u) = σbσa + σb (1− σa) = r̄k,

so that

σb = r̄k.

2. Introducing Financial Frictions into the Model

A number of the activities in the model of the previous section require financing. Producers

of specialized inputs must borrow working capital within the period. The management of

capital involves financing because the construction of capital requires a substantial initial

outlay of resources, while the return from capital comes in over time as a flow. In the model

of the previous section financing requirements affect the allocations, but not very much. This

is because none of the messy realities of actual financial markets are present. There is no

asymmetric information between borrower and lender, there is no risk to lenders. In the

case of capital accumulation, the borrower and lender are actually the same household, who

puts up the finances and later reaps the rewards. When real-world financial frictions are

introduced into a model, then intermediation becomes distorted by the presence of balance

sheet constraints and other factors.

Although the literature shows how to introduce financial frictions much more extensively,

here we proceed by assuming that only the accumulation and management of capital involves

frictions. We will continue to assume that working capital loans are frictionless. At the end

of this introduction, we briefly discuss the idea of introducing financial frictions into working

capital loans. Our strategy of introducing frictions in the accumulation and management of

capital follows the variant of the Bernanke, Gertler and Gilchrist (1999) model implemented

in Christiano, Motto and Rostagno (2003) (CMR). The discussion here borrows heavily from

the derivation in Christiano, Motto and Rostagno (2007).

The financial frictions we introduce reflect fundamentally that borrowers and lenders

are different people, and that they have different information. Thus, we introduce ‘entrepre-

neurs’. These are agents who have a special skill in the operation and management of capital.
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Although these agents have their own financial resources, their skill in operating capital is

such that it is optimal for them to operate more capital than their own resources can sup-

port, by borrowing additional funds. There is a financial friction because the management

of capital is risky. Individual entrepreneurs are subject to idiosyncratic shocks which are

observed only by them. The agents that they borrow from, ‘banks’, can only observe the

idiosyncratic shocks by paying a monitoring cost. This type of asymmetric information im-

plies that it is impractical to have an arrangement in which banks and entrepreneurs simply

divide up the proceeds of entrepreneurial activity, because entrepreneurs have an incentive to

understate their earnings. An alternative arrangement that is more efficient is one in which

banks extend entrepreneurs a ‘standard debt contract’, which specifies a loan amount and

a given interest payment. Entrepreneurs who suffer an especially bad idiosyncratic income

shock and who therefore cannot afford to pay the required interest, are ‘bankrupt’. Banks

pay the cost of monitoring these entrepreneurs and take all of their net worth in partial

compensation for the interest that they are owed.

The amount that banks are willing to lend to an entrepreneur under the standard debt

contract is a function of the entrepreneur’s net worth. This is how balance sheet constraints

enter the model. When a shock occurs that reduces the value of the entrepreneur’s assets,

this cuts into their ability to borrow. As a result, they acquire less capital and this translates

into a reduction in investment and ultimately into a slowdown in the economy.

The ultimate source of funds for lending to entrepreneurs is the household. The standard

debt contracts extended by banks to entrepreneurs are financed by issuing liabilities to

households. Although individual entrepreneurs are risky, banks themselves are not. We

suppose that banks lend to a sufficiently diverse group of entrepreneurs that the uncertainty

that exists in individual entrepreneurial loans washes out across all loans. Extensions of the

model that introduce risk into banking have been developed, but it is not clear that the

added complexity is justified.

In the model, the interest rate that households receive is nominally non state-contingent.

This gives rise to potentially interesting wealth effects of the sort emphasized by Irving

Fisher. For example, when a shock occurs which drives the price level down, households

receive a wealth transfer. Because this transfer is taken from entrepreneurs, their net worth

is reduced. With the tightening in their balance sheets, their ability to invest is reduced,

and this produces an economic slowdown.

At the level of abstraction of the model, the capital stock includes both housing and

business capital. As a result, the entrepreneurs can also be interpreted as households in their

capacity of homeowners. An expanded version of the model would pull apart the household

and business sectors to study each individually. Another straightforward expansion of the

model would apply the model of financial frictions to working capital loans.
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With this model, it is typically the practice to compare the net worth of entrepreneurs

with a stock market quantity such as the Dow Jones Industrial Average. Whether this is

really appropriate is uncertain. A case can be made that the ‘bank loans’ of entrepreneurs in

the model correspond well with actual bank loans plus actual equity. It is well known that

dividend payments on equity are very smooth. Firms work hard to accomplish this. For

example, during the US Great Depression some firms were willing to sell their own capital in

order to avoid cutting dividends. That this is so is perhaps not surprising. The asymmetric

information problems with actual equity are surely as severe as they are for the banks in our

model. Under these circumstances one might expect equity holders to demand a payment

that is not contingent on the realization of uncertainty within the firm (payments could be

contingent upon publically observed variables). Under this vision, the net worth in the model

would correspond not to a measure of the aggregate stock market, but to the ownership stake

of the managers and others who exert most direct control over the firm. The ‘bank loans’

in this model would, under this view of things, correspond to the actual loans of firms (i.e,

bank loans and other loans such as commercial paper) plus the outstanding equity. While

this is perhaps too extreme, these observations highlight that there is substantial uncertainty

over exactly what variable should be compared with net worth in the model. It is important

to emphasize, however, that whatever the right interpretation is of net worth, the model

potentially captures balance sheet problems very nicely.

Finally, we make some remarks on the introduction of financial frictions into working

capital loans. It is possible to accomplish this with relatively little modification to the

model, by following the strategy described in Fisher (). However, with this strategy, the

effects of financial frictions are quite modest, because the firms in the model which use

working capital do not have assets. As a result, the balance sheet channel does not operate.

We conjecture that for financial frictions in working capital to be interesting, the borrowing

firms would need to have assets. One way this could be accomplished would be to assume

that they use and own capital that is specific to their firm. In this way, fluctuations in the

value of that capital induced by changes in asset prices would change their ability to borrow,

and hence to produce. This strategy is algebra-intensive because of the fact that these firms

also set their prices subject to Calvo frictions.

2.1. Modifying the Benchmark Model

The financial frictions bring a net increase of two equations over the equations in the model of

the previous section. In addition, they introduce two new endogenous variables, one related

to the interest rate paid by entrepreneurs as well as their net worth. The financial frictions

also allow us to introduce two new random variables. We now provide a formal discussion

of the model.
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As we shall see, entrepreneurs all have different histories, as they experience different

idiosyncratic shocks. Thus, in general, solving for the aggregate variables would require also

solving for the distribution of entrepreneurs according to their characteristics and for the law

of motion for that distribution. However, as emphasized in BGG, the right functional form

assumptions have been made in the model, which guarantee the result that the aggregate

variables associated with entrepreneurs are not a function of distributions. The loan contract

specifies that all entrepreneurs, regardless of their net worth, receive the same interest rate.

Also, the loan amount received by a entrepreneur is proportional to his level of net worth.

These are enough to guarantee the aggregation result.

2.1.1. The Individual Entrepreneur

At the end of period t each entrepreneur has a level of net worth, Nt+1. The entrepreneur’s

net worth, Nt+1, constitutes his state at this time, and nothing else about his history is

relevant. We imagine that there are many entrepreneurs for each level of net worth and that

for each level of net worth, there is a competitive bank with free entry that offers a loan

contract. The contract is defined by a loan amount and by an interest rate, and is derived

as the solution to a particular optimization problem.

Consider a type of entrepreneur with a particular level of net worth, Nt+1. The entrepre-

neur combines this net worth with a bank loan, Bt+1, to purchase new, installed physical

capital, K̄t+1, from capital producers. The loan the entrepreneur requires for this is:

Bt+1 = PtPk0,tK̄t+1 −Nt+1. (2.1)

The entrepreneur is required to pay a gross interest rate, Zt+1, on the bank loan at the end

of period t+1, if it is feasible to do so. After purchasing capital the entrepreneur experiences

an idiosyncratic productivity shock which converts the purchased capital, K̄t+1, into K̄t+1ω.

Here, ω is a unit mean, lognormally and independently distributed random variable across

entrepreneurs. The variance of logω is σ2t . The t subscript indicates that σt is itself the

realization of a random variable. This allows us to consider the effects of an increase in the

riskiness of individual entrepreneurs. We denote the cumulative distribution function of ω

by Ft.

After observing the period t+ 1 shocks, the entrepreneur sets the utilization rate, ut+1,

of capital and rents capital out in competitive markets at nominal rental rate, Pt+1r
k
t+1. In

choosing the capital utilization rate, the entrepreneur takes into account that operating one

unit of physical capital at rate ut+1 requires a(ut+1) of domestically produced investment

goods for maintenance expenditures, where a is defined in (1.9). The entrepreneur then sells

the undepreciated part of physical capital to capital producers. Per unit of physical capital

purchased, the entrepreneur who draws idiosyncratic shock ω earns a return (after taxes), of
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Rk
t+1ω, where R

k
t+1 is defined in (1.34). Because the mean of ω across entrepreneurs is unity,

the average return across all entrepreneurs is Rk
t+1.

After entrepreneurs sell their capital, they settle their bank loans. At this point, the

resources available to an entrepreneur who has purchased K̄t+1 units of physical capital in

period t and who experiences an idiosyncratic productivity shock ω are Pt+1Pk0,t+1R
k
t+1ωK̄t+1.

There is a cutoff value of ω, ω̄t+1, such that the entrepreneur has just enough resources to

pay interest:

ω̄t+1R
k
t+1PtPk0,tK̄t+1 = Zt+1Bt+1. (2.2)

Entrepreneurs with ω < ω̄t+1 are bankrupt and turn over all their resources,

Rk
t+1ωPtPk0,tK̄t+1,

to the bank, which is less than Zt+1Bt+1. In this case, the bank monitors the entrepreneur,

at cost

μRk
t+1ωPtPk0,tK̄t+1,

where μ ≥ 0 is a parameter.
We note briefly that the definition of Rk

t+1 lacks some realism because it does not take

into account the deductibility of interest payments. With the more realistic treatment of

interest, the after tax rate of return on capital would be

Rk
t+1 =

(1− τkt )
h
ut+1r

k
t+1 − 1

Υt+1
a(ut+1)− (Zt+1 − 1) Bt+1

PtPk0,tK̄t+1

i
Pt+1 + (1− δ)Pt+1Pk0,t+1 + τkt δPtPk0,t

PtPk0,t

=
(1− τkt )

h
ut+1r

k
t+1 − 1

Υt+1
a(ut+1)− ω̄t+1R

k
t+1 +

Bt+1

PtPk0,tK̄t+1

i
Pt+1 + (1− δ)Pt+1Pk0,t+1 + τkt δPtPk0,t

PtPk0,t
,

by (2.2). With this representation, Rk
t is a function of features of the loan contract. This will

change the choice of optimal contract, discussed below. We plan to explore the implications

of this in future work

Banks obtain the funds loaned in period t to entrepreneurs by issuing deposits to house-

holds at gross nominal rate of interest, Rt. The subscript on Rt indicates that the payoff to

households in t + 1 is not contingent on the period t + 1 uncertainty. This feature of the

relationship between households and banks is simply assumed. There is no risk in household

bank deposits, and the household Euler equation associated with deposits is exactly the same

as (1.40).

We suppose that there is competition and free entry among banks, and that banks par-

ticipate in no financial arrangements other than the liabilities issued to households and the

loans issued to entrepreneurs.1 It follows that the bank’s cash flow in each state of period
1If banks also had access to state contingent securities, then free entry and competition would imply that

banks earn zero profits in an ex ante expected sense from the point of view of period t.

31



t+ 1 is zero, for each loan amount.2 For loans in the amount, Bt+1, the bank receives gross

interest, Zt+1Bt+1, from the 1 − Ft (ω̄t+1) entrepreneurs who are not bankrupt. The bank

takes all the resources possessed by bankrupt entrepreneurs, net of monitoring costs. Thus,

the state-by-state zero profit condition is:

[1− Ft (ω̄t+1)]Zt+1Bt+1 + (1− μ)

Z ω̄t+1

0

ωdFt (ω)R
k
t+1PtPk0,tK̄t+1 = RtBt+1,

or, after making use of (2.2) and rearranging,

[Γt(ω̄t+1)− μGt(ω̄t+1)]
Rk
t+1

Rt
(t = (t − 1 (2.3)

where

Gt(ω̄t+1) =

Z ω̄t+1

0

ωdFt(ω).

Γt(ω̄t+1) = ω̄t+1 [1− Ft(ω̄t+1)] +Gt(ω̄t+1)

(t =
PtPk0,tK̄t+1

Nt+1
.

The expression, Γt(ω̄t+1)− μGt(ω̄t+1) is the share of revenues earned by entrepreneurs that

borrow Bt+1, which goes to banks. Note that Γ0t(ω̄t+1) = 1 − Ft(ω̄t+1) > 0 and G0
t(ω̄t+1) =

ω̄t+1F
0
t(ω̄t+1) > 0. It is thus not surprising that the share of entrepreneurial revenues accruing

to banks is non-monotone with respect to ω̄t+1. BGG argue that the expression on the left of

(2.3) has an inverted ‘U’ shape, achieving a maximum value at ω̄t+1 = ω∗, say. The expression

is increasing for ω̄t+1 < ω∗ and decreasing for ω̄t+1 > ω∗. Thus, for any given value of (t and

Rk
t+1/Rt, generically there are either no values of ω̄t+1 or two that satisfy (2.3). The value

of ω̄t+1 realized in equilibrium must be the one on the left side of the inverted ‘U’ shape.

This is because, according to (2.2), the lower value of ω̄t+1 corresponds to a lower interest

rate for entrepreneurs which yields them higher welfare. As discussed below, the equilibrium

contract is one that maximizes entrepreneurial welfare subject to the zero profit condition

on banks. This reasoning leads to the conclusion that ω̄t+1 falls with a period t + 1 shock

that drives Rk
t+1 up. The fraction of entrepreneurs that experience bankruptcy is Ft (ω̄t+1) ,

so it follows that a shock which drives up Rk
t+1 has a negative contemporaneous impact on

the bankruptcy rate. According to (1.33), shocks that drive Rk
t+1 up include anything which

raises the value of physical capital and/or the rental rate of capital.

As just noted, we suppose that the equilibrium debt contract maximizes entrepreneurial

welfare, subject to the zero profit condition on banks and the specified required return on

2Absence of state contingent securities markets guarantee that cash flow is non-negative. Free entry
guarantees that ex ante profits are zero. Given that each state of nature receives positive probability, the
two assumptions imply the state by state zero profit condition quoted in the text.
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household bank liabilities. The date t debt contract specifies a level of debt, Bt+1 and a state

t+1−contingent rate of interest, Zt+1.We suppose that entrepreneurial welfare corresponds

to the entrepreneur’s expected wealth at the end of the contract. It is convenient to express

welfare as a ratio to the amount the entrepreneur could receive by depositing his net worth

in a bank:

Et

R∞
ω̄t+1

£
Rk
t+1ωPtPk0,tK̄t+1 − Zt+1Bt+1

¤
dFt(ω)

RtNt+1

=
Et

R∞
ω̄t+1

[ω − ω̄t+1] dFt(ω)R
k
t+1PtPk0,tK̄t+1

RtNt+1

= Et

½
[1− Γt(ω̄t+1)]

Rk
t+1

Rt

¾
(t,

after making use of (2.1), (2.2) and

1 =

Z ∞

0

ωdFt(ω) =

Z ∞

ω̄t+1

ωdFt(ω) +Gt(ω̄t+1).

We can equivalently characterize the contract by a state-t+1 contingent set of values for ω̄t+1

and a value of (t. The equilibrium contract is the one involving ω̄t+1 and (t which maximizes

entrepreneurial welfare (relative to RtNt+1), subject to the bank zero profits condition. The

Lagrangian representation of this problem is:

max
(t,{ω̄t+1}

Et

½
[1− Γt(ω̄t+1)]

Rk
t+1

Rt
(t + λt+1

µ
[Γt(ω̄t+1)− μGt(ω̄t+1)]

Rk
t+1

Rt
(t − (t + 1

¶¾
,

where λt+1 is the Lagrange multiplier which is defined for each period t+ 1 state of nature.

The first order conditions for this problem are:

Et

½
[1− Γt(ω̄t+1)]

Rk
t+1

Rt
+ λt+1

µ
[Γt(ω̄t+1)− μGt(ω̄t+1)]

Rk
t+1

Rt
− 1
¶¾

= 0

−Γ0t(ω̄t+1)
Rk
t+1

Rt
+ λt+1 [Γ

0
t(ω̄t+1)− μG0

t(ω̄t+1)]
Rk
t+1

Rt
= 0

[Γt(ω̄t+1)− μGt(ω̄t+1)]
Rk
t+1

Rt
(t − (t + 1 = 0,

where the absence of λt+1 from the complementary slackness condition reflects that we as-

sume λt+1 > 0 in each period t+1 state of nature. Substituting out for λt+1 from the second

equation into the first, the first order conditions reduce to:

Et

½
[1− Γt(ω̄t+1)]

Rk
t+1

Rt
+

Γ0t(ω̄t+1)

Γ0t(ω̄t+1)− μG0
t(ω̄t+1)

µ
[Γt(ω̄t+1)− μGt(ω̄t+1)]

Rk
t+1

Rt
− 1
¶¾

= 0(2.4)

[Γt−1(ω̄t)− μGt−1(ω̄t)]
Rk
t

Rt−1
(t−1 − (t−1 + 1 = 0,
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for t = 0, 1, 2, ... .

Since Nt+1 does not appear in the last two equations, we conclude that (t and ω̄t+1 are

the same for all entrepreneurs, regardless of their net worth. The results for (t implies that

Bt+1

Nt+1
= (t − 1,

that an entrepreneur’s loan amount is proportional to his net worth. Rewriting (2.1) and

(2.2) we see that the rate of interest paid by the entrepreneur is

Zt+1 =
ω̄t+1R

k
t+1

1− (t
, (2.5)

which is the same for all entrepreneurs, regardless of their net worth.

2.1.2. Aggregation Across Entrepreneurs and the Risk Premium

Let f (Nt+1) denote the density of entrepreneurs with net worth, Nt+1. Then, aggregate

average net worth, N̄t+1, is

N̄t+1 =

Z
Nt+1

Nt+1f (Nt+1) dNt+1.

We now derive the law of motion of N̄t+1. Consider the set of entrepreneurs who in period

t− 1 had net worth N. Their net worth after they have settled with the bank in period t is

denoted V N
t , where

V N
t = Rk

tPt−1Pk0,t−1K̄
N
t − Γt−1(ω̄t)R

k
tPt−1Pk0,t−1K̄

N
t , (2.6)

where K̄N
t is the amount of physical capital that entrepreneurs with net worth Nt acquired

in period t− 1. Clearing in the market for capital requires:

K̄t =

Z
Nt

K̄N
t f (Nt) dNt.

Integrating (2.6) over all entrepreneurs,

Vt ≡
Z
Nt

Ntf (Nt) dNt =

Z
Nt

f (Nt)
©
Rk
tPt−1Pk0,t−1K̄

N
t − Γt−1(ω̄t)R

k
tPt−1Pk0,t−1K̄

N
t

ª
dNt

=

Z
Nt

f (Nt)
©
Rk
t (t−1Nt − Γt−1(ω̄t)R

k
t (t−1Nt

ª
dNt

= Rk
t (t−1N̄t − Γt−1(ω̄t)R

k
t (t−1N̄t.

Because (t−1 is the same for all entrepreneurs, it follows that

(t−1 =
Pt−1Pk0,t−1K̄t

N̄t

, (2.7)
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so that

Vt = Rk
tPt−1Pk0,t−1K̄t − Γt−1(ω̄t)R

k
tPt−1Pk0,t−1K̄t

Writing this out more fully:

Vt = Rk
tPt−1Pk0,t−1K̄t −

½
[1− Ft−1(ω̄t)] ω̄t +

Z ω̄t

0

ωdFt−1(ω)

¾
Rk
tPt−1Pk0,t−1K̄t

=
¡
1 +Rk

t

¢
Pt−1Pk0,t−1K̄t

−
½
[1− Ft−1(ω̄t)] ω̄t + (1− μ)

Z ω̄t

0

ωdFt−1(ω) + μ

Z ω̄t

0

ωdFt−1(ω)

¾
Rk
tPt−1Pk0,t−1K̄t.

Note that the first two terms in braces correspond to the net revenues of the bank, which

must equal Rt(Pt−1Pk0,t−1K̄t − N̄t). Substituting:

Vt = Rk
tPt−1Pk0,t−1 −

(
Rt +

μ
R ω̄t
0

ωdFt−1(ω)
¡
1 +Rk

t

¢
QK̄0,t−1K̄t

Pt−1Pk0,t−1K̄t − N̄t

)
(Pt−1Pk0,t−1K̄t − N̄t).

After Vt is determined, each entrepreneur faces an identical and independent probability

1− γt of being selected to exit the economy. With the complementary probability, γt, each

entrepreneur remains. Because the selection is random, the net worth of the entrepreneurs

who survive is simply γtV̄t. A fraction, 1−γt, of new entrepreneurs arrive. Entrepreneurs who
survive or who are new arrivals receive a transfer, W e

t . This ensures that all entrepreneurs,

whether new arrivals or survivors that experienced bankruptcy, have sufficient funds to obtain

at least some amount of loans. The average net worth across all entrepreneurs after the W e
t

transfers have been made and exits and entry have occurred, is N̄t+1 = γtV̄t +W e
t , or,

N̄t+1 = γt{Rk
tPt−1Pk0,t−1K̄t−

"
Rt +

μ
R ω̄t
0

ωdFt−1(ω)R
k
tPt−1Pk0,t−1K̄t

Pt−1Pk0,t−1K̄t − N̄t

#
(Pt−1Pk0,t−1K̄t−N̄t)}+W e

t .

(2.8)

2.2. Solving the Financial Frictions Model

In this subsection we indicate how the equilibrium conditions of the benchmark model must

be modified to accommodate financial frictions. We then consider the problem of solving for

the model’s steady state.

2.2.1. Equilibrium Conditions

Consider the households. Households no longer accumulate physical capital, and the first

order condition, (1.35), must be dropped. No other changes need to be made to the household

first order conditions. Equation (1.40) can be interpreted as applying to the household’s

decision to make bank deposits. The household equations, (1.31) and (1.36), pertaining
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to investment can be thought of as reflecting that the household builds and sells physical

capital, or it can be interpreted as the first order condition of many identical, competitive

firms that build capital (note that each has a state variable in the form of lagged investment).

We must add the three equations pertaining to the entrepreneur’s loan contract: the law of

motion of net worth, the bank’s zero profit condition and the optimality condition. Finally,

we must adjust the resource constraints to reflect the resources used in bank monitoring and

in consumption by entrepreneurs.

We adopt the following scaling of variables:

nt+1 =
N̄t+1

Ptz
+
t

, we
t =

W e
t

Ptz
+
t

.

Dividing both sides of (2.8) by Ptz
+
t , we obtain the scaled law of motion for net worth:

nt+1 =
γt

πtμz+,t

£
Rk
t pk0,t−1k̄t −Rt

¡
pk0,t−1k̄t − nt

¢
− μGt−1 (ω̄t)R

k
t pk0,t−1k̄t

¤
+ we

t , (2.9)

for t = 0, 1, 2, ... . Equation (2.9) has a simple intuitive interpretation. The first object

in square brackets is the average gross return across all entrepreneurs in period t. The

two negative terms correspond to what the entrepreneurs pay to the bank, including the

interest paid by non-bankrupt entrepreneurs and the resources turned over to the bank by

the bankrupt entrepreneurs. Since the bank makes zero profits, the payments to the bank

by entrepreneurs must equal bank costs. The term involving Rt represents the cost of funds

loaned to entrepreneurs by the bank, and the term involving μ represents the bank’s total

expenditures on monitoring costs.

The zero profit condition on banks, in terms of the scaled variables, is:

Γt(ω̄t+1)− μGt(ω̄t+1) =
Rt

Rk
t+1

µ
1− nt+1

pk0,tk̄t+1

¶
, (2.10)

for t = −1, 0, 1, 2, ... . The optimality condition for bank loans is (2.4).
The household’s first order condition associated with the accumulation of capital, (1.35),

must be dropped. The output equation, (1.45), does not have to be modified:

yt = gt + cdt + idt (2.11)

+(Rx
t )

ηx
h
ωx (p

m,x
t )1−ηx + (1− ωx)

i ηx
1−ηx (1− ωx) (p

x
t )
−ηf y∗t + dt,

where

dt =
μGt−1(ω̄t)R

k
t pk0,t−1k̄t

πtμz+,t
.

Account has to be taken of the consumption by exiting entrepreneurs. The net worth of

these entrepreneurs is (1− γt)Vt and we assume a fraction, 1−Θ, is taxed and transferred
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in lump-sum form to households, while the complementary fraction, Θ, is consumed by the

exiting entrepreneurs. This consumption can be taken into account by subtracting

Θ
1− γt
γt

(nt+1 − we
t )z

+
t Pt

from the right side of (1.26). In practice we do not make this adjustment because we assume

Θ is sufficiently small that the adjustment is negligible.

We now turn to the risk premium on entrepreneurs. The cost to the entrepreneur of

internal funds (i.e., his own net worth) is the interest rate, Rt, which he loses by applying it to

capital rather than just depositing it in the bank. The average payment by all entrepreneurs

to the bank is the entire object in square brackets. So, the term involving μ represents the

excess of external funds over the internal cost of funds. As a result, this is one measure of the

risk premium in the model. Another is the excess of the interest rate paid by entrepreneurs

who are not bankrupt, over Rt :

Zt+1 −Rt =
ω̄t+1R

k
t+1

1− pk0,t−1k̄t
nt

,

according to (2.5) and (2.7).

The financial frictions brings a net increase of 2 equations (we add (2.4), (2.9) and (2.10),

and delete (1.35)) and two variables, nt+1 and ω̄t+1. This increases the size of our system to

39 equations in 39 variables. The financial frictions also introduce additional shocks, σt and

γt.

2.2.2. Steady State

To solve for the steady state, start by proceding as in section 1.7.1, up to the point where

pk0 is calculated. Thus, we have

πc = π∗, s = 1, πm,x = πm,c = πm,i = μΨπ
i = π = πc, πx = π∗, R =

μz+π

β
− τk

1− τk
, R∗ = R,

and

Rν,∗
t = ν∗R∗ + 1− ν∗, Rf = νfR+ 1− νf , Rx = νxR+ 1− νx.

The household intertemporal Euler equation that appears after that is not part of the model

with financial frictions, because households are no longer the ones accumulating capital.

Fix a value for ϕ > 0. Solve (1.54) for pm,x, pm,c, pm,i. Solve (1.55), (1.56) and (1.59) for

pc, pi, and px, respectively. Solve for pk0 :

pk0 =
pi

Υ
.
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Fix a value for r̄k ∈
£
r̄kl , r̄

k
u

¤
. Below, we adjust r̄k until the expression defining the

scaled Lagrange multiplier on the household budget constraint, (1.66), is satisfied as a strict

equality. The bounds on r̄k were selected to ensure that all the variables in the multiplier

equation are well defined. We found some values of ϕ for which the interval,
£
r̄kl , r̄

k
u

¤
, is

empty. The lower bound, r̄kl , is the least quantity greater than

r̄klower bound =
μΨ
π
pk0R− (1− δ)pk0 − τkδ μΨ

π
pk0

1− τk
,

where we were able to find a solution to (2.12) below. The object, r̄klower bound is the value of

r̄k such that Rk/R = 1. Our choice of upper bound was based on the numerical finding that

n is monotonically increasing in r̄k. When r̄k → r̄ku, then we found that n goes to +∞. For

values of r̄k > r̄ku our formula for n below implies n < 0.

Given r̄k ∈
£
r̄kl , r̄

k
u

¤
we compute Rk using the steady state version of (1.34):

Rk =
π

μΨ

(1− τk)r̄k + (1− δ)pk0 + τkδ μΨ
π
pk0

pk0
.

Consider the steady state version of equation (2.4):

[1− Γ(ω̄)]
Rk

R
+

Γ0(ω̄)

Γ0(ω̄)− μG0(ω̄)

µ
[Γ(ω̄)− μG(ω̄)]

Rk

R
− 1
¶
= 0. (2.12)

Note that in the limiting case, μ → 0, the only equilibrium is one in which Rk = R, and

there is no wedge between these two variables. Interestingly, this model does not converge

to the benchmark model in the limiting case. In the benchmark model, it is after tax R that

is equated to Rk.

The log normal cdf, F, has two parameters, the mean and variance of the normal dis-

tribution of logω. We solve for the two parameters and for ω̄ by imposing: (i) Eω = 1,

(ii) F (ω̄) (the bankruptcy rate) is equal to some specified calibrated value, and (iii) (2.12)

holds. In practice, we conduct a nonlinear search in ω̄. For a given ω̄ we first compute the

two parameters of F to satisfy (i) and (ii). We then evaluate (2.12). We adjust ω̄ until (2.12)

is satisfied. Technical notes on these computations are provided at the end of this section.

Next, solve for the steady state value of n/k̄ using the steady state version of (2.10):

n

k̄
= pk0

½
1− Rk

R
[Γ(ω̄)− μG(ω̄)]

¾
.

Then, use the steady state law of motion of net worth, (2.9):

n =
γ

πμz+

∙¡
Rk −R− μG (ω̄)Rk

¢
pk0

k̄

n
+R

¸
n+ we,
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to solve for n and k̄ :

n =
we

1− γ
πμz+

h
(Rk −R− μG (ω̄)Rk) pk0

k̄
n
+R

i (2.13)

k̄ =
k̄

n
n.

Next, solve (1.57) for w̄, (1.58) for H, (1.61) for y, and (1.65) for ψz+ .

Consider the resource constraint, after g and y∗ have been solved in terms of y :

y
h
1− ηg − (Rx)ηx

£
ωx (p

m,x)1−ηx + (1− ωx)
¤ ηx
1−ηx (1− ωx) (p

x)−ηf ηy

i
= d+ (1− ωc) (p

c)ηc c+ (1− ωi)
¡
pi
¢ηi k̄

h
1− 1−δ

μz+μΨ

i
Υ

,

and (1.62) and (1.63) have been used. Here,

d =
μG(ω̄)Rkpk0 k̄

πμz+
.

This expression can be solved for c. Adjust r̄k until (1.66) is satisfied. Adjust ϕ until the

trade balance, (1.68) is satisfied.

We now provide some technical observations on the computations surrounding (2.4) and

(2.12) and conditions (i)-(iii) above. We first develop straightforward expressions for com-

puting

G(ω̄) =

Z ω̄

0

ωdF (ω), Γ (ω̄) = ω̄ [1− F (ω̄)] +G(ω̄),

and their derivatives for a given value of ω̄. Consider G (ω̄) first. Let x = log (ω) , so thatZ ω̄

0

ωdF (ω) =

Z log ω̄

−∞
exf (x) dx,

where f is the Normal density function. Writing this explicitly:Z ω̄

0

ωdF (ω) =

Z log ω̄

−∞
exf (x) dx

=
1

σx
√
2π

Z log ω̄

−∞
ex exp

−(x−Ex)2

2σ2x dx,

where σ2x is the variance of x. Now, Eω = 1 implies Ex = − (1/2)σ2x, so thatZ ω̄

0

ωdF (ω) =
1

σx
√
2π

Z log ω̄

−∞
ex exp

−(x+1
2σ

2
x)

2

2σ2x dx

=
1

σx
√
2π

Z log ω̄

−∞
exp

x2σ2x−(x+1
2σ

2
x)

2

2σ2x dx

=
1

σx
√
2π

Z log ω̄

−∞
exp

−(x− 12σ2x)
2

2σ2x dx.
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Now, make the change of variable,

v =
x− 1

2
σ2x

σx
=

x+ 1
2
σ2x

σx
− σx

v̄ =
log (ω̄) + 1

2
σ2x

σx
− σx

dv =
1

σx
dx

so that Z ω̄

0

ωdF (ω) =
1

σx
√
2π

Z log(ω̄)+1
2σ

2
x

σx
−σx

−∞
exp

−v2
2 σxdv

=
1√
2π

Z log(ω̄)+1
2σ

2
x

σx
−σx

−∞
exp

−v2
2 dv,

or,

G(ω̄) = prob

∙
v <

log (ω̄) + 1
2
σ2x

σx
− σx

¸
,

for a standard normal variable, v. The expression on the right of the equality can be evaluated

using the cdf of a standard normal distribution. Similarly, ω̄ [1− F (ω̄)] can be evaluated

using the cdf of a log normal distribution, with log mean −σ2x/2 and log standard deviation,
σx. Both these cdf’s are available as part of standard computer packages.

By Leibniz’s rule, G0(ω̄) = ω̄F 0(ω̄), where F 0 is the pdf of a log normal. This pdf is

available in standard computer packages. Regarding the derivative of Γ, note that

Γ0(ω̄) = 1− F (ω̄)− ω̄F 0(ω̄) +G0(ω̄)

= 1− F (ω̄),

which again is evaluated using the cdf of a log normal. We find the value of σx that ensures

F (ω̄) equals some calibrated value by trying different values of σx and using a lognormal

cdf to evaluate F (ω̄) .

We also require
Rk

R
[Γ (ω̄)− μG (ω̄)] = 1− n

pk0 k̄
,

where

Γ (ω̄) = ω̄ [1− F (ω̄)] +G (ω̄) ,

so that

Γ (ω̄)− μG (ω̄) = ω̄ [1− F (ω̄)] + (1− μ)G (ω̄) .
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To obtain the derivative, F 0 (ω̄) , note

F (ω̄) =

Z ω̄

0

dF (ω) =
1

σx
√
2π

Z log ω̄

−∞
exp

−(x+1
2σ

2
x)

2

2σ2x dx.

We make a change of variable similar to the one above:

v =
x+ 1

2
σ2x

σx

v̄ =
log (ω̄) + 1

2
σ2x

σx

dv =
1

σx
dx

so that

F (ω̄) =

Z ω̄

0

dF (ω) =
1√
2π

Z log(ω̄)+1
2σ

2
x

σx

−∞
exp

−v2
2 dv

= prob

∙
v <

log (ω̄) + 1
2
σ2x

σx

¸
Differentiate with respect to ω̄ :

F 0 (ω) =
1

ω̄σx

1√
2π
exp

−
log(ω̄)+1

2σ
2
x

σx

2

2

=
1

ω̄σx
Standard Normal pdf

µ
log (ω̄) + 1

2
σ2x

σx

¶
,

where the first equality uses Leibniz’s rule.

3. Introducing Unemployment into the Model

This section replaces the model of the labor market in our benchmark model with the

search and matching framework of Mortensen and Pissarides (1994) and, more recently, Hall

(2005a,b,c) and Shimer (2005a,b). We integrate the framework into our specific framework

- which includes capital and monetary factors - following the version of the Gertler, Sala

and Trigari (2006) (GST) strategy implemented in Christiano, Ilut, Motto, and Rostagno

(2007). A key feature of the GST model is that there are wage-setting frictions, but they

do have a direct impact on on-going worker employer relations. In this sense, the setup is

not vulnerable to the Barro (1977) critique of sticky wages. The model is also attractive

because of the richness of its labor market implications: the model differentiates between

hours worked and the quantity of people employment, it has unemployment and vacancies.
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The labor market in our alternative labor market model is a slightly modified version

of the GST model. GST assume wage-setting frictions of the Calvo type, while we instead

work with Taylor-type frictions. In addition, we adopt a slightly different representation of

the production sector in order to maximize comparability with our benchmark model. In

what follows, we first provide an overview and after that we present the detailed decision

problems of agents in the labor market.

3.1. Sketch of the Model

As in the discussion of section 1.2, we adopt the Dixit-Stiglitz specification of homogeneous

goods production. A representative, competitive retail firm aggregates differentiated inter-

mediate goods into a homogeneous good. Intermediate goods are supplied by monopolists,

who hire labor and capital services in competitive factor markets. The intermediate good

firms are assumed to be subject to the same Calvo price setting frictions in the benchmark

model.

In the benchmark model, the homogeneous labor services supplied to the competitive

labor market by labor retailers (contractors) who combine the labor services supplied to

them by households who monopolistically supply specialized labor services (see section 1.2).

The modified model dispenses with the specialized labor services abstraction. Labor services

are instead supplied to the homogeneous labor market by ‘employment agencies’. The change

leaves the equilibrium conditions associated with the production of the homogeneous good

unaffected.3

Each employment agency retains a large number of workers. At the beginning of the

period a fraction, ρ, of workers is randomly selected to separate from the firm and go into

unemployment.4 Also, a number of new workers arrive from unemployment in proportion to

the number of vacancies posted by the agency in the previous period. After separation and

new arrivals occur, the nominal wage rate is set.

The nominal wage paid to an individual worker is determined by Nash bargaining, which

occurs once every N periods. Each employment agency is permanently allocated to one

of N different cohorts. Cohorts are differentiated according to the period in which they

renegotiate their wage. Since there is an equal number of agencies in each cohort, 1/N of

the agencies bargain in each period. The wage in agencies that do not bargain in the current

period is updated from the previous period according to the same rule used in our simple

3An alternative (perhaps more natural) formulation would be for the intermediate good firms to do their
own employment search. We instead separate the task of finding workers from production of intermediate
goods in order to avoid adding a state variable to the intermediate good firm, which would complicate the
solution of their price-setting problem.

4We thus specify that the job separation rate is constant. This is consistent with the findings reported
in Hall (2005b,c) and Shimer (2005a,b), who report that the job separation rate is relatively acyclical.
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monetary model.

Once a wage rate is determined - whether by Nash bargaining or not - we assume that

each matched worker-firm pair finds it optimal to proceed with the relationship in that

period. In our calculations, we verify that this assumption is correct, by confirming that the

wage rate in each worker-agency relationship lies inside the bargaining set associated with

that relationship.

Next, the intensity of labor effort is determined according to a particular efficiency crite-

rion. To explain this, we discuss the implications of increased intensity for the worker and for

the employment agency. The utility function of the household in the present labor market

model is a modified version of (1.25):

Et

∞X
l=0

βl−t{ζct+l log(Ct+l − bCt+l−1)− ζht+lAL

ς1+σLt+l

1 + σL
Lt+l}, γ, ω > 0, (3.1)

where Lt is the fraction of members of the household that are working and ς t is the inten-

sity with with each worker works. As in GST, we follow the family household construct of

Merz (1995) in supposing that each household has a large number of workers. Although the

individual worker’s labor market experience - whether employed or unemployed - is deter-

mined in part by idiosyncratic shocks, the household has sufficiently many workers that the

total fraction of workers employed, Lt, as well as the fractions allocated among the differ-

ent cohorts, lit, i = 0, ..., N − 1, is the same for each household. We suppose that all the
household’s workers are supplied inelastically to the labor market (i.e., labor force participa-

tion is constant). Each worker passes randomly from employment with a particular agency

to unemployment and back to employment according to exogenous probabilities described

below.

The household’s currency receipts arising from the labor market are:

(1− Lt)P
c
t b

uz+t +
N−1X
i=0

W i
t l
i
tςt (3.2)

where W i
t is the nominal wage rate earned by workers in cohort i = 0, ..., N − 1. The index,

i, indicates the number of periods in the past when bargaining occurred most recently.

Note that we implicitly assume that labor intensity is the same in each employment agency,

regardless of cohort. This is explained below. The presence of the term involving bu indicates

the assumption that unemployed workers receive a payment of buz+t final consumption goods.

The unemployment benefits are financed by lump sum taxes.

Let the price of labor services, Wt, denote the marginal gain to the employment agency

that occurs when an individual worker raises labor intensity by one unit. Because the

employment agency is competitive in the supply of labor services, Wt is taken as given and
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is the same for all agencies, regardless of which cohort it is in. Labor intensity equates the

worker’s marginal cost to the agency’s marginal benefit:

Wt = ζhtALς
σL
t

1

υt
. (3.3)

To understand the expression on the right of the equality, note that the marginal cost, in

utility terms, to an individual worker who increases labor intensity by one unit is ζhtALς
σL
t .

This is converted to currency units by dividing by the multiplier, υt, on the household’s

nominal budget constraint.

Labor intensity is the same for all cohorts because none of the variables in (3.3) is indexed

by cohort. When the wage rate is determined by Nash bargaining, it is taken into account

that labor intensity is determined according to (3.3).

Finally, the employment agency in the ith cohort determines how many employees it will

have in period t+ 1 by choosing vacancies, vit. The vacancy posting costs associated with vit
are:

κz+t
2

µ
Qι

tv
i
t

lit

¶2
lit,

units of the domestic homogeneous good. Here, lit denotes the number of employees in the

ith cohort and κz+t /2 is a cost parameter which is assumed to grow at the same rate as the

overall economic growth rate. Also, Qt is the probability that a posted vacancy is filled. The

functional form of our cost function nests GT and GST when ι = 1.With this paramerization

the cost function is in terms of the number of people hired, not the number of vacancies per

se. We interpret this as reflecting that the GT and GST specifications emphasize internal

costs (such as training and other) of adjusting the work force, and not search costs. In

models used in the search literature (see, e.g., Shimer (AER)), vacancy posting costs are

independent of Qt, i.e., ι = 0. We also plan to investigate this latter case. We suspect that

the model implies less amplification in response to expansionary shock in the case, ι = 0. In

a boom, Qt can be expected to fall, so that with ι = 1, costs of posting vacancies decrease

in the GT specification.

3.2. Model Details

An employment agency in the ith cohort which does not renegotiate its wage in period t sets

the period t wage, Wi,t, as in (1.41):

Wi,t = π̃w,tμz+Wi−1,t−1, π̃w,t ≡
¡
πct−1

¢κw (π̄ct)(1−κw) , (3.4)

for i = 1, ..., N − 1 (note that an agency that was in the ith cohort in period t was in cohort

i − 1 in period t − 1). After wages are set, employment agencies in cohort i supply labor
services, litς t, into competitive labor markets. In addition, they post vacancies to attract new

workers in the next period.
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3.2.1. The Agency Problem

To understand how agencies bargain and how they make their employment decisions, it is

useful to consider F (l0t , ωt) , the value function of the representative employment agency in

the cohort that negotiates its wage in the current period. The arguments of F are the agency’s

workforce after beginning-of-period separations and new arrivals, l0t , and an arbitrary value

for the nominal wage rate, ωt. We are thus interested in the firm’s problem after the wage

rate has been set, when vacancy decisions remain to be made. To simplify notation, we

leave out arguments of F that correspond to economy-wide variables. We find it convenient

to adopt a change of variables. We suppose that the firm chooses a particular monotone

transform of vacancy postings, which we denote by ṽit :

ṽit ≡
Qι
tv

i
t

lit
.

The agency’s hiring rate is related to ṽit by:

χit = Q1−ι
t ṽit. (3.5)

In this notation, the agency’s objective is to solve:

F
¡
l0t , ωt

¢
=

N−1X
j=0

βjEt
υt+j
υt

max
ṽjt+j

"
(Wt+j − Γt,jωt) ς t+j − Pt+j

κz+t+j
2

¡
ṽit
¢2#

ljt+j (3.6)

+βNEt
υt+N
υt

F
³
l0t+N , W̃t+N

´
,

where ς t is assumed to satisfy (3.3). Here,

Γt,j =

½
π̃w,t+j · · · π̃w,t+1μjz+ , j > 0

1 j = 0
. (3.7)

Also, W̃t+N denotes the Nash bargaining wage rate that will be negotiated when the agency

next has an opportunity to do so. At time t, the agency takes W̃t+N as given. The law of

motion of an agency’s work force is:

li+1t+1 =
¡
χit + ρ

¢
lit, (3.8)

for i = 0, 1, ..., N − 1, with the understanding here and throughout that i = N is to be

interpreted as i = 0. Expression (3.8) is deterministic, reflecting the assumption that the

agency employs a large number of workers.

The firm chooses vacancies to solve the problem in (3.6). It is easy to verify:

F
¡
l0t , ωt

¢
= J (ωt) l

0
t , (3.9)
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where J (ωt) is not a function of l0t . The function, J (ωt) , is the surplus that a firm bargaining

in the current period enjoys from a match with an individual worker, when the current wage

is ωt. Let

J (ωt) = max
{vjt+j}N−1j=0

{(Wt − ωt) ςt − Ptz
+
t

κ

2

¡
ṽ0t
¢2

+β
υt+1
υt

h
(Wt+1 − Γt,1ωt) ς t+1 − Pt+1z

+
t+1

κ

2

¡
ṽ1t+1

¢2i ¡
ṽ0tQ

1−ι
t + ρ

¢
+β2

υt+2
υt

h
(Wt+2 − Γt,2ωt) ς t+2 − Pt+2z

+
t+2

κ

2

¡
ṽ2t+2

¢2i ¡
ṽ0tQ

1−ι
t + ρ

¢ ¡
ṽ1t+1Q

1−ι
t+1 + ρ

¢
+...+

+βN
υt+N
υt

J
³
W̃t+N

´ ¡
ṽ0tQ

1−ι
t + ρ

¢ ¡
ṽ1t+1Q

1−ι
t + ρ

¢
· · ·
¡
ṽN−1t+N−1Q

1−ι
t+N−1 + ρ

¢
}

Differentiate with respect to ṽ0t and multiply the result by
¡
ṽ0tQ

1−ι
t + ρ

¢
/Q1−ι

t , to obtain:

0 = −Ptz
+
t κṽ

0
t

¡
ṽ0tQ

1−ι
t + ρ

¢
/Q1−ι

t

+β
υt+1
υt

h
(Wt+1 − Γt,1ωt) ςt+1 − Pt+1z

+
t+1

κ

2

¡
ṽ1t+1

¢2i ¡
ṽ0tQ

1−ι
t + ρ

¢
+β2

υt+2
υt

h
(Wt+2 − Γt,2ωt) ς t+2 − Pt+2z

+
t+2

κ

2

¡
ṽ2t+2

¢2i ¡
ṽ0tQ

1−ι
t + ρ

¢ ¡
ṽ1t+1Q

1−ι
t+1 + ρ

¢
+...+

+βN
υt+N
υt

J
³
W̃t+N

´ ¡
ṽ0tQ

1−ι
t + ρ

¢ ¡
ṽ1t+1Q

1−ι
t + ρ

¢
· · ·
¡
ṽN−1t+N−1Q

1−ι
t+N−1 + ρ

¢
}

= J (ωt)− (Wt − ωt) ς t + Ptz
+
t

κ

2

¡
ṽ0t
¢2 − Ptz

+
t κṽ

0
t

¡
ṽ0tQ

1−ι
t + ρ

¢
/Q1−ι

t

Since the latter expression must be zero, we conclude:

J (ωt) = (Wt − ωt) ς t − Ptz
+
t

κ

2

¡
ṽ0t
¢2
+ Ptz

+
t κṽ

0
t

¡
ṽ0tQ

1−ι
t + ρ

¢
/Q1−ι

t

= (Wt − ωt) ς t + Ptz
+
t

κ

2

¡
ṽ0t
¢2
+ Ptz

+
t κṽ

0
t

ρ

Q1−ι
t

Next, we obtain simple expressions for the first order conditions associated with the

vacancy decisions. Differentiate J with respect to ṽ1t+1 and then multiply the result by¡
ṽ1t+1Q

1−ι
t+1 + ρ

¢ 1

Q1−ι
t+1

to obtain:

0 = −βυt+1
υt

Pt+1z
+
t+1κṽ

1
t+1

¡
ṽ0tQ

1−ι
t + ρ

¢ ¡
ṽ1t+1Q

1−ι
t+1 + ρ

¢ 1

Q1−ι
t+1

+β2
υt+2
υt

h
(Wt+2 − Γt,2ωt) ς t+2 − Pt+2z

+
t+2

κ

2

¡
ṽ2t+2

¢2i ¡
ṽ0tQ

1−ι
t + ρ

¢ ¡
ṽ1t+1Q

1−ι
t+1 + ρ

¢
+...+

+βN
υt+N
υt

J
³
W̃t+N

´ ¡
ṽ0tQ

1−ι
t + ρ

¢ ¡
ṽ1t+1Q

1−ι
t + ρ

¢
· · ·
¡
ṽN−1t+N−1Q

1−ι
t+N−1 + ρ

¢
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Substituting this into the first order condition for v0t , we obtain:

Ptz
+
t κṽ

0
t

Q1−ι
t

= β
υt+1
υt

"
(Wt+1 − Γt,1ωt) ς t+1 + Pt+1z

+
t+1κ

Ã¡
ṽ1t+1

¢2
2

+
ṽ1t+1ρ

Q1−ι
t+1

!#
.

Differentiate J with respect to ṽ2t+2 and then multiply the result by¡
ṽ2t+2Q

1−ι
t+2 + ρ

¢ 1

Q1−ι
t+2

.

0 = −β2υt+2
υt

Pt+2z
+
t+2κṽ

2
t+2

¡
ṽ0tQ

1−ι
t + ρ

¢ ¡
ṽ1t+1Q

1−ι
t+1 + ρ

¢ ¡
ṽ2t+2Q

1−ι
t+2 + ρ

¢ 1

Q1−ι
t+2

+β3
υt+3
υt

h
(Wt+3 − Γt,3ωt) ς t+3 − Pt+3z

+
t+3

κ

2

¡
ṽ3t+3

¢2i ¡
ṽ0tQ

1−ι
t + ρ

¢ ¡
ṽ1t+1Q

1−ι
t+1 + ρ

¢ ¡
ṽ2t+2Q

1−ι
t+2 + ρ

¢
+...+

+βN
υt+N
υt

J
³
W̃t+N

´ ¡
ṽ0tQ

1−ι
t + ρ

¢ ¡
ṽ1t+1Q

1−ι
t + ρ

¢
· · ·
¡
ṽN−1t+N−1Q

1−ι
t+N−1 + ρ

¢
}

Using this to simplify the first order condition for ṽ1t+1, we obtain

Pt+1z
+
t+1κṽ

1
t+1

1

Q1−ι
t+1

= β
υt+2
υt+1

"
(Wt+2 − Γt,2ωt) ς t+2 + Pt+2z

+
t+2κ

Ã¡
ṽ2t+2

¢2
2

+
ṽ2t+2ρ

Q1−ι
t+2

!#
We continue in this way and derive,

Pt+jz
+
t+jκṽ

j
t+j

1

Q1−ι
t+j

= β
υt+j+1
υt+j

"
(Wt+j+1 − Γt,j+1ωt) ςt+j+1 + Pt+j+1z

+
t+j+1κ

Ã¡
ṽj+1t+j+1

¢2
2

+
ṽj+1t+j+1ρ

Q1−ι
t+j+1

!#
,

for j = 0, 1, ..., N − 2. Now consider the derivative of J with respect to ṽN−1t+N−1, after multi-

plication by ¡
ṽN−1t+N−1Q

1−ι
t+N−1 + ρ

¢ 1

Q1−ι
t+N−1

.

is,

0 = −βN−1υt+N−1
υt

Pt+N−1z
+
t+N−1κṽ

N−1
t+N−1

¡
ṽ0tQ

1−ι
t + ρ

¢ ¡
ṽ1t+1Q

1−ι
t+1 + ρ

¢
· · ·
¡
ṽN−2t+N−2Q

1−ι
t+N−2 + ρ

¢ ¡
ṽN−1t+N−1Q

1
t

+βN
υt+N
υt

J
³
W̃t+N

´ ¡
ṽ0tQ

1−ι
t + ρ

¢ ¡
ṽ1t+1Q

1−ι
t + ρ

¢
· · ·
¡
ṽN−1t+N−1Q

1−ι
t+N−1 + ρ

¢
}

or,

Pt+N−1z
+
t+N−1κṽ

N−1
t+N−1

1

Q1−ι
t+N−1

= β
υt+N
υt+N−1

J
³
W̃t+N

´
.

Making use of our expression for J , we obtain:

Pt+N−1z
+
t+N−1κṽ

N−1
t+N−1

1

Q1−ι
t+N−1

= β
υt+N
υt+N−1

"³
Wt+N − W̃t+N

´
ς t+N + Pt+Nz

+
t+Nκ

Ã¡
ṽ0t+N

¢2
2

+
ṽ0t+Nρ

Q1−ι
t+N

!#
.
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The above first order conditions apply over time to a group of agencies that bargain at

date t. We now express the first order conditions for a fixed date and different cohorts:

Ptz
+
t κṽ

j
t

1

Q1−ι
t

= β
υt+1
υt

"³
Wt+1 − Γt−j,j+1W̃t−j

´
ςt+1 + Pt+1z

+
t+1κ

Ã¡
ṽj+1t+1

¢2
2

+
ṽj+1t+1ρ

Q1−ι
t+1

!#
,

Divide both sides by Ptz
+
t and express the result in terms of scaled variables:

κṽjt
1

Q1−ι
t

= β
ψz+,t+1

ψz+,t

"
(w̄t+1 −Gt−j,j+1wt−jw̄t−j) ς t+1 + κ

Ã¡
ṽj+1t+1

¢2
2

+
ṽj+1t+1ρ

Q1−ι
t+1

!#
, j = 0, ..., N−2

(3.10)

where

Gt−i,i+1 =
π̃w,t+1 · · · π̃w,t−i+1
πt+1 · · · πt−i+1

µ
μz+

μz+,t−i+1

¶
· · ·
µ

μz+

μz+,t+1

¶
, i ≥ 0,

wt =
W̃t

Wt
, w̄t =

Wt

z+t Pt

.

Also,

Gt,j =

(
π̃w,t+j ···π̃w,t+1
πt+j ···πt+1

³
μz+

μz+,t+1

´
· · ·
³

μz+
μz+,t+j

´
j > 0

1 j = 0
. (3.11)

The scaled vacancy first order condition of agencies that are in the last period of their

contract is:

κṽN−1t

1

Q1−ι
t

= β
ψz+,t+1

ψz+,t

"
(w̄t+1 − wt+1w̄t+1) ς t+1 + κ

Ã¡
ṽ0t+1

¢2
2

+
ṽ0t+1ρ

Q1−ι
t+1

!#
. (3.12)

We require the derivative of J with respect to ωt. By the envelope condition, we can

ignore the impact of a change in ωt on the vacancy decisions and only be concerned with the

direct impact of ωt on J :

Jw,t = −ςt
−βυt+1

υt
Γt,1ςt+1

¡
χ0t + ρ

¢
−β2υt+2

υt
Γt,2ς t+2

¡
χ0t + ρ

¢ ¡
χ1t+1 + ρ

¢
−...− βN−1

υt+N−1
υt

Γt,N−1ς t+N−1
¡
χ0t + ρ

¢ ¡
χ1t+1 + ρ

¢
· · ·
¡
χN−2t+1 + ρ

¢
.

Let,

Ωt,j =

⎧⎪⎨⎪⎩
j−1Y
l=0

¡
χlt+l + ρ

¢
j > 0

1 j = 0

. (3.13)
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so that

Jw,t = −ςtΩt,0

−βυt+1
υt

Γt,1ςt+1Ωt,1

−β2υt+2
υt

Γt,2ςt+2Ωt,2

−...− βN−1
υt+N−1
υt

Γt,N−1ςt+N−1Ωt,N−1
¡
χ0t + ρ

¢ ¡
χ1t+1 + ρ

¢
· · ·
¡
χN−2t+1 + ρ

¢
= −

N−1X
j=0

βj
υt+j
υt

Γt,jΩt,jς t+j.

Then, in terms of scaled variables,

Jw,t = −
N−1X
j=0

βj
ψz+,t+j

ψz+,t

Gt,jΩt,jς t+j. (3.14)

Following is an expression for Jt evaluated at ωt = W̃t, in terms of scaled variables. Dividing

by Ptz
+
t :

Jz+,t =
J
³
W̃t

´
Ptz

+
t

=

³
Wt − W̃t

´
Ptz

+
t

ςt −
κ

2

¡
ṽ0t
¢2

+β
ψz+,t+1

ψz+,t

"
Wt+1 − Γt,1W̃t

Pt+1z
+
t+1

ς t+1 −
κ

2

¡
ṽ1t+1

¢2# ¡
χ0t + ρ

¢
+β2

ψz+,t+2

ψz+,t

"
Wt+2 − Γt,2W̃t

Pt+2z
+
t+2

ς t+2 −
κ

2

¡
ṽ2t+2

¢2# ¡
χ0t + ρ

¢ ¡
χ1t+1 + ρ

¢
+...+

+βN
ψz+,t+N

ψz+,t

Jz+,t+N
¡
χ0t + ρ

¢ ¡
χ1t+1 + ρ

¢
· · ·
¡
χN−1t+N−1 + ρ

¢
or,

Jz+,t =
N−1X
j=0

βj
ψz+,t+j

ψz+,t

h
(w̄t+j −Gt,jwtw̄t) ς t+j −

κ

2

¡
ṽjt+j

¢2i
Ωt,j. (3.15)

3.2.2. The Worker Problem

We now turn to the worker. The period t value of being a worker in an agency in cohort i

is V i
t :

V i
t = Γt−i,iW̃t−iςt − ζhtAL

ς1+σLt

(1 + σL) υt
+ βEt

υt+1
υt
[ρV i+1

t+1 + (1− ρ)Ut+1], (3.16)

for i = 0, 1, ..., N−1. Here, ρ is the probability of remaining with the firm in the next period
and Ut is the value of being unemployed in period t. The values, V i

t and Ut, pertain to the
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beginning of period t, after job separation and job finding has occurred. Scaling V i
t by Ptz

+
t ,

we obtain:

V i
z+,t = Gt−i,iwt−iw̄t−iς t−ζhtAL

ς1+σLt

(1 + σL)ψz+,t

+βEt

ψz+,t+1

ψz+,t

[ρV i+1
z+,t+1+(1− ρ)Uz+,t+1], (3.17)

for i = 0, 1, ..., N − 1, where

V i
t

Ptz
+
t

= V i
z+,t, Uz+,t+1 =

Uz+,t+1

Pt+1z
+
t+1

.

For workers employed by agencies in cohort i = 0, the value function is V 0 (ωt) , where ωt is

an arbitrary value for the current period wage rate,

V 0 (ωt) = ωtς t − ζhtAL
ς1+σLt

(1 + σL) υt
+ βEt

υt+1
υt
[ρV 1

t+1 + (1− ρ)Ut+1]. (3.18)

The notation makes the dependence of V 0 on ωt explicit to simplify the discussion of the

Nash bargaining problem below. Below, we require the derivative of V 0 (ωt) with respect to

ωt, evaluated at ωt = W̃t :

V 0
w (ωt) =

N−1X
j=0

(βρ)j Etςt+jΓt,j
υt+j
υt

=
N−1X
j=0

(βρ)j Etςt+jΓt,j
ψz+,t+jPtz

+
t

ψz+,tPt+jz
+
t+j

=
N−1X
j=0

(βρ)j Etςt+jGt,j

ψz+,t+j

ψz+,t

. (3.19)

The value of being an unemployed worker is Ut :

Ut = Ptz
+
t b

u + βEt
υt+1
υt
[ftV

x
t+1 + (1− ft)Ut+1], (3.20)

where ft is the probability that an unemployed worker will land a job in period t+ 1. Also,

V x
t is the period t+ 1 value function of a worker who finds a job, before is is known which

agency it is found with:

V x
z+,t =

N−1X
i=0

χit−1l
i
t−1

mt−1
V i+1
z+t , (3.21)

where the total number of new matches is given by:

mt =
N−1X
j=0

χjt l
j
t . (3.22)
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In (??),
χit−1l

i
t−1

mt−1

is the probability of finding a job in an agency which was of type i in the previous period,

conditional on being a worker who finds a job in t.

Scaling (3.20),

Uz+,t = bu + βEt

ψz+,t+1

ψz+,t

[ftV
x
z+,t+1 + (1− ft)Uz+,t+1] (3.23)

Total job matches must also satisfy the following matching function:

mt = σm (1− Lt)
σ v1−σt , (3.24)

where

Lt =
N−1X
j=0

ljt , (3.25)

and vt, total vacancies, are related to vacancies posted by the individual cohorts as follows:

vt =
1

Qι
t

N−1X
j=0

ṽitl
i
t, . (3.26)

Total hours worked is:

Ht = ς t

N−1X
j=0

ljt . (3.27)

The job finding rate is:

ft =
mt

1− Lt
. (3.28)

The probability of filling a vacancy is:

Qt =
mt

vt
. (3.29)

The i = 0 cohort of agencies in period t solve the following Nash bargaining problem:

max
ωt

¡
V 0 (ωt)− Ut

¢η
J (ωt)

(1−η) , (3.30)

where V 0 (ωt)−Ut is the match surplus enjoyed by a worker. We denote the wage that solves

this problem by W̃t. Note that W̃t takes into account that intensity will be chosen according

to (3.3) as well as (3.4). The first order condition associated with this problem is:

ηVw,tJz+,t + (1− η) [Vz+,t − Uz+,t] Jw,t = 0, (3.31)

after division by z+t Pt.
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We assume that the posting of vacancies uses the homogeneous domestic good. We leave

the production technology equation, (1.45), unchanged, and we alter the resource constraint:

yt = gt + cdt + idt (3.32)

+(Rx
t )

ηx
h
ωx (p

m,x
t )1−ηx + (1− ωx)

i ηx
1−ηx (1− ωx) (p

x
t )
−ηf y∗t +

κ

2

N−1X
j=0

¡
ṽjt
¢2

3.3. Solving the Model

The endogenous variables in this system are (apart from (??)):

Gt,j,Ωt,j, ṽ
j
t , l

j
t , χ

j
t , V

j
z+,t, Vw,t, Jz+,t, V

x
z+,t, ψz+,t, πt, Uz+,t, Jw,t, Lt,mt, ςt, Ht, vt, ft, wt, w̄t, Qt

These are 16 variables not indexed by j, plus 6 variables indexed by j. Equations (3.5),

(3.10), (3.12), (3.17), (3.8), (3.11), (3.13) are the ones associated with the variables indexed

by j. Not counting the resource constraint, (??), there are 14 additional equations, (3.14),
(3.15), (3.25), (3.24), (3.19), (3.21), (3.22), (3.23), (3.27), (3.28), (3.3), (3.31), (3.29) and

(3.26). Note that three of the variables above, ψz+,t, πt, w̄t, appear in other equations in the

benchmark model. So, we really have 13 new variables here. Given that we have 14 equations,

there is an extra one relative to these new variables. However, one of the equations in the

benchmark model (i.e., wage Phillips curve in the case of the linearized dynamics, and the

labor intratemporal Euler equation in the case of the steady state) is lost. So, it appears

that we have an equal number of equations and unknowns.

3.3.1. Steady State

Our strategy for computing the steady state begins with the calculations in the steady state

discussion in section 1.7.1. In particular, we proceed with the calculations up to equation

(1.60). At this point, we are in an ‘outer loop’ in which ϕ is fixed. We fix a value for

ψz+ . This, together with w̄ (which we have in hand at this point) allows us to solve the

steady state variables in the search and matching part of the model. We now describe those

calculations.

In steady state each agency’s employment is constant, so that li+1t+1 = lit, which implies

χi + ρ = 1, or χi = χi = 1− ρ. We have 14 variables

Q, ṽ, ς, Jz+ , w, Jw, Vz+ , Uz+ , Vw,m, l, v,H, f
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in the following 14 equations:

(1)m = Nl (1− ρ)

(2) f =
m

1−Nl

(3) w̄ = ζhALς
σL

1

ψz+

(4)H = ςNl

(5) Jw = −ς 1− βN

1− β

(6)Vw = ς
1− (βρ)N

1− βρ

(7) 1− ρ = Q1−ιṽ

(8) v =
Nl

Qι
ṽ

(9)m = σm (1−Nl)σ v1−σ

(10)κṽ
1

Q1−ι = β

"
(w̄ − ww̄) ς + κ

Ã
(ṽ)2

2
+

ṽρ

Q

!#

(11)Jz+ =
h
(w̄ − ww̄) ς − κ

2
(ṽ)2

i 1− βN

1− β

(12)Vz+ = ww̄ς − ζhAL
ς1+σL

(1 + σL)ψz+
+ β[ρVz+ + (1− ρ)Uz+ ]

(13)Uz+ = bu + β[fVz+ + (1− f)Uz+ ]

(14) 0 = ηVwJz+ + (1− η) [Vz+ − Uz+] Jw

We solve for a value of σm that rationalizes a calibrated value of the unemployment rate,

1−Nl. The objects, ψz+ and w̄ are treated as known. Solve (1) for m. Solve (2) for f. Solve

(3) for ς. Solve (4) for H. Solve (5) for Jw. Solve (6) for Vw. Fix ṽ > 0..Solve (7) for Q.

Solve (8) for v. Solve (9) for σm. Solve (10) for w. Solve (11) for Jz+ . Solve (12) and (13) for

Uz+ and Vz+. Adjust ṽ until (14) is satisfied. Equations (12) and (13) are solved as follows.

Substitute out for Uz+in (12) from (13) to obtain an expression that can be solved for (3.34).

After solving (12) for Vz+, use the result to solve for Uz+ in (3.35):

Vz+ [1− ρβ] = ww̄ς − ζhAL
ς1+σL

(1 + σL)ψz+
+

β (1− ρ) bu

1− β (1− f)
+

β (1− ρ) βfVz+

1− β (1− f)
(3.33)

Vz+

∙
1− ρβ − β (1− ρ) βf

1− β (1− f)

¸
= ww̄ς − ζhAL

ς1+σL

(1 + σL)ψz+
+

β (1− ρ) bu

1− β (1− f)
(3.34)

Uz+ =
bu

1− β (1− f)
+

βfVz+

1− β (1− f)
(3.35)

The case, ι = 1 is the one considered by GT and GST. The formulas above do not work

in the limiting case, ι → 1, so we derive the appropriate modifications here. In this case,
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steps 1-6 above are unchanged. However, (7) cannot be used to determine Q. Instead, (7)

can be used to determine

ṽ = 1− ρ

so there is no need for a nonlinear search to determine a value for ṽ. Note that the first

order condition associated with the Nash bargaining problem, in conjunction with (11)-(13)

defines a single non-linear equation in the unknown, w. To see this, substitute out for Vw
and Jwfrom (5) and (6), to obtain:

0 = ηVw
h
(w̄ − ww̄) ς − κ

2
(ṽ)2

i 1− βN

1− β
+ (1− η) [Vz+ − Uz+ ]Jw.

Then, recall from (3.34) and (3.35) that Uz+ and Vz+ are functions of w alone. With w

determined, solve for Q by rearranging (10):

Q =
κṽρ

κṽ
β
− w̄ (1− w) ς − κ (ṽ)

2

2

.

Then, v can be determined from (8) and, finally, σm can be computed from (9). This

completes the determination of the labor market equations for the case, ι = 1. Note how σ

in the matching function plays only a residual role in these calculations. The value of this

parameter has no impact on any of the variables in the search and matching part of the

model. This is consistent with out earlier discussion in which we conclude that with ι = 1

the firm has hiring costs only in the sense of having costs after a match has been made. It

does not have any costs associated specifically with search and matching.

Next, we use equation (1.66) to solve for c :

c =
1

ψz+

ζc (μz+ − βb)

pc (1 + τ c) (μz+ − b)
.

The steady state resource constraint is (1.64), adjusted to include resources used in posting

vacancies.

1− ηg − (Rx)ηx
£
ωx (p

m,x)1−ηx + (1− ωx)
¤ ηx
1−ηx (1− ωx) (p

x)−ηf ηy

λd
H�

µ
k/H

μz+μΨ

¶α

= (1− ωc) (p
c)ηc c+ (1− ωi)

¡
pi
¢ηi k̄

H

h
1− 1−δ

μz+μΨ

i
Υ

H +
κ

2
Nṽ2.

Here, ηy = y∗/y.We adjust ψz+ until the above resource equation is satisfied. As before, we

adjust ϕ until the trade balance, (1.68), is satisfied.
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4. Mixing Monthly and Quarterly Data

Suppose the model is specified monthly and at the monthly level, the state evolution equation

is

ξt = Fξt−1 +But,

where t denotes months. Note:

ξt = F 3ξt−3 +But + FBut−1 + F 2But−2,

and note that But + FBut−1 + F 2But−2 is iid across quarters. Consider⎛⎝ ξt
ξt−1
ξt−2

⎞⎠ =

⎡⎣ F 3 0 0
F 2 0 0
F 0 0

⎤⎦⎛⎝ ξt−3
ξt−4
ξt−5

⎞⎠+
⎡⎣ B FB F 2B
0 B FB
0 0 B

⎤⎦⎛⎝ ut
ut−1
ut−2

⎞⎠ .

Now define

ξ̃t =

⎛⎝ ξt
ξt−1
ξt−2

⎞⎠ , F̃ =

⎡⎣ F 3 0 0
F 2 0 0
F 0 0

⎤⎦ , B̃ =
⎡⎣ B FB F 2B
0 B FB
0 0 B

⎤⎦ , ũt =
⎛⎝ ut

ut−1
ut−2

⎞⎠ .

Note that

ξ̃t = F̃ ξ̃t−3 + B̃ũt,

and note that this is a first order AR process for ξ̃t, ξ̃t+3, ξ̃t+6, ..., and that ũt is iid in quarterly

data. This is the quarterly representation of the state evolution equation. In reality, if

you observed quarterly observations on ξ̃t, you would actually be observing the monthly

observations on the underlying data, the ξt’s. This is because the quarterly observations on

ξ̃t contain quarterly observations on the first month’s data, quarterly observations on the

second month’s data, etc.

Of course, we don’t actually observe a quarterly record on ξ̃t. For some variables, like

gdp, we only observe the average of the quarterly observations. But, this fact can be ac-

commodated by suitably choosing the parameters of the observer equation. Consider the

following simple example. Suppose

ξt =

⎛⎝ yt
πt
ht

⎞⎠ ,

where yt is (log) monthly GDP, πt is monthly inflation and ht denotes monthly hours worked.

Now suppose we change our interpretation of the t index, so that it refers to quarters.

Then, yt means GDP in the third month of quarter t, yt−1/3 denotes GDP in the 2nd and so

on. Our quarterly time series representation for the data is

ξ̃t = F̃ ξ̃t−1 + B̃ũt,
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where ũt is iid for integer values of t, with

B̃E (ũtũ
0
t) B̃

0

= B̃

⎡⎣ V 0 0
0 V 0
0 0 V

⎤⎦ B̃0.

Suppose we observe:

Yt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

GDPt

monthly inflationt
monthly inflationt−1/3
monthly inflationt−2/3

hourst
hourst−1/3
hourst−2/3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where GDPt denotes quarterly GDP, which we interpret as yt + yt−1/3 + yt−2/3, monthly

inflation and monthly hours worked. The observer equation has the following form:

Yt = Hξ̃t + wt,

where wt is a vector of measurement error with variance-covariance matrix R (R = 0 is

possible). The matrix, H, has the following form:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

5. Ramsey-Optimal Policy

We find the Ramsey-optimal allocations for our economy using the computer code and strat-

egy used in Levin, Lopez-Salido, (2004) and Levin, Onatski, Williams and Williams (2005).

For completeness, we briefly describe this strategy below. Let xt denote a set of N endoge-

nous variables in a dynamic economic model. Let the private sector equilibrium conditions

be represented by the following N − 1 conditions:X
st+1|st

μ (st+1)

μ (st)
f
¡
x
¡
st
¢
, x
¡
st+1

¢
, st, st+1

¢
= 0,

for all t and all st. Here, st denotes a history:

st = (s0, s1, ..., st) ,
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and st denotes the time t realization of uncertainty, which can take on n possible values:

st ∈ {s (1) , ..., s (n)}
μ
¡
st
¢
= prob[st],

so that μ (st+1) /μ (st) is the probability of history st+1, conditional on st.

Suppose preferences over x (st) are follows:

∞X
t=0

βt
X
st

μ
¡
st
¢
U
¡
x
¡
st
¢
, st
¢
. (5.1)

In our simple monetary model, U is given by (??). The Ramsey problem is to maximize

preferences by choice of x (st) for each st, subject to (??). We express the Ramsey problem
in Lagrangian form as follows:

max
∞X
t=0

βt
X
st

μ
¡
st
¢⎧⎪⎨⎪⎩U

¡
x
¡
st
¢
, st
¢
+ λ

¡
st
¢| {z }

1×N−1

X
st+1|st

μ (st+1)

μ (st)
f
¡
x
¡
st
¢
, x
¡
st+1

¢
, st, st+1

¢| {z }
N−1×1

⎫⎪⎬⎪⎭ ,

where λ (st) is the row vector of multipliers on the equilibrium conditions. Consider a par-

ticular history, st = (st−1, st) , with t > 0. The first order necessary condition for optimality

of x (st) is

U1
¡
x
¡
st
¢
, st
¢| {z }

1×N

+ λ
¡
st
¢| {z }

1×N−1

X
st+1|st

μ (st+1)

μ (st)
f1
¡
x
¡
st
¢
, x
¡
st+1

¢
, st, st+1

¢| {z }
N−1×N

(5.2)

+β−1λ
¡
st−1

¢| {z }
1×N−1

f2
¡
x
¡
st−1

¢
, x
¡
st
¢
, st−1, st

¢| {z }
N−1×N

= 0|{z}
1×N

after dividing by μ (st)βt. In less notationally-intensive notation,

U1 (xt, st) + λtEtf1 (xt, xt+1, st, st+1) + β−1λt−1f2 (xt−1, xt, st−1, st) = 0.

The first order necessary condition for optimality at t = 0 is (5.2) with λ−1 ≡ 0. The

time-consistency problem occurs when the multipliers associated with the Ramsey problem

are non-zero after date 0. Following the Ramsey equilibrium in such a future t requires

respecting λt−1. However, if λt−1 6= 0, then utility can be increased at t by restarting the

Ramsey problem with λt−1 = 0. When we study Ramsey allocations, we assume there is a

commitment technology that prevents the authorities from acting on this incentive to deviate

from the Ramsey plan.

The equations that characterize the Ramsey equilibrium are the N − 1 equations, (??),
and the N equations (5.2). The unknowns are the N elements of x and the N−1 multipliers,
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λ. The equations, (5.2) are computed symbolically using the software prepared for Levin,

Lopez-Salido, (2004) and Levin, Onatski, Williams and Williams (2005). The resulting

system of equations is then solved by perturbation around steady state using the software

package, Dynare.

To apply the perturbation method, we require the nonstochastic steady state value of x.

We compute this in two steps. First, fix one of the elements of x, say the inflation rate, π.

We then solve for the remaining N − 1 elements of x by imposing the N − 1 equations, (??).
In the next step we compute the N − 1 vector of multipliers using the steady state version
of (5.2):

U1 + λ
£
f1 + β−1f2

¤
= 0,

where a function without an explicit argument is understood to mean it is evaluated in

steady state.5 Write

Y = U 0
1

X =
£
f1 + β−1f2

¤0
β = λ0,

so that Y is an N × 1 column vector, X is an N × (N − 1) matrix and β is an (N − 1)× 1
column vector. Compute β and u as

β = (X 0X)
−1

X 0Y

u = Y −Xβ.

Note that this regression will not in general fit perfectly, because there areN−1 ‘explanatory
variables’ and N elements of Y to ‘explain’. We vary the value of π until max |ui| = 0. This
completes the discussion of the calculation of the steady state and of the algorithm for

computing Ramsey allocation

6. Questions that Could be Addressed with Model

• Analysis of the currency crisis

• Evaluating predictions of the model based on Taylor versus Fisher contracts.
5This step is potentially very cumbersome, but has been made relatively easy by the software produced for

Levin, Lopez-Salido, (2004) and Levin, Onatski, Williams and Williams (2005). This sofware endogenously
writes the code necessary to solve for the multipliers.
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