Optimal Fiscal and Monetary Policy

1

Background

- We Have Discussed the Construction and Estimation of DSGE Models
- Next, We Turn to Analysis
- Most Basic Policy Question:
 - How Should the Policy Variables of the Government be Set?
 - What is *Optimal* Policy? What Should R Be, How Volatile Should P Be?
- In Past 10 Years, Profession Has Explored Operating Characteristics of Simple Policy Rules
 - One Finding: A Taylor Rule with High Weight on Inflation Works Well in New-Keynesian Models
- Recent Development:
 - Increasingly, Analysts Studying Optimal Policy
 - Perhaps Because there is a Perception that Current DSGE Models Fit Data Well
- We Will Review Some of this Work.

Modern Quantitative Analysis of Optimal Policy

- Case Where Intertemporal Government Budget Constraint Does Not Bind
 - Example Current Generation of Monetary Models
 - * Assume Presence of Lump-Sum Taxes Used to Ensure Government Budget Constraint is Satisfied
 - Optimal Policy Studied, Among Others, By Schmitt-Grohe and Uribe (2004), Levin, Onatski, Williams, Williams (2005), and References They Cite.
- Case Where Intertemporal Government Budget Constraint Binds
 - Example When the Government Does not Have Access to Distorting Taxes
 - Chari-Christiano-Kehoe (1991, 1994), Schmitt-Grohe and Uribe (2001), Siu (2001), Benigno-Woodford (2003, 2005), Others.

Outline

- Optimal Monetary and Fiscal Policy When the Intertemporal Budget Constraint Binds
 - Analyze the Friedman-Phelps Debate over the Optimal Nominal Rate of Interest.
 - What is the Optimal Degree of Price Variability?
 - How Should Policy React to a Sudden Jump in G?
 - Log-Linearization as a Solution Strategy
 - Woodford's Timeless Perspective
- Optimal Monetary Policy When the Intertemporal Budget Constraint Can be Ignored.
 - Log-Linearization as a Solution Strategy

Optimal Policy in the Presence of a Budget Constraint

- Sketch of Phelps-Friedman Debate
- Some Ideas from Public Finance Primal Problem
- Simple One-Period Example
- Determining Who is Right, Friedman or Phelps, Using Lucas-Stokey Cash-Credit Good Model
- Financing a Sudden Expenditure (Natural Disaster): Barro versus Ramsey.

Friedman-Phelps Debate

• Money Demand:

$$\frac{M}{P} = \exp[-\alpha R]$$

• Friedman:

a. Efforts to Economize Cash Balances when R High are Socially Wasteful

b. Set R as Low As Possible: R = 1.

c. Since $R = 1 + r + \pi$, Friedman Recommends $\pi = -r$.

i. $r \sim$ exogenous (net) real interest rate rate ii. $\pi \sim$ inflation rate, $\pi = (P - P_{-1})/P_{-1}$

Friedman-Phelps Debate ...

• Phelps:

a. Inflation Acts Like a Tax on Cash Balances -

Seigniorage =
$$\frac{M_t - M_{t-1}}{P_t} = \frac{M_t}{P_t} - \frac{P_{t-1}}{P_t} \frac{M_{t-1}}{P_{t-1}}$$

 $\approx \frac{M}{P} \frac{\pi}{1+\pi}$

- b. Use of Inflation Tax Permits Reducing Some Other Tax Rate
- c. Extra Distortion in Economizing Cash Balances Compensated by Reduced Distortion Elsewhere.
- d. With Distortions a Convex Function of Tax Rates, Would Always Want to Tax All Goods (Including Money) At Least A Little.
- e. Inflation Tax Particularly Attractive if Interest Elasticity of Money Demand Low.

Question: Who is Right, Friedman or Phelps?

• Answer: Friedman Right Surprisingly Often

• Depends on Income Elasticity of Demand for Money

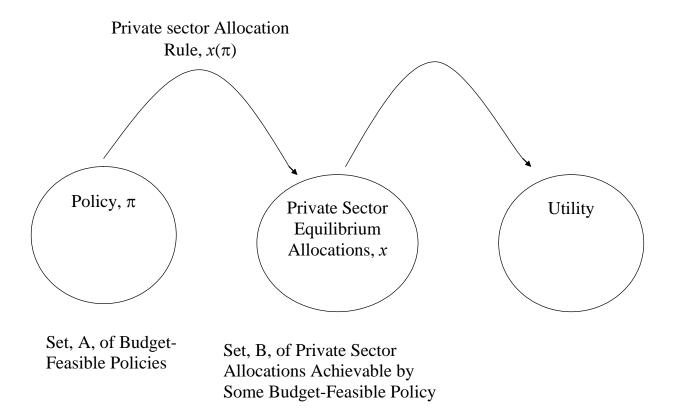
- Will Address the Issue From a Straight Public Finance Perspective, In the Spirit of Phelps.
- Easy to Develop an Answer, Exploiting a Basic Insight From Public Finance.

Question: Who is Right, Friedman or Phelps? ...

Some Basic Ideas from Ramsey Theory

- **Policy**, π , Belonging to the Set of 'Budget Feasible' Policies, A.
- Private Sector Equilibrium Allocations, Equilibrium Allocations, x, Associated with a Given π ; $x \in B$.
- Private Sector Allocation Rule, mapping from π to x (i.e., $\pi : A \to B$).
- Ramsey Problem: Maximize, w.r.t. π , $U(x(\pi))$.
- Ramsey Equilibrium: π^{*} ∈ A and x^{*}, such that π^{*} solves Ramsey Problem and x^{*} = x(π^{*}). 'Best Private Sector Equilibrium'.
- Ramsey Allocation Problem: Solve, $\tilde{x} = \arg \max U(x)$ for $x \in B$
- Alternative Strategy for Solving the Ramsey Problem: a. Solve Ramsey Allocation Problem, to Find \tilde{x} .
 - b. Execute the Inverse Mapping, $\tilde{\pi} = x^{-1}(\tilde{x})$.
 - c. $\tilde{\pi}$ and \tilde{x} Represent a Ramsey Equilibrium.
- Implementability Constraint: Equations that Summarize Restrictions on Achievable Allocations, *B*, Due to Distortionary Tax System.

Question: Who is Right, Friedman or Phelps? ...



Example

• Households:

 $\max_{c,l} u(c,l)$

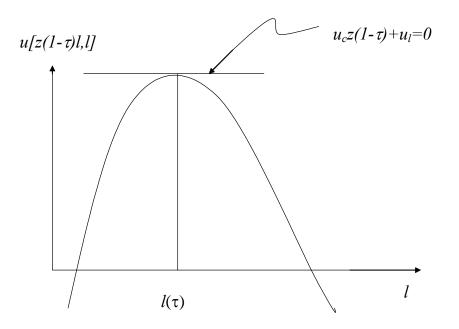
$$c \leq z(1-\tau)l,$$

- $z \sim$ wage rate
- $\tau ~\sim~$ labor tax rate

Example ...

• Household Problem Implies Private Sector Allocation Rules, $l(\tau), c(\tau)$, defined by:

$$u_c z(1-l) + u_l = 0, \ c = (1-\tau)zl$$



Private Sector Allocation Rules: $l(\tau), c(\tau) = z(1-\tau)l$

Example ...

• Ramsey Problem:

 $\max_{\tau} u(c(\tau), l(\tau))$

subject to $g \leq z l(\tau) \tau$

• Ramsey Equilibrium: τ^*, c^*, l^* such that

a. $c^* = c(\tau^*), l^* = l(\tau^*)$

- * 'Private Sector Allocations are a Private Sector Equilibrium'
- b. τ^* Solves Ramsey Problem
 - * 'Best Private Sector Equilibrium'

• Simple Utility Specification:

$$u(c,l) = c - \frac{1}{2}l^2$$

- Two Ways to Compute the Ramsey Equilibrium
 - a. Direct Way: Solve Ramsey Problem (In Practice, Hard)
 - b. Indirect Way: Solve Ramsey Allocation Problem, or Primal Problem (Can Be Easy)

Direct Approach

• Private Sector Allocation Rules:

$$c(\tau) = z^2(1-\tau)^2, \ l(\tau) = z(1-\tau)$$

• 'Utility Function' for Ramsey Problem:

$$u(c(\tau), l(\tau)) = \frac{1}{2}z^2(1-\tau)^2$$

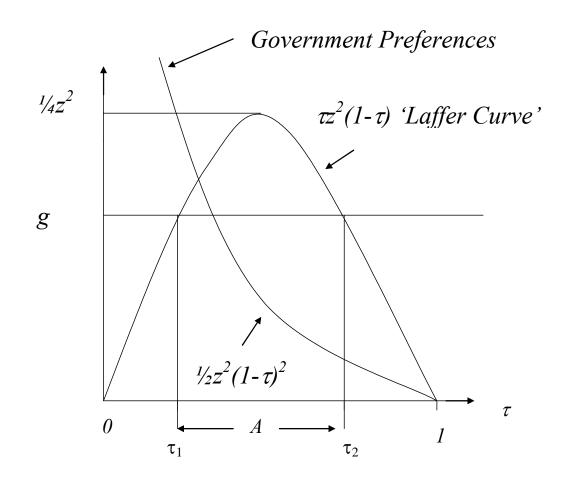
• Constraint on Ramsey Problem:

$$g \le z l(\tau) \tau = z^2 (1 - \tau) \tau$$

• Ramsey Problem:

$$\max_{\tau} \frac{1}{2} z^2 (1-\tau)^2$$

subject to : $g \le \tau z^2 (1-\tau)$.



 $\tau^* = \tau_1 = \frac{1}{2} - \frac{1}{2} \left[1 - 4 g/z^2 \right]^{\frac{1}{2}} \qquad \tau_2 = \frac{1}{2} + \frac{1}{2} \left[1 - 4 g/z^2 \right]^{\frac{1}{2}}$

$$l(\tau^*) = \frac{1}{2} \{ z + [z^2 - 4g]^{\frac{1}{2}} \}$$

35

Indirect Approach

- Approach: Solve Ramsey Allocation Problem, Then 'Inverse Map' Back into Policies
- Problem: Would Like a Characterization of B that Only Has (c, l), Not the Policies

$$B = \{c, l : \exists \tau, \text{ with } u_c z(1 - \tau) + u_l = 0, \\ c = (1 - \tau) zl, \ g \le \tau zl \}$$

- Solution: Rearrange Equations in B, So That Only (c, l) Appears (*) $u_c c + u_l l = 0$, (**) $c + g \le zl$.
- Conclude: B = D, where: $D = \left\{ (c, l) : \underbrace{c+g \leq zl}_{\text{resource constraint}}, \underbrace{u_c c + u_l l = 0}_{\text{implementability constraint}} \right\}$

• Express Ramsey Allocation Problem:

$$\max_{c,l} u(c,l), \text{ subject to } (c,l) \in D$$

• Alternatively:

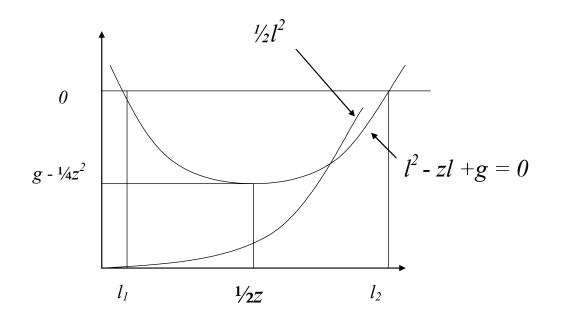
 $\max_{c,l} u(c,l),$

s.t.
$$u_c c + u_l l = 0, \ c + g \le z l$$

• Or,

$$\max_{l} \frac{1}{2}l^2$$

s.t. $l^2 + g \leq zl$



Ramsey Allocation Problem: Max $\frac{1}{2}l^2$ Subject to $l^2 + g \le zl$ Solution: $l_2 = \frac{1}{2} \{ z + [z^2 - 4g]^{\frac{1}{2}} \}$ Same Result as Before!

Lucas-Stokey Cash-Credit Good Model

- Households
- Firms
- Government

Households

• Household Preferences:

$$\sum_{t=0}^{\infty} \beta^{t} u(c_{1t}, c_{2t}, l_{t}),$$

$$c_{1t} \ \ \text{cash goods, } c_{2t} \ \ \text{credit goods, } l_{t} \ \ \text{labor}$$

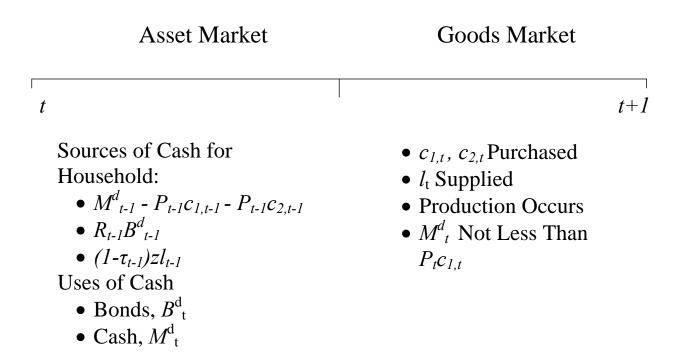
- Distinction Between Cash and Credit Goods:
 - All Goods Paid With Cash At the Same Time, After Goods Market, in Asset Market
 - Cash Good: Must Carry Cash In Pocket Before Consuming It

$$M_t \geq P_t c_{1t}$$

- Credit Good: No Need to Carry Cash Before Purchase.

Household Participation in Asset and Good Markets

- Asset Market: First Half of Period, When Household Settles Financial Claims Arising From Activities in Previous Asset Market and in Previous Goods Market.
- Goods Market: Second Half of Period, Goods are Consumed, Labor Effort is Applied, Production Occurs.



• Constraint On Households in Asset Market (Budget Constraint)

$$M_t^d + B_t^d \\ \leq M_{t-1}^d - P_{t-1}c_{1t-1} - P_{t-1}c_{2t-1} \\ + R_{t-1}B_{t-1}^d + (1 - \tau_{t-1})zl_{t-1}$$

Household First Order Conditions

• Cash versus Credit Goods:

$$\frac{u_{1t}}{u_{2t}} = R_t$$

• Cash Goods Today versus Cash Goods Tomorrow:

$$u_{1t} = \beta u_{1t+1} R_t \frac{P_t}{P_{t+1}}$$

• Credit Goods versus Leisure:

$$u_{3t} + (1 - \tau_t) z u_{2t} = 0.$$

Firms

• Technology: y = zl

• Competition Guarantees Real Wage = z.

Government

• Inflows and Outflows in Asset Market (Budget Constraint):

$$\underbrace{M_t^s - M_{t-1}^s + B_t^s}_{\text{Sources of Funds}} \ge \underbrace{R_{t-1}B_{t-1}^s + P_{t-1}g_{t-1} - P_{t-1}\tau_{t-1}zl_{t-1}}_{\text{Uses of Funds}}$$

• Policy:

$$\pi = (M_0^s, M_1^s, \dots, B_0^s, B_1^s, \dots, \tau_0, \tau_1, \dots)$$

Ramsey Equilibrium

• Private Sector Allocation Rule:

For each policy, $\pi \in A$, there is a Private Sector Equilibrium:

$$x = (\{c_{1t}\}, \{c_{2t}\}, \{l_t\}, \{M_t\}, \{B_t\})$$

$$p = (\{P_t\}, \{R_t\})$$

$$M_t = M_t^s = M_t^d$$

$$B_t = B_t^s = B_t^d$$

$$R_t \ge 1 \text{ (i.e., } u_{1t}/u_{2t} \ge 1\text{)}$$

• Ramsey Problem:

 $\max_{\pi \in A} U(x(\pi))$

• Ramsey Equilibrium:

 $\pi^*, x(\pi^*), p(\pi^*),$

Such that π^* Solves Ramsey Problem.

Finding The Ramsey Equilibrium By Solving the Ramsey Allocation Problem

$$\max_{\{c_{1t}, c_{2t}, l_t\} \in D} \sum_{t=0}^{\infty} \beta^t u(c_{1t}, c_{2t}, l_t),$$

where D is the set of allocations, $c_{1t}, c_{2t}, l_t, t = 0, 1, 2, ...,$ such that

$$\sum_{t=0}^{\infty} \beta^{t} [u_{1t}c_{1t} + u_{2t}c_{2t} + u_{3t}l_{t}] = u_{2,0}a_{0},$$
$$c_{1t} + c_{2t} + g \leq zl_{t}, \ \frac{u_{1t}}{u_{2t}} \geq 1,$$

 $a_0 = \frac{R_{-1}B_{-1}}{P_0} \sim \text{ real value of initial government debt}$

Lagrangian Representation of Ramsey Allocation Problem

• There is a $\lambda \ge 0$, s. t. Solution to R A Problem Also Solves:

$$\max_{\{c_{1t}, c_{2t}, l_t\}} \sum_{t=0}^{\infty} \beta^t u(c_{1t}, c_{2t}, l_t) + \lambda \left(\sum_{t=0}^{\infty} \beta^t [u_{1t}c_{1t} + u_{2t}c_{2t} + u_{3t}l_t] - u_{2,0}a_0 \right)$$

subject to $c_{1t} + c_{2t} + g \le zl_t, \ \frac{u_{1t}}{u_{2t}} \ge 1$,
or,

$$\max_{\{c_{1t}, c_{2t}, l_t\}} \bar{W}(c_{10}, c_{20}, l_0; \lambda) + \sum_{t=1} \beta^t W_t(c_{1t}, c_{2t}, l_t; \lambda)$$

subject to : $c_{1t} + c_{2t} + g \le z l_t, \ \frac{u_{1t}}{u_{2t}} \ge 1,$

 $\bar{W}(c_{10}, c_{20}, l_0; \lambda) = u(c_{1,0}, c_{2,0}, l_0) + \lambda \left(\left[u_{1,0}c_{1,0} + u_{2,0}c_{2,0} + u_{3,0}l_0 \right] - u_{2,0}a_0 \right)$

 $W(c_{1,t}, c_{2,t}, l_t; \lambda) = u(c_{1,t}, c_{2,t}, l_t) + \lambda \left([u_{1,t}c_{1,t} + u_{2,t}c_{2,t} + u_{3,t}l_t) \right)$

Ramsey Allocation Problem

• Lagrangian:

$$\max_{\{c_{1t}, c_{2t}, l_t\}} \bar{W}(c_{10}, c_{20}, l_0; \lambda) + \sum_{t=1}^{\infty} \beta^t W(c_{1t}, c_{2t}, l_t; \lambda)$$

subject to : $c_{1t} + c_{2t} + g \leq z l_t, \frac{u_{1t}}{u_{2t}} \geq 1,$

 $\bar{W}(c_{10}, c_{20}, l_0; \lambda) = u(c_{1,0}, c_{2,0}, l_0) + \lambda \left(\left[u_{1,0}c_{1,0} + u_{2,0}c_{2,0} + u_{3,0}l_0 \right] - u_{2,0}a_0 \right)$

$$W(c_{1,t}, c_{2,t}, l_t; \lambda) = u(c_{1,t}, c_{2,t}, l_t) + \lambda \left([u_{1,t}c_{1,t} + u_{2,t}c_{2,t} + u_{3,t}l_t) \right)$$

- How to Solve this?
 - Fix $\lambda \ge 0$, Solve The Above Problem
 - Evaluate Implementability Constraint
 - Adjust λ Until Implemetability Constraint is Satisfied

Special Structure of Ramsey Allocation Problem

• Given λ (If we Ignore $\frac{u_{1t}}{u_{2t}} \ge 1$), Looks Like Standard Optimization Problem:

$$\max_{\{c_{1t}, c_{2t}, l_t\}} \bar{W}(c_{10}, c_{20}, l_0; \lambda) + \sum_{t=1}^{\infty} \beta^t W(c_{1t}, c_{2t}, l_t; \lambda)$$

s.t. $c_{1t} + c_{2t} + g \leq z l_t$.

- After First Period, 'Utility Function' Constant
- Problem: For Exact Solution, Need λ ...Not Easy to Compute!
- But,
 - Can Say Much Without Knowing Exact Value of λ (Will Pursue this Idea Now)
 - Under Certain Conditions, Can Infer Value of λ From Data (Will Pursue this Idea Later)

Special Structure of Ramsey Allocation Problem ...

• Ignoring
$$\frac{u_{1t}}{u_{2t}} \ge 1$$
, after Period 1 :

$$\frac{W_1(c_1, c_2, l; \lambda)}{W_2(c_1, c_2, l; \lambda)} = 1$$

• 'Planner' Equates Marginal Rate of Substitution Between Cash and Credit Good to Associated Marginal Rate of Technical Substitution • Utility Function:

$$u(c_1, c_2, l) = h(c_1, c_2)v(l),$$

 $h \sim$ homogeneous of degree $k, v \sim$ strictly decreasing.

• Then,
$$u_1c_1 + u_2c_2 + u_3l = h [kv + v']$$
, so

$$W(c_1, c_2, l; \lambda) = hv + \lambda h [kv + v'] = h(c_1, c_2)Q(l, \lambda).$$

• Conclude - Homogeneity and Separability Imply:

$$1 = \frac{W_1(c_1, c_2, l; \lambda)}{W_2(c_1, c_2, l; \lambda)} = \frac{h_1(c_1, c_2, l)Q(l, \lambda)}{h_1(c_1, c_2, l)Q(l, \lambda)} = \frac{h_1(c_1, c_2, l)}{h_1(c_1, c_2, l)} = \frac{u_1(c_1, c_2, l)}{u_2(c_1, c_2, l)}.$$

Surprising Result: Friedman is Right More Often Than You Might Expect

• Suppose You Can Ignore $u_{1t}/u_{2t} \ge 1$ Constraint. Then, Necessary Condition of Solution to Ramsey Allocation Problem:

$$\frac{W_1(c_1, c_2, l; \lambda)}{W_2(c_1, c_2, l; \lambda)} = 1.$$

• This, In Conjunction with Homogeneity and Separability, Implies:

$$\frac{u_1(c_1, c_2, l)}{u_2(c_1, c_2, l)} = 1.$$

- Note: $u_{1t}/u_{2t} \ge 1$ is Satisfied, So Restriction is Redundant Under Homogeneity and Separability.
- Conclude: R = 1, So Friedman Right!

Generality of the Result

• Result is True for the Following More General Class of Utility Functions:

$$u(c_1, c_2, l) = V(h(c_1, c_2), l),$$

where h is homothetic.

- Analogous Result Holds in 'Money in Utility Function' Models and 'Transactions Cost' Models (Chari-Christiano-Kehoe, *Journal of Monetary Economics*, 1996.)
- Actually, strict homotheticity and separability are not necessary.

Interpretation of the Result

• 'Looking Beyond the Monetary Veil' -

– The Connection Between The R = 1 Result and the Uniform Taxation Result for Non-Monetary Economies

• The Importance of Homotheticity

- The Link Between Homotheticity and Separability, and The Consumption Elasticity of Money Demand.

Uniform Taxation Result from Public Finance For Non-Monetary Economies

• Households:

$$\max_{c_1, c_2, l} u(c_1, c_2, l) \text{ s.t. } zl \ge c_1(1 + \tau_1) + c_2(1 + \tau_2)$$

$$\Rightarrow c_1 = c_1(\tau_1, \tau_2), c_2 = c_2(\tau_1, \tau_2), l = l(\tau_1, \tau_2).$$

• Ramsey Problem:

$$\max_{\tau_1,\tau_2} u(c_1(\tau_1,\tau_2),c_2(\tau_1,\tau_2),l(\tau_1,\tau_2))$$

s.t.
$$g \geq c_1(\tau_1, \tau_2)\tau_1 + c_2(\tau_1, \tau_2)\tau_2$$

• Uniform Taxation Result:

if $u = V(h(c_1, c_2), l), h \sim \text{homothetic}$

then $\tau_1 = \tau_2$.

Proof : trivial! (just study Ramsey Allocation Problem)

Similarities to Monetary Economy

• Rewrite Budget Constraint:

$$\frac{zl}{1+\tau_2} \ge c_1 \frac{1+\tau_1}{1+\tau_2} + c_2.$$

• Similarities:

$$\frac{1}{1+\tau_2} \sim 1-\tau, \ \frac{1+\tau_1}{1+\tau_2} \sim R.$$

- Positive Interest Rate 'Looks' Like a Differential Tax Rate on Cash and Credit Goods.
- Have the Same Ramsey Allocation Problem, Except Monetary Economy Also Has:

$$\frac{u_1}{u_2} \ge 1.$$

What Happens if You Don't Have Homotheticity?

• Utility Function:

$$u(c_1, c_2, l) = \frac{c_1^{1-\sigma}}{1-\sigma} + \frac{c_2^{1-\delta}}{1-\delta} + v(l)$$

• 'Utility Function' in Ramsey Allocation Problem:

$$W(c_1, c_2, l) = [1 + (1 - \sigma)\lambda] \frac{c_1^{1 - \sigma}}{1 - \sigma} + [1 + (1 - \delta)\lambda] \frac{c_2^{1 - \delta}}{1 - \delta} + v(l) + \lambda v'(l)l$$

What Happens if You Don't Have Homotheticity? ...

• Marginal Rate of Substitution in Ramsey Allocation Problem That Ignores $u_1/u_2 \ge 1$ Condition:

$$1 = \frac{W_1(c_1, c_2, l; \lambda)}{W_2(c_1, c_2, l; \lambda)} = \frac{1 + (1 - \sigma)\lambda}{1 + (1 - \delta)\lambda} \times \frac{u_1}{u_2},$$

or, since $u_1/u_2 = R$:

$$R = \frac{1 + (1 - \delta)\lambda}{1 + (1 - \sigma)\lambda}$$

• Finding:

$$\begin{split} \delta &= \sigma \Rightarrow R = 1 \text{ (homotheticity case)} \\ \delta &> \sigma \Rightarrow R \geq 1 \text{ Binds, so } R = 1 \\ \delta &< \sigma \Rightarrow R > 1. \end{split}$$

Note: Friedman Right More Often Than Uniform Taxation Result, Because $u_1/u_2 \ge 1$ is a Restriction on the Monetary Economy, Not the Barter Economy.

Consumption Elasticity of Demand

- Homotheticity and Separability Correspond to Unit Consumption Elasticity of Money Demand.
- Money Demand:

$$R = \frac{u_1}{u_2} = \frac{h_1}{h_2} = f\left(\frac{c_2}{c_1}\right)$$
$$= f\left(\frac{c - \frac{M}{P}}{\frac{M}{P}}\right)$$
$$= \tilde{f}\left(\frac{c}{M/P}\right).$$

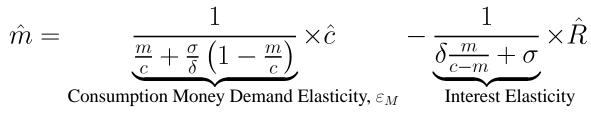
• Note: Holding R Fixed, Doubling c Implies Doubling M/P

Money Demand and Failure of Homotheticity

• Money Demand:

$$R = \frac{u_1}{u_2} = \frac{c_1^{-\sigma}}{c_2^{-\delta}} = \frac{\left(\frac{M}{P}\right)^{-\sigma}}{\left(c - \frac{M}{P}\right)^{-\delta}}$$

• Taylor Series Approximation About Steady State ($m \equiv M/P$ in steady state) :



• Can Verify:

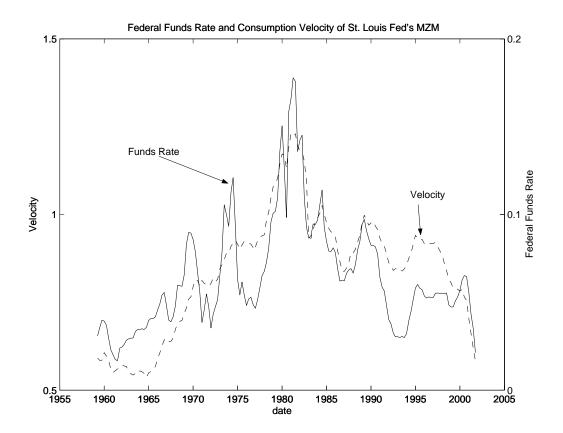
Utility Function		Non-Monetary	Monetary
Parameters	ε_M	Economy	Economy
$\delta > \sigma$	$\varepsilon_M > 1$	$ au_2 \ge au_1$	R = 1
$\delta < \sigma$	$\varepsilon_M < 1$	$ au_2 < au_1$	R > 1
$\delta = \sigma$	$\varepsilon_M = 1$	$\tau_1 = \tau_2$	R = 1

Bottom Line:

- Friedman is Right (R = 1) When Consumption Elasticity of Money Demand is Unity or Greater
- Implicitly, High Interest Rates Tax Some Goods More Heavily that Others. Under Homotheticity and Separability Conditions, Want to Tax Goods at Same Rate.

Bottom Line: ...

• What is Consumption Elasticity in the Data?



• Answer: Not Far From Unity - Velocity and the Interest Rate Are Both Roughly Where they Were in the 1960, Though Consumption is Higher.



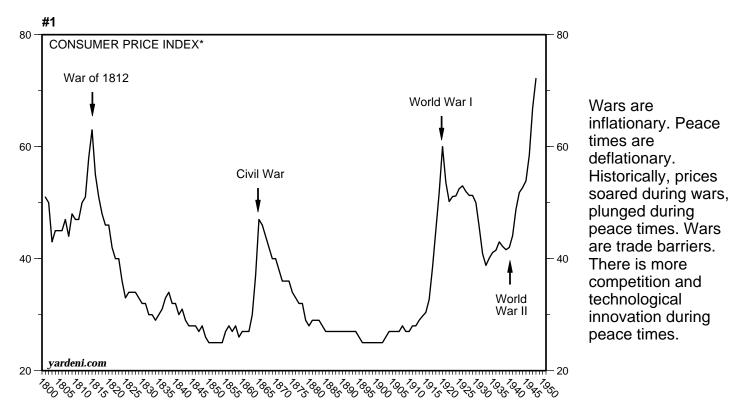
What To Do, When g, z Are Random?

- Results for Optimal R Completely Unaffected
- Ramsey Principle: Minimize Tax Distortions
 - After Bad Shock to Government Constraint:
 - * Tax Capital
 - * Raise Price Level to Reduce Value of Government Debt
 - After Good Shock To Government Budget Constraint
 * Subsidize Capital
 - * Reduce Price Level to Reduce Value of Government Debt

What To Do, When g, z Are Random? ...

- If there is Staggered Pricing in the Economy, Desirability of Price Volatility Depends on Two Forces
 - Fiscal Force Just Discussed, Which Implies the Price Level Should Be Volatile
 - Relative Price Dispersion Considerations Which Suggest that Prices Should Not Be Volatile
- Schmitt-Grohe/Uribe and Henry Siu Find:
 - For Shocks of the Size of Business Cycles, the Relative Price Dispersion Considerations Dominate
- Henry Siu Finds:
 - For War-Size Shocks, Fiscal Considerations Dominate.
 - Some Evidence for this in the Data

- Inflation, War, & Peace -



* Base index from 1800 to 1947 is 1967 = 100. Source: US Department of Commerce, Bureau of the Census, Historical Statistics of the US.

Financing War: Barro versus Ramsey

When War (or Other Large Financing Need) Suddenly Strikes:

- Barro:
 - Raise Labor and Other Tax Rates a Small Amount So That When Held Constant at That Level, Expected Value of War is Financed
 - This Minimizes Intertemporal Substitution Distortions
 - Involves a Big *Increase* in Debt in Short Run
 - Prediction for Labor Tax Rate: Random Walk.

Financing War: Barro versus Ramsey ...

• Ramsey:

- Tax Existing Capital Assets (Human, Physical, etc) For Full Amount of Expected Value of War. Do This at the First Sign of War.
- This Minimizes Intertemporal *and* Intratemporal Distortions (Don't Change Tax Rates on Income at all).
- *Reduce* Outstanding Debt
- Make Essentially No Change Ever to Labor Tax Rate

Financing War: Barro versus Ramsey ...

– Example:

* Suppose War is Expected to Last Two Periods, Cost: \$1 Per Period

* Suppose Gross Rate of Interest is 1.05 (i.e., 5%)

* Tax Capital 1 + 1/1.05 = 1.95 Right Away.

* Debt Falls \$0.95 in Period When War Strikes.

– Involves a *Reduction* of Outstanding Debt in Short Run.

- Prediction for Labor Tax Rate: Roughly Constant.

A Computational Issue

- *Conditional* On a Value for λ, Finding Ramsey Allocations Easy (Can Use Simple Linearization Procedures!)
- Policies Can Then Be Computed From Ramsey Allocations.
 - Example: Labor Tax Rate Can Be Computed from Ramsey Allocations By Solving for τ_t :

$$u_l(c_t, l_t) + u_c(c_t, l_t) \times f_n(k_t, l_t) \times (1 - \tau_t) = 0$$

- But, How To Get λ ?
 - Get it the Hard Way, Outlined Above
 - Under Very Limited Conditions, can Calibrate λ

Calibrating the Multiplier, λ

- Conditional on λ :
 - Nonstochastic Steady State Consumption, Capital Stock, Labor, Labor Tax Rate Functions of λ :

$$c = c(\lambda), \ l = l(\lambda)$$

 Steady State Policy Variable (debt, labor tax, capital tax rate) Can Be Computed:

$$\tau \left(\lambda \right) = 1 + \frac{u_l \left(c, l \right)}{u_c \left(c, l \right) f_n \left(k, l \right)}$$

• In Practice, $\tau(\lambda)$ is a Monotone Function of λ . Choose $\hat{\lambda}$ So That

 $\hat{\tau} = \tau \left(\hat{\lambda} \right), \ \hat{\tau} \sim$ Sample Average of Labor Tax Rate

Problem With Calibrating Multiplier

- Implicitly, this Assumes the Economy Was in an Optimal Policy Regime in the Historical Sample
- Problem
 - When People Compute Optimal Policy, they Want to be Open to the Possibility that Policy Outcomes are *Not* Optimal
 - Want to Use the Ramsey-Optimal Policies as a Basis For Recommending Better Policies
- Still, Calibration of λ Works for an Analyst Who Seriously Entertains the Hypothesis that Policy in the Sample Was Optimal
- Related to Woodford's Idea of the *Timeless Perspective*

Optimal Monetary Policy When the Intertemporal Budget Constraint Does Not Bind

• Current Generation of Monetary Models Put Government Budget Constraint in Background by Assuming Presence of Lump Sum Taxes to Balance Budget.

• Ramsey Optimal Policies in These Models Easy to Compute.

Optimal Monetary Policy When the Intertemporal Budget Constraint Does Not Bind ...

- Suppose:
 - You Have a Very Simple Model, With One Equation Characterizing the Equilibrium of the Private Economy, and One For the Policy Rule.
 - The Private Economy Equation is:

$$\pi_t - \beta \pi_{t+1} - \gamma y_t = 0, \ t = 0, 1, \dots$$
(1)

- You Want to Do Optimal Policy. So You Threw Away the Policy Rule.
- The Setup At this Point Has One Equation, (1) in Two Unknowns, π_t , y_t . Need More Equations!
- The Additional Equations Come In When We Optimize.

Optimal Monetary Policy When the Intertemporal Budget Constraint Does Not Bind ...

– Lagrangian Problem:

$$\max_{\{\pi_t, y_t; t=0, 1, \dots\}} \sum_{t=0}^{\infty} \beta^t \{ u(\pi_t, y_t) + \lambda_t [\pi_t - \beta \pi_{t+1} - \gamma y_t] \}$$

– Equations that Characterize the Optimum: (1), and

$$u_{\pi}(\pi_t, y_t) + \lambda_t - \beta \lambda_{t-1} = 0$$

$$u_y(\pi_t, y_t) - \gamma \lambda_t = 0, \ t = 0, 1, \dots$$

- We Made Up for the One Missing Equation, By Adding Two Equations and One New Unknown.