Monetary Policy and Asset Price Fluctuations

Lawrence Christiano,
based on work with
Cosmin Ilut, Roberto Motto, Massimo Rostagno
Background

• General consensus among policy makers (particularly in Washington).
 – Sharp, inefficient increases in asset prices are possible (especially those not based on fundamentals, e.g., ‘bubbles’).
 – But, not advisable for real-time policymakers to try to identify and ‘pop’ bubbles.

• In any case, markets are stabilized by inflation targeting strategy implemented with the following rule:

\[R_t = \text{const} + \alpha \pi \pi^e_{t+1}, \quad \alpha \pi > 1 \]

• Idea:
 – Bubble-based booms associated with high demand for goods.
 – Such booms stimulate inflation.
 – Interest rate inflation targeting rule automatically tightens monetary policy at that time.
Empirical Findings

• Asset price booms are almost always associated with:
 – *low* inflation

• Suggests that if anything,
 – Interest rate inflation targeting rule *destabilizes* asset prices

• Credit growth is almost always high during asset price booms.
 – Consistent with ‘BIS’ recommendation that monetary policy should respond to credit growth.

• (See Adalid-Detken, Bordo-Wheelock)
Model Findings

• New Keynesian models:

 – Offer a coherent interpretation of the apparently anomalous inflation/stock market boom observations.

 – Under that interpretation, inflation targeting adds fuel to an asset market boom.

 – A monetary policy that tightens in response to high credit growth or strong stock market helps.
Evidence from US data

- 19th and early 20th century
- Great Depression and later
• Now, let’s turn to the more recent US data....
Quantifying the Previous Results

<table>
<thead>
<tr>
<th>Periods</th>
<th>1803-1914</th>
<th>1919Q1-2010Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPI</td>
<td>Credit</td>
</tr>
<tr>
<td>Boom</td>
<td>-2.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Other (non-Boom, non-war)</td>
<td>0.7</td>
<td>4.0</td>
</tr>
<tr>
<td>_periods</td>
<td>CPI</td>
<td>Credit</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Boom</td>
<td>-2.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Other</td>
<td>0.7</td>
<td>4.0</td>
</tr>
<tr>
<td>Non-civil war</td>
<td>-0.7</td>
<td>6.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>_periods</th>
<th>CPI</th>
<th>Credit</th>
<th>GNP</th>
<th>Stock Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boom</td>
<td>1.8</td>
<td>5.3</td>
<td>4.6</td>
<td>13.8</td>
</tr>
<tr>
<td>Other</td>
<td>4.0</td>
<td>2.3</td>
<td>0.2</td>
<td>-11.7</td>
</tr>
<tr>
<td>Whole period</td>
<td>2.7</td>
<td>4.0</td>
<td>2.7</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Stock Market Booms

A. Non-boom, non-civil war, 1803-1914

<table>
<thead>
<tr>
<th>period</th>
<th>panic</th>
<th>trough-peak</th>
<th>CPI</th>
<th>Credit</th>
<th>GDP</th>
<th>Stock Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1819</td>
<td>1814-1818</td>
<td>-8.0</td>
<td>na</td>
<td>1.8</td>
<td>9.8</td>
<td>1818</td>
</tr>
<tr>
<td>1825</td>
<td>1822-1824</td>
<td>-9.8</td>
<td>21.9</td>
<td>3.7</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>1837</td>
<td>1827-1835</td>
<td>-1.5</td>
<td>14.6</td>
<td>4.9</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>1857</td>
<td>1847-1852</td>
<td>-1.3</td>
<td>7.6</td>
<td>5.4</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>1873</td>
<td>1865-1872</td>
<td>-4.1</td>
<td>11.9</td>
<td>4.8</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>1877-1881</td>
<td>-0.6</td>
<td>3.5</td>
<td>7.5</td>
<td>16.0</td>
<td></td>
</tr>
<tr>
<td>1890</td>
<td>1884-1886</td>
<td>-2.2</td>
<td>4.9</td>
<td>5.9</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>1893</td>
<td>1890-1892</td>
<td>0.0</td>
<td>5.6</td>
<td>4.5</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>1896</td>
<td>1893-1895</td>
<td>-3.3</td>
<td>4.2</td>
<td>4.4</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>1903</td>
<td>1896-1902</td>
<td>0.3</td>
<td>8.6</td>
<td>5.3</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>1907</td>
<td>1903-1905</td>
<td>0.0</td>
<td>7.6</td>
<td>2.3</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td>1910</td>
<td>1907-1909</td>
<td>-1.8</td>
<td>4.0</td>
<td>0.6</td>
<td>25.1</td>
<td></td>
</tr>
</tbody>
</table>

B. Boom episodes

<table>
<thead>
<tr>
<th>period</th>
<th>trough-peak</th>
<th>CPI</th>
<th>Credit</th>
<th>GNP</th>
<th>Stock Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1921Q3-1929Q3</td>
<td>-0.2</td>
<td>5.7</td>
<td>5.9</td>
<td>19.3</td>
<td></td>
</tr>
<tr>
<td>1932Q2-1937Q2</td>
<td>0.6</td>
<td>-2.1</td>
<td>6.5</td>
<td>24.2</td>
<td></td>
</tr>
<tr>
<td>1949Q2-1968Q2</td>
<td>2.0</td>
<td>6.3</td>
<td>4.2</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>1982Q3-1987Q3</td>
<td>3.2</td>
<td>7.5</td>
<td>4.3</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td>1994Q2-2000Q2</td>
<td>2.5</td>
<td>6.1</td>
<td>3.9</td>
<td>16.4</td>
<td></td>
</tr>
<tr>
<td>2003Q1-2007Q1</td>
<td>3.0</td>
<td>4.6</td>
<td>3.0</td>
<td>10.1</td>
<td></td>
</tr>
</tbody>
</table>
Summary

- Stock market booms are periods of low inflation.

- Strong credit growth.
Simple Sticky Price Model Analysis

- Households:
 \[E_t \sum_{l=0}^{\infty} \beta^l \left[\log(C_{t+l}) - \frac{L_{t+l}^{1+\sigma_L}}{1 + \sigma_L} \right]. \]
 \[P_tC_t + B_{t+1} \leq W_tL_t + R_{t-1}B_t + T_t, \]

- Firms:
 - usual Dixit-Stiglitz environment
 \[Y_t = \left[\int_0^1 Y_{lt} \frac{1}{\lambda_f} dl \right]^{\lambda_f}. \]
 \[Y_{it} = \exp(a_t)L_{it}. \]
 - Calvo sticky prices
 \[P_{i,t} = \begin{cases}
 P_{i,t-1} & \text{with probability } \xi_p \\
 \tilde{P}_t & \text{with probability } 1 - \xi_p
 \end{cases} \]
Closing the Model

• Policy rule:

\[\log \left(\frac{R_t}{R} \right) = a_\pi E_t \log(\pi_{t+1}), \]

• Resource constraint:

\[C_t \leq Y_t \]

• Technology:

\[a_t = \rho a_{t-1} + u_t, \quad u_t \equiv \xi_t^0 + \xi_{t-1}^1, \quad u_t, \xi_t^0, \xi_t^1 \text{ iid} \]
Efficient (Ramsey) Equilibrium

• No price-setting frictions, no monopoly power.

• Consumption and employment determined by equating marginal cost and marginal benefit of working:

\[\psi_L L_t^{\sigma_L} C_t = \exp(a_t) \]

\[\to \psi_L L_t^{\sigma_{L+1}} = 1, \quad L_t \text{ constant} = \left(\frac{1}{\psi_L} \right)^{\frac{1}{\sigma_{L+1}}} \]

\[\to C_t = \exp(a_t) \left(\frac{1}{\psi_L} \right)^{\frac{1}{\sigma_{L+1}}} \]

‘natural rate of interest’ :
\[1 + R_t^* = \frac{1}{\beta E_t(C_t/C_{t+1})} = \frac{1}{\beta E_t \exp(a_t - a_{t+1})} \]
Log-linearized Equilibrium in Deviation from Efficient

- Phillips curve:
 \[\hat{\pi}_t = \gamma \hat{x}_t + \beta E_t \hat{\pi}_{t+1}. \]

 \[\gamma = \frac{(1 - \xi_p)(1 - \beta \xi_p)}{\xi_p}(1 + \sigma_L), \]

- Policy:
 \[\hat{R}_t = a_\pi E_t \hat{\pi}_{t+1}. \]

- IS curve:
 \[\hat{x}_t = -E_t \left[\hat{R}_t - \hat{\pi}_{t+1} - R_t^* \right] + E_t \hat{x}_{t+1} \]

 \[\text{persistence, } \rho, \text{ typically estimated to be high, so} \]

 \[\text{‘normal shocks’, } \xi_t^0, \text{ have little impact on natural rate.} \]

- Natural rate:
 \[R_t^* = E_t a_{t+1} - a_t = (\rho - 1) a_t + \xi_t^1. \]
• Solution:

\[\hat{\pi}_t = \eta_\pi a_t + \phi_\pi \xi_t^1 \]
\[\hat{x}_t = \eta_x a_t + \phi_x \xi_t^1, \]

• Easy to show: \(\eta_x, \eta_\pi < 0 \)
 – With stationary shock, output under-reacts technology shock, and inflation drops.
Pure Sticky Wages

• Drop price-setting frictions.
 – Intermediate good firms set price to marginal cost.
 – Price Phillips curve is dropped.

• We assume EHL-style wage frictions.
 – Labor hired by firms

\[L_t = \left[\int_0^1 (h_{t,j}) \frac{1}{\lambda_w} dj \right]^{\lambda_w}, 1 \leq \lambda_w. \]

 – Demand for j-type labor:

\[h_{t,j} = \left(\frac{W_t}{W_{t,j}} \right)^{\frac{\lambda_w}{1-\lambda_w}} L_t. \]
Pure Sticky Wages, cnt’d...

- Labor is supplied by households
- Assume representative household has each type, j, of labor.
- Adopt ‘indivisible labor’ assumption as in Gali (and Rogerson, Hansen, Mulligan and Krusell, et al)
- Individual worker draws work aversion, $l \in [0, 1]$ and

 $$
 \text{utility} = \begin{cases}
 \log(C_t) - l^{\sigma_L} & \text{if employed} \\
 \log(C_t) & \text{if not employed}
 \end{cases}
 $$
Pure Sticky Wages, cnt’d....

• Demand for labor, $h_{t,j}$, is determined by the wage rate, $W_{t,j}$, and this is set outside the household by a monopoly union.

• The household sends workers with the least work aversion into the market, and keeps the rest at home

\[
\begin{align*}
\text{workers}: & 0 \leq l \leq h_{t,j} \\
\text{non-workers}: & l > h_{t,j}
\end{align*}
\]

• All workers receive the same level of consumption (insurance in household).
Pure Sticky Wages, cnt’d....

• Integral of utility of type j workers

\[
\int_0^{h_{t,j}} [\log(C_t) - l^{\sigma_L}] f(l) \, dl + \int_{h_{t,j}}^1 \log(C_t) f(l) \, dl
\]

\[
= \log(C_t) - \frac{h_{t,j}^{1+\sigma_L}}{1 + \sigma_L}
\]

• Integrating over all types, j, to get household utility:

\[
\log(C_t) - \int_0^1 \frac{h_{t,j}^{1+\sigma_L}}{1 + \sigma_L} \, dj.
\]
Pure Sticky Wages, cnt’d....

• Problem of the representative household

\[
\log(C_t) - \int_0^1 \frac{h_{t,j}^{1+\sigma_L}}{1 + \sigma_L} dj.
\]

\[
P_tC_t + B_{t+1} \leq B_tR_{t-1} + \int_0^1 W_{t,j} h_{t,j} dj + \text{Transfers and profits}_t.
\]

• Since wages are given, the only problem is a consumption/saving problem.
Slight Detour on Frisch...

• When $h_{t,j}$ is quantity of labor supplied by a representative worker of type j, then $1/\sigma_L$ is that worker’s Frisch (i.e., holding income effects constant) labor supply elasticity.

• We suppose that $h_{t,j}$ is a quantity of workers, and that people can either work, or not.

• The object, $1/\sigma_L$, now has nothing to do with Frisch elasticity.
 – It summarizes the degree of heterogeneity in the population in terms of ‘aversion’ to work.
Pure Sticky Wages, cnt’d....

- Type j-type monopoly union.

- Calvo-type wage setting friction:

$$W_{t,j} = \begin{cases} W_{t-1,j} & \text{with probability } \xi_w \\ \tilde{W}_t & \text{with probability } 1 - \xi_w \end{cases}$$

- Problem at t:

$$E_t \sum_{i=0}^{\infty} (\beta \xi_w)^i \nu_{t+i} \left[\tilde{W}_t h_{t+i}^t - \frac{(h_{t+i}^t)^{1+\sigma_L}}{(1 + \sigma_L)\nu_{t+i}} \right].$$

Employment in $t+i$ of type j labor whose wage was most recently set in t.
Pure Sticky Wages, cnt’d....

• Wage setting gives rise to the following wage-Phillips curve:

\[\widehat{\pi}_{w,t} = \gamma_w \left[(1 + \sigma_L)\widehat{x}_t - \widehat{W}_t \right] + \beta \widehat{\pi}_{w,t+1} \]

\[\gamma_w = \frac{(1 - \xi_w)(1 - \beta \xi_w)}{\xi_w \left(1 + \sigma_L \frac{\lambda_w}{\lambda_{w-1}} \right)} \]

Household MRS, cost of supplying an extra worker.

• Wage inflation high when cost of working is high, compared with wage. Makes sense!
Pure Sticky Wages, cnt’d....

• The object, \bar{w}_t, is

$$\bar{w}_t = \frac{W_t}{P_t \exp(a_t)}$$

= marginal cost divided by price=a constant when there are no price frictions

$\rightarrow \hat{\bar{w}}_t = 0$

• Also

$$\frac{\bar{w}_t}{\bar{w}_{t-1}} = \frac{W_t}{P_t \exp(a_t)} \frac{P_{t-1} \exp(a_{t-1})}{W_{t-1}} = \frac{\pi_{w,t}}{\pi_t} \exp[-(a_t - a_{t-1})] = 1$$

$\rightarrow \hat{\pi}_{w,t} = \hat{\pi}_t + a_t - a_{t-1}$
Pure Sticky Wages, cnt’d….

• Pure sticky wage Phillips curve:

\[
\hat{\pi}_{w,t} = \gamma_w (1 + \sigma_L)\hat{x}_t + \beta\hat{\pi}_{w,t+1}, \quad \gamma_w = \frac{(1 - \xi_w)(1 - \beta\xi_w)}{\xi_w \left(1 + \sigma_L \frac{\lambda_w}{\lambda_w-1}\right)}
\]

• As in firm-specific capital literature, curve is flatter the faster cost rises with quantity supplied (here, labor) and the flatter is demand curve.
Log-linearized Sticky Wage Equilibrium

Phillips curve: \(\hat{\pi}_{w,t} = \gamma_w (1 + \sigma_L) \hat{x}_t + \beta \hat{\pi}_{w,t+1} \)

\[
\text{IS: } \hat{x}_t = - \left[\hat{R}_t - E_t (\hat{\pi}_{t+1} + R^*_t) \right] + E_t \hat{x}_{t+1}
\]

\[
\text{Policy: } \hat{R}_t = a_{\pi} \overbrace{E_t \hat{\pi}_{t+1}}^{=E_t \pi_{w,t+1}}
\]

Definition/Flexible prices: \(\hat{\pi}_{w,t} = \hat{\pi}_t + a_t - a_{t-1} \)

Natural Rate of Interest: \(R^*_t = E_t a_{t+1} - a_t = (\rho - 1) a_t + \xi^1_t \)

• First three equations: 3 equations in 3 unknowns.
• Solution:

\[
\hat{\pi}_{w,t} = \eta^w_{\pi} a_t + \phi^w_{\pi} \xi_t^{1}, \\
\hat{x}_t = \eta^w_{x} a_t + \phi^w_{x} \xi_t^{1}
\]

• Easy to show (as in sticky price):

\[
\eta^w_{\pi}, \eta^w_{x} < 0
\]

• Also (as in sticky price):

\[
\phi^w_{\pi} < 0, \phi^w_{x} > 0 \text{ possible}
\]
Simulation of Pure Sticky Price and Pure Sticky Wage Model

- Parameter values:

\[\beta = 1.03^{-1/4}, \quad a_{\pi} = 1.50, \quad \xi_w = \xi_p = 0.75, \quad \rho = 0.9, \quad \sigma_L = 1. \]

| Table 1: Period t Response to News, ξ^t_1, that Period $t + 1$ Technology Innovation Will be 1% Higher |
|---|------------------|------------------|
| change in inflation (quarterly, basis points) | pure sticky prices | pure sticky wages |
| change in hours worked (percent deviation from steady state) | 1.1 | 0.98 |
| change in nominal interest rate (quarterly, basis points) | -29 | -175 |
| change in efficient rate of interest (quarterly, basis points) | 100 | 100 |

- Monetary policy goes in exactly the wrong way!
- In the case of sticky price model, inflation forecast targeting rule actually destabilizes inflation!
result, \(\frac{d\pi}{d\xi_t} < 0, \frac{dx}{d\xi_t} > 0 \), more robust under sticky wages
Summary and Outstanding Questions

• Found that optimism about the future can cause a boom today and low inflation.
 – Optimism need not be ex post correct, or even rational ex ante.

• Effects are due to bad monetary policy.
 – Boom in employment and output reflects loose monetary policy
 – Under Ramsey-optimal policy inflation and output do no respond to signals about the future.

• How does this work in empirically estimated models?

• Are there ways to improve things by adding variables to Taylor rule, in particular, credit?

• Need more complicated model, that cannot be solved analytically.
Next

- Estimate a medium-sized DSGE model with signals
 - ‘Normal’ technology shock:
 \[a_t = \rho_a a_{t-1} + \varepsilon_t \]
 - Shock considered here (J Davis):
 \[
 a_t = \rho_a a_{t-1} + \varepsilon_t + \xi_{t-1} + \xi_{t-2} + \xi_{t-3} + \xi_{t-4} + \xi_{t-5} + \xi_{t-6} + \xi_{t-7} + \xi_{t-8}
 \]
- Evaluate importance of \(\xi_{t-i} \) for business cycles
- Explore implications of \(\xi_{t-i} \) for monetary policy.
Outline

• Estimation
 – Results
 – ‘Excessive optimism’ and 2000 recession

• Implications for monetary policy
 – Monetary policy causes economy to over-react to signals....inadvertently creates ‘boom-bust’

• Explore alternative formulations of monetary policy that have better welfare properties
Model

• Features (version of CEE)
 – Habit persistence in preferences
 – Investment adjustment costs in change of investment
 – Variable capital utilization
 – Calvo sticky (EHL) wages and prices

• Non-optimizers: \(P_{it} = P_{i,t-1}, \ W_{j,t} = \mu_z W_{j,t-1} \)

• Probability of not adjusting prices/wages: \(\xi_p, \xi_w \)
Observables and Shocks

• Six observables:
 – output growth,
 – inflation,
 – hours worked,
 – investment growth,
 – consumption growth,
 – T-bill rate.

• Sample Period: 1984Q1 to 2007Q1
\[E_t^j \sum_{l=0}^{\infty} \left(\frac{1}{1.03^{1/4}} \right)^l \zeta_{c,t+l} \left\{ \log(C_{t+l} - bC_{t+l-1}) - \psi_L \frac{l^2_{t+l,j}}{2} \right\} \]

\[K_{t+1} = (1 - 0.02)K_t + (1 - S) \left(\zeta_{I,t} \frac{I_t}{I_{t-1}} \right)I_t \]

\[Y_t = \left[\int_0^1 \lambda_{f,t} \, \frac{1}{Y_{jt}} \, dj \right]^{\lambda_{f,t}} Y_{j,t} = \left[z_t \exp \left(\frac{a_t}{\lambda_{f,t}} \right) L_{j,t} \right]^{1-a} (u_tK_{j,t})^\alpha, z_t = \exp(\mu z t) \]

\[\log \left(\frac{R_t}{R} \right) = \tilde{\rho} \log \left(\frac{R_{t-1}}{R} \right) + (1 - \tilde{\rho}) \frac{1}{R} \left[a_\pi \bar{\pi} \log \left(\frac{\bar{\pi}_{t+1}}{\bar{\pi}} \right) + \frac{a_y}{4} \log \left(\frac{y_t}{y} \right) \right] + \varepsilon_t^M \]
Shock representations

markup

\[
\log\left(\frac{\lambda_{f,t}}{\lambda_f}\right) = \rho_{\lambda_f} \log\left(\frac{\lambda_{f,t-1}}{\lambda_f}\right) + \varepsilon_{\lambda_{f,t}}
\]

discount rate

\[
\log(\zeta_{c,t}) = \rho_{\zeta_c} \log(\zeta_{c,t-1}) + \varepsilon_{\zeta_{c,t}}
\]

efficiency of investment

\[
\log(\zeta_{I,t}) = \rho_{\zeta_I} \log(\zeta_{I,t-1}) + \varepsilon_{\zeta_{I,t}}
\]

technology

\[
a_t = \rho_a a_{t-1} + \varepsilon_t + \xi_{t-1}^1 + \xi_{t-2}^2 + \xi_{t-3}^3 + \xi_{t-4}^4 + \xi_{t-5}^5 + \xi_{t-6}^6 + \xi_{t-7}^7 + \xi_{t-8}^8
\]

monetary policy

\[
\varepsilon_t^M = \rho_M \varepsilon_{t-1}^M + \varepsilon_{u,t}.
\]
Parameters: priors and posteriors

<table>
<thead>
<tr>
<th>Parameters</th>
<th>prior mean</th>
<th>mode</th>
<th>s.d.</th>
<th>t-stat</th>
<th>prior distribution</th>
<th>prior standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_{ξ_i}</td>
<td>0.9</td>
<td>0.88</td>
<td>0.038</td>
<td>23.3</td>
<td>beta</td>
<td>0.05</td>
</tr>
<tr>
<td>ρ_{ξ_c}</td>
<td>0.9</td>
<td>0.93</td>
<td>0.018</td>
<td>50.4</td>
<td>beta</td>
<td>0.05</td>
</tr>
<tr>
<td>ρ_{λ_f}</td>
<td>0.9</td>
<td>0.45</td>
<td>0.077</td>
<td>5.9</td>
<td>beta</td>
<td>0.05</td>
</tr>
<tr>
<td>ρ_{ε^M}</td>
<td>0.1</td>
<td>0.13</td>
<td>0.083</td>
<td>1.6</td>
<td>beta</td>
<td>0.05</td>
</tr>
<tr>
<td>ρ_a</td>
<td>0.95</td>
<td>0.96</td>
<td>0.015</td>
<td>64.9</td>
<td>beta</td>
<td>0.02</td>
</tr>
<tr>
<td>Economic Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ε_w</td>
<td>0.8</td>
<td>0.80</td>
<td>0.016</td>
<td>49.7</td>
<td>beta</td>
<td>0.03</td>
</tr>
<tr>
<td>ε''</td>
<td>4.0</td>
<td>4.14</td>
<td>0.285</td>
<td>14.5</td>
<td>inverse gamma</td>
<td>0.10</td>
</tr>
<tr>
<td>ε_p</td>
<td>0.5</td>
<td>0.68</td>
<td>0.047</td>
<td>14.6</td>
<td>beta</td>
<td>0.03</td>
</tr>
<tr>
<td>a_{π}</td>
<td>1.5</td>
<td>1.67</td>
<td>0.082</td>
<td>20.3</td>
<td>beta</td>
<td>0.10</td>
</tr>
<tr>
<td>$\tilde{\rho}$</td>
<td>0.8</td>
<td>0.76</td>
<td>0.049</td>
<td>15.6</td>
<td>beta</td>
<td>0.04</td>
</tr>
<tr>
<td>σ_a</td>
<td>2.0</td>
<td>1.15</td>
<td>0.428</td>
<td>2.7</td>
<td>inverse gamma</td>
<td>2.00</td>
</tr>
<tr>
<td>a_y</td>
<td>0.5</td>
<td>0.22</td>
<td>0.054</td>
<td>4.1</td>
<td>beta</td>
<td>0.1</td>
</tr>
<tr>
<td>parameter</td>
<td>prior mean</td>
<td>mode</td>
<td>standard deviation</td>
<td>t-statistic</td>
<td>prior</td>
<td>prior standard deviation</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------</td>
<td>--------------------</td>
<td>-------------</td>
<td>-------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>σ_ε</td>
<td>0.003</td>
<td>0.0014</td>
<td>0.0004</td>
<td>3.8</td>
<td>invg</td>
<td>0.0050</td>
</tr>
<tr>
<td>$\sigma_{\xi c}$</td>
<td>0.002</td>
<td>0.0165</td>
<td>0.0027</td>
<td>6.2</td>
<td>invg</td>
<td>0.0050</td>
</tr>
<tr>
<td>$\sigma_{\xi i}$</td>
<td>0.002</td>
<td>0.0293</td>
<td>0.0087</td>
<td>3.4</td>
<td>invg</td>
<td>0.0050</td>
</tr>
<tr>
<td>$\sigma_{\xi M}$</td>
<td>0.001</td>
<td>0.0008</td>
<td>0.0002</td>
<td>3.6</td>
<td>invg</td>
<td>0.0005</td>
</tr>
<tr>
<td>$\sigma_{\lambda f}$</td>
<td>0.050</td>
<td>0.0258</td>
<td>0.0022</td>
<td>11.5</td>
<td>invg</td>
<td>0.0080</td>
</tr>
<tr>
<td>$\sigma_{\xi 1}$</td>
<td>0.003</td>
<td>0.0010</td>
<td>0.0002</td>
<td>5.0</td>
<td>invg</td>
<td>0.0050</td>
</tr>
<tr>
<td>$\sigma_{\xi 2}$</td>
<td>0.003</td>
<td>0.0010</td>
<td>0.0002</td>
<td>5.2</td>
<td>invg</td>
<td>0.0050</td>
</tr>
<tr>
<td>$\sigma_{\xi 3}$</td>
<td>0.003</td>
<td>0.0010</td>
<td>0.0002</td>
<td>5.0</td>
<td>invg</td>
<td>0.0050</td>
</tr>
<tr>
<td>$\sigma_{\xi 4}$</td>
<td>0.003</td>
<td>0.0010</td>
<td>0.0002</td>
<td>5.3</td>
<td>invg</td>
<td>0.0050</td>
</tr>
<tr>
<td>$\sigma_{\xi 5}$</td>
<td>0.003</td>
<td>0.0010</td>
<td>0.0002</td>
<td>5.2</td>
<td>invg</td>
<td>0.0050</td>
</tr>
<tr>
<td>$\sigma_{\xi 6}$</td>
<td>0.003</td>
<td>0.0011</td>
<td>0.0002</td>
<td>4.8</td>
<td>invg</td>
<td>0.0050</td>
</tr>
<tr>
<td>$\sigma_{\xi 7}$</td>
<td>0.003</td>
<td>0.0010</td>
<td>0.0002</td>
<td>5.0</td>
<td>invg</td>
<td>0.0050</td>
</tr>
<tr>
<td>$\sigma_{\xi 8}$</td>
<td>0.003</td>
<td>0.0012</td>
<td>0.0003</td>
<td>4.4</td>
<td>invg</td>
<td>0.0050</td>
</tr>
</tbody>
</table>
Variance decompositions

Percent Variance in Indicated Variable Due to Indicated Shock

<table>
<thead>
<tr>
<th>shock</th>
<th>Δ log c</th>
<th>Δ log I</th>
<th>Δ log Y</th>
<th>Δ log h</th>
<th>π</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>εₜ</td>
<td>7.0</td>
<td>2.3</td>
<td>6.2</td>
<td>5.5</td>
<td>7.0</td>
<td>7.1</td>
</tr>
<tr>
<td>λₕₜ</td>
<td>0.7</td>
<td>0.8</td>
<td>1.8</td>
<td>1.1</td>
<td>9.7</td>
<td>0.8</td>
</tr>
<tr>
<td>εₘₜ</td>
<td>2.7</td>
<td>1.5</td>
<td>3.8</td>
<td>0.5</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>ξ¹ₜ</td>
<td>4.0</td>
<td>1.3</td>
<td>3.8</td>
<td>3.2</td>
<td>3.9</td>
<td>4.1</td>
</tr>
<tr>
<td>ξ²ₜ</td>
<td>4.0</td>
<td>1.4</td>
<td>4.0</td>
<td>3.3</td>
<td>3.9</td>
<td>4.1</td>
</tr>
<tr>
<td>ξ³ₜ</td>
<td>4.6</td>
<td>1.6</td>
<td>4.6</td>
<td>3.9</td>
<td>4.5</td>
<td>4.8</td>
</tr>
<tr>
<td>ξ⁴ₜ</td>
<td>4.5</td>
<td>1.6</td>
<td>4.5</td>
<td>4.1</td>
<td>4.5</td>
<td>4.8</td>
</tr>
<tr>
<td>ξ⁵ₜ</td>
<td>4.7</td>
<td>1.7</td>
<td>4.8</td>
<td>4.7</td>
<td>4.9</td>
<td>5.3</td>
</tr>
<tr>
<td>ξ⁶ₜ</td>
<td>5.7</td>
<td>2.0</td>
<td>5.7</td>
<td>6.1</td>
<td>6.2</td>
<td>6.7</td>
</tr>
<tr>
<td>ξ⁷ₜ</td>
<td>5.2</td>
<td>1.8</td>
<td>5.1</td>
<td>6.0</td>
<td>5.9</td>
<td>6.4</td>
</tr>
<tr>
<td>ξ⁸ₜ</td>
<td>6.9</td>
<td>2.4</td>
<td>6.7</td>
<td>8.5</td>
<td>8.2</td>
<td>8.8</td>
</tr>
<tr>
<td>ξᵢ,ₑ</td>
<td>41.8</td>
<td>22.0</td>
<td>12.6</td>
<td>21.5</td>
<td>24.8</td>
<td>29.5</td>
</tr>
<tr>
<td>ξᵢ,ᵢ</td>
<td>8.2</td>
<td>59.7</td>
<td>36.3</td>
<td>31.6</td>
<td>16.1</td>
<td>16.9</td>
</tr>
</tbody>
</table>
Variance Decomposition, Technology Shocks

<table>
<thead>
<tr>
<th>variable</th>
<th>$\varepsilon_t + \sum_{i=1}^{8} \xi_{t-i}$</th>
<th>ε_t</th>
<th>$\varepsilon_t + \sum_{i=1}^{4} \xi_{t-i}$</th>
<th>$\sum_{i=5}^{8} \xi_{t-i}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>consumption growth</td>
<td>46.6</td>
<td>7.0</td>
<td>24.1</td>
<td>22.5</td>
</tr>
<tr>
<td>investment growth</td>
<td>16.1</td>
<td>2.3</td>
<td>8.2</td>
<td>7.9</td>
</tr>
<tr>
<td>output growth</td>
<td>45.4</td>
<td>6.2</td>
<td>23.1</td>
<td>22.3</td>
</tr>
<tr>
<td>log hours</td>
<td>45.3</td>
<td>5.5</td>
<td>20.0</td>
<td>25.3</td>
</tr>
<tr>
<td>inflation</td>
<td>49.0</td>
<td>7.0</td>
<td>23.8</td>
<td>25.2</td>
</tr>
<tr>
<td>interest rate</td>
<td>52.1</td>
<td>7.1</td>
<td>24.9</td>
<td>27.2</td>
</tr>
</tbody>
</table>
• Estimated technology shock process:

\[
\begin{align*}
\hat{a}_t &= \rho_a a_{t-1} + \varepsilon_t + \xi_{t-1}^1 + \xi_{t-2}^2 + \xi_{t-3}^3 + \xi_{t-4}^4 + \xi_{t-5}^5 + \xi_{t-6}^6 + \xi_{t-7}^7 + \xi_{t-8}^8 \\
\end{align*}
\]
Centered 5-quarter moving average of shocks

NBER trough

Signals 5-8 quarters in past

NBER peak

Current shock plus most recent Four quarters’ signals
• Let’s see how a signal that turns out to be false works in the full, estimated model.
Benchmark: *Ramsey* Response to Signal Shock

- Drop Monetary Policy Rule.

- Now, economic system under-determined. Many equilibria.

- We select the best equilibrium, the Ramsey equilibrium: optimal monetary policy.
Response of Simple Monetary Model to Positive Signal About Technology in Period 8 that is not Realized

Sticky wages exacerbate the problem
Why is the Boom-Bust So Big?

• Most of boom-bust reflects suboptimality of monetary policy.

• What’s the problem?

 – Monetary policy ought to respond to the natural (Ramsey) rate of interest.

 – Relatively sticky wages and inflation targeting exacerbate the problem
Policy solution

• Modify the Taylor rule to include:

 – Natural rate of interest (probably not feasible)
 – Credit growth
 – Stock market.

• Explored consequences of adding credit growth and/or stock market by adding Bernanke-Gertler-Gilchrist financial frictions.
Conclusion

• According to the data, stock market booms are accompanied by low inflation.

• New Keynesian models with signals about future technology can account for this pattern.

• Implications for monetary policy:
 – Booms reflect inefficiently loose monetary policy.
 – Optimism about the future requires a high real interest rate.
 – Inflation targeting does produce high rate at this time. By not raising rates, or even lowering them, monetary policy is very loose at the wrong time.
 – Responding to credit growth may improve things.