Institutions and Rules in Monetary Policy

'The Expectations Trap Hypothesis', with Chris Gust, Federal Reserve Bank of Chicago *Economic Perspectives*, 2000

'Inflation and Monetary Policy in the 20th Century,' with Terry Fitzgerald, Federal Reserve Bank of Chicago Economic Perspectives, 2003.

'Money Growth Monitoring and the Taylor Rule', with Massimo Rostagno, NBER Working Paper 8539.

1

Objective:

- That a Taylor Rule Might Work Well in Practice Does Not Seem Surprising.
- Illustrate What Can Go Wrong with the Taylor Rule.
- Explore Hypothesis of Clarida-Gali-Gertler (QJE), That Take-Off In Inflation in 1970s Reflected Bad Taylor Rule.
- Consider the 'Institutional' Perspective on Inflation.

Two Representations of CGG Hypothesis

• Both Cases: Estimated Policy Rule For the 1970s (Clarida-Gali-Gertler):

$$R_t = \rho R_{t-1} + (1 - \rho) R_t^*.$$

$$R_t^* = \text{constant} + \alpha E_t \log(\pi_{t+1}) + \gamma y_t, \ \pi_{t+1} = \frac{P_{t+1}}{P_t}, \\ \rho = 0.75, \ \alpha = 0.80, \ \gamma = 0.44.$$

- With $\alpha < 1$, Multiple Equilibria in New Keynesian and Limited Participation Model.
- New Keynesian (CGG) Model.
- Limited Participation Model.

Mechanism By Which Taylor Rule with Small α Can Make Inflation Vulnerable to Expectations

• Clarida-Gali-Gertler Version of New Keynesian Model

a. People Expect High Inflation, π^e rises.

b. If $\alpha < 1, R - \pi^e$ Falls, Stimulating Aggregate Demand

- c. Output Rises.
- d. The Rise in Output is Associated With Increased Marginal Costs, Leading to a Rise In Prices
- e. This Justifies Original Rise in Expected Inflation.

CASH FLOW PATTERN IN LIMITED PARTICIPATION MODEL

- Limited Participation Model, With Working Capital Channel a. People Expect High Inflation, π^e rises.
 - b. If $\alpha < 1, R \pi^e$ Falls, Leading People to Put Less Money Into Interest-Bearing Deposits.
 - c. Firms Who Need Money to Finance Production, Still Need it.
 - d. With Supply of Deposits Reduced, and Demand From Firms Unchanged, there is Pressure for R to Rise a Lot.
 - e. To Prevent Huge Rise in R (since $\alpha < 1$), Central Bank Must Inject Reserves into Banks.
 - f. The Injection of Reserves Leads to a Rise in Inflation, Justifying Original Rise in Inflation Expectations.
 - g. The Higher R Forces a Slowdown in the Economy.

Households in Limited Participation Model:

Preferences:

$$E_0 \sum_{t=0}^{\infty} \beta^t U\left(C_t, L_t, H_t\right),$$
$$U(C, L, H) = \log \left[C - \psi_0 \left(L + H\right)^{(1+\psi)} / \left(1 + \psi\right)\right],$$

Cash Constraint in Goods Market:

$$Q_t + W_t L_t \ge P_t \left(C_t + I_t \right),$$

Capital Evolution Equation:

$$K_{t+1} = I_t + (1 - 0.02)K_t.$$

Household Asset Evolution Equation:

$$M_{t+1} = Q_t + W_t L_t - P_t (C_t + I_t) + R_t (M_t - Q_t + X_t) + D_t + r_t K_t$$

Household Adjustment Costs for Changing Q_t :

$$H\left(\frac{Q_t}{Q_{t-1}}\right) = d\left\{\exp\left[c\left(\frac{Q_t}{Q_{t-1}} - 1 - x\right)\right] + \exp\left[-c\left(\frac{Q_t}{Q_{t-1}} - 1 - x\right)\right] - 2\right\}$$

Steady State Properties:

$$H = H' = 0, \ H'' = 2c^2 d > 0$$

Firms:

First Order Conditions:

$$\frac{W_t R_t}{P_t} = \frac{f_{L,t}}{\mu}, \ \frac{r_t}{P_t} = \frac{f_{K,t}}{\mu}, \ \mu = 1.4.$$

Technology:

$$f(K_t, L_t, v_t) = exp(v_t)K_t^{0.36}L_t^{0.64},$$

where

$$v_t = 0.95 v_{t-1} + \varepsilon_{v,t},$$

Financial Sector

Loan Demand Equals Supply:

$$W_t L_t = M_t - Q_t + X_t$$

Figure 1 Response of Model to an Exogenous Monetary Policy Shock

% dev from SS: deviation from unshocked nonstochastic steady state growth path expressed in percent terms APR: annualized percentage rate

Figure 1 Response to a Technology Shock In Two Different Models

% dev from SS: deviation from unshocked nonstochastic steady state growth path expressed in percent terms.

APR: annualized percentage rate.

Does a High Value for α Guarantee Stability?

• In the Models Analyzed Above, 'Yes'.

...

- Easy to Find Models in Which Answer is 'No'.
- Need Extra Protection, In Case the World is Better Captured by A Model in Which the Answer is No.
- One Piece of Protection: Monitor the Money Growth Rate.

•••

• Example:

- Euler Equations and Resource Constraint:

$$u_{c,t} = \beta u_{c,t+1} \frac{R_t}{\pi_{t+1}^e} \text{ Intertemporal Euler}$$
$$\frac{-u_{l,t}}{u_{c,t}} = \frac{W_t}{P_t} \text{ Intratemporal Euler}$$
$$\frac{R_t W_t}{P_t} = \text{ Marginal Product of Labor} = 1$$

 $c_t = l_t$ Resource Constraint

$$c_t = \frac{M_{t+1}}{P_t}$$
 Binding Cash In Advance Constraint

- With
$$u = \log(c_t) + \gamma \log(1 - l_t)$$
:
$$\frac{c_{t+1}}{c_t} = \beta \frac{R_t}{\pi_{t+1}^e}$$

$$\frac{c_t}{\gamma l_t} = \frac{\pi_{t+1}^e}{R_t}$$

– Suppose $\alpha>1$

- * Expected Inflation, π^e , Jumps
- * R_t Jumps By More ($\alpha > 1$), so R_t/π_{t+1}^e Jumps.
- * High $R_t/\pi^e_{t+1} \Rightarrow \text{jump in } c_{t+1}/c_t$

Intertemporal Euler Equation Satisfied

* Higher $R \Rightarrow$ Lower l_t (Consistent with c_{t+1}/c_t High).

Intratemporal Euler Equation Satisfied

* Higher π^e Accommodated with Higher Money Growth, Consistent with Cash in Advance Constraint

(Money Demand in Model).

...

• A more formal analysis of the example: - Core equations:

$$\frac{l_{t+1}}{l_t} = \beta \frac{R_t}{\pi_{t+1}^e}$$
$$\frac{\gamma l_t}{1 - l_t} = \frac{1}{R_t}$$
$$\pi_{t+1}^e = R_t^{\frac{1}{\alpha_{\pi}}} \text{ (Taylor rule)}$$
$$\Rightarrow l_{t+1} = \beta l_t \left[\frac{1 - l_t}{\gamma l_t}\right]^{1 - \frac{1}{\alpha_{\pi}}}$$

– Other equations:

$$R_{t} = (1 - l_{t})/(\gamma l_{t})$$

$$\pi_{t+1}^{e} = R_{t}^{\frac{1}{\alpha_{\pi}}}$$

$$\frac{l_{t+1}}{l_{t}} = \frac{\frac{M_{t+2}}{P_{t+1}}}{\frac{M_{t+1}}{P_{t}}} = \frac{M_{t+2}}{M_{t+1}} \frac{1}{\pi_{t+1}} = \frac{g_{t+1}}{\pi_{t+1}}$$

$$\Rightarrow g_{t+1} = \pi_{t+1} \frac{l_{t+1}}{l_{t}}$$

•••

• Clarida-Gali-Gertler Model with Supply-Side Channel

$$y_t = -(R_t - \pi_{t+1}) + y_{t+1}$$
 IS curve

 $\pi_t = 0.085y_t + \overbrace{\gamma R_t}^{\text{supply-side channel}} + 0.99\pi_{t+1}$ Phillips curve

$$R_t = \underbrace{1.5}^{\text{aggressive Taylor rule}} \pi_{t+1}^e$$
 Taylor rule

- Could reflect:
 - working capital requirements
 - other financial frictions
 - evidence in favor: VAR 'price puzzle', direct evidence of extensive short-term firm borrowing.
- Results:
 - $\gamma = 0$ and $\tau = 1.5$ steady state is determinate (like in CGG!)
 - for $\gamma \ge 0.01$, steady state is indeterminate.

• Performance of CGG Hypothesis Depends on the Assumptions You Make About the Macro-Economy

...

- Performance of CGG Hypothesis Depends on the Assumptions You Make About the Macro-Economy
 - If You Assume the New Keynesian Model that CGG Adopt, Hypothesis is Rejected Because the Model Implies there was a Boom in the 1970s.

- Performance of CGG Hypothesis Depends on the Assumptions You Make About the Macro-Economy
 - If You Assume the New Keynesian Model that CGG Adopt, Hypothesis is Rejected Because the Model Implies there was a Boom in the 1970s.
 - If You Assume a Limited Participation Model, the Hypothesis Passes Because the Model Implies that there Was Economic Weakness in the 1970s.

- Performance of CGG Hypothesis Depends on the Assumptions You Make About the Macro-Economy
- In The Context of the Models Analyzed Here, the Right Fix is to Adopt a Taylor Rule with a Big Coefficient on Inflation. But, there are Other Models in Which this Does Not Work.

- Performance of CGG Hypothesis Depends on the Assumptions You Make About the Macro-Economy
- In The Context of the Models Analyzed Here, the Right Fix is to Adopt a Taylor Rule with a Big Coefficient on Inflation. But, there are Other Models in Which this Does Not Work.
 - For Added Protection, Include 'Escape Clause': Switch to a Money Growth Rule in Case Money Growth (or Some Other Variable, Like Inflation) Behaves Erratically.
 - Note: this is a Version of the ECB's 'Two Pillar Strategy'

...

- Performance of CGG Hypothesis Depends on the Assumptions You Make About the Macro-Economy
- In The Context of the Models Analyzed Here, the Right Fix is to Adopt a Taylor Rule with a Big Coefficient on Inflation. But, there are Other Models in Which this Does Not Work.
- But, Was it Really Ignorance of the right Value of α That Prevented Arthur Burns From Stopping Inflation?

- Performance of CGG Hypothesis Depends on the Assumptions You Make About the Macro-Economy
- In The Context of the Models Analyzed Here, the Right Fix is to Adopt a Taylor Rule with a Big Coefficient on Inflation. But, there are Other Models in Which this Does Not Work.
- But, Was it Really Ignorance of the right Value of α That Prevented Arthur Burns From Stopping Inflation?
- Or, Was it the Institutional Environment, Which Forced Him to Focus on the Heavy Cost of Fighting Inflation, Which Snared Him in a Bad Expectations Trap?

Barro-Gordon, Kydland-Prescott Model

• Private Economy:

$$y - y^N = \alpha \left(\pi - \pi^e \right), \alpha > 0.$$

• Preferences of Monetary Authority:

$$\frac{1}{2} \left[(y - ky^N)^2 + \gamma \pi^2 \right], \ \gamma > 0, \ k < 1.$$

- -k < 1: economy is inefficient, creating incentive for monetary authority to 'step on the gas'
- Explicit, Micro-founded version based on Lucas-Stokey cash-credit good model:
 - Albanesi, Chari, Christiano, 'Expectation Traps and Monetary Policy,' *Review of Economic Studies*.
 - Chari, Christiano and Eichenbaum, 'Expectation Traps and Discretion,' *Journal of Economic Theory*, 1998.
 - 'k < 0' due to the presence of monopoly power in the economy (or, could be distortionary taxes).

•••

- Problems with expectation trap hypothesis:
 - When articulated using Barro-Gordon model:
 - * implies that to move to low inflation, must have institutional reform
 - * US did not have institutional reform in 1980s.
 - When articulated using Albanesi-Chari-Christiano-Eichenbaum:
 - * Model allows transition from high to low inflation without institutional reform, but...
 - * Transition from high inflation to low inflation associated with unambiguous welfare gain, no losses along the way like in the 1980s.

- Proponents of Expectation Traps hypothesis argue that the key to keeping inflation low is:
 - * Institutional reform that would make sustained difficult actions by monetary authority to keep inflation down credible
 - * In US convert the 'dual mandate' (inflation and unemployment) into a single, inflation mandate.
 - * ECB is an example of institutional reform.

...