
Optimal Fiscal and Monetary Policy
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Background

• We Have Discussed the Construction and Estimation of DSGE Models
• Next, We Turn to Analysis
• Most Basic Policy Question:

– How Should the Policy Variables of the Government be Set?
– What is Optimal Policy? What Should R Be, How Volatile Should P Be?

• In Past 10 Years, Profession Has Explored Operating Characteristics of Simple
Policy Rules
– One Finding: A Taylor Rule with High Weight on Inflation Works Well in

New-Keynesian Models
• Recent Development:

– Increasingly, Analysts Studying Optimal Policy
– Perhaps Because there is a Perception that Current DSGE Models Fit Data

Well
• We Will Review Some of this Work.
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Modern Quantitative Analysis of Optimal Policy

• Case Where Intertemporal Government Budget Constraint Does Not Bind

– Example - Current Generation of Monetary Models
∗ Assume Presence of Lump-Sum Taxes Used to Ensure Government

Budget Constraint is Satisfied

– Optimal Policy Studied, Among Others, By Schmitt-Grohe and Uribe
(2004), Levin, Onatski, Williams, Williams (2005), and References They
Cite.

• Case Where Intertemporal Government Budget Constraint Binds

– Example - When the Government Does not Have Access to Distorting Taxes
– Chari-Christiano-Kehoe (1991, 1994), Schmitt-Grohe and Uribe (2001),

Siu (2001), Benigno-Woodford (2003, 2005), Others.
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Outline

• Optimal Monetary and Fiscal Policy When the Intertemporal Budget Constraint
Binds

– Analyze the Friedman-Phelps Debate over the Optimal Nominal Rate of
Interest.

– What is the Optimal Degree of Price Variability?
– How Should Policy React to a Sudden Jump in G?
– Log-Linearization as a Solution Strategy
– Woodford’s Timeless Perspective

• Optimal Monetary Policy When the Intertemporal Budget Constraint Can be
Ignored.

– Log-Linearization as a Solution Strategy
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Optimal Policy in the Presence of a Budget
Constraint

• Sketch of Phelps-Friedman Debate

• Some Ideas from Public Finance - Primal Problem

• Simple One-Period Example

• Determining Who is Right, Friedman or Phelps, Using Lucas-Stokey Cash-
Credit Good Model

• Financing a Sudden Expenditure (Natural Disaster): Barro versus Ramsey.
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Friedman-Phelps Debate

• Money Demand:
M

P
= exp[−αR]

• Friedman:

a. Efforts to Economize Cash Balances when R High are Socially Wasteful

b. Set R as Low As Possible: R = 1.

c. Since R = 1 + r + π, Friedman Recommends π = −r.

i. r ∼ exogenous (net) real interest rate rate
ii. π ∼ inflation rate, π = (P − P−1)/P−1
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Friedman-Phelps Debate ...

• Phelps:
a. Inflation Acts Like a Tax on Cash Balances -

Seigniorage =
Mt −Mt−1

Pt
=
Mt

Pt
− Pt−1

Pt

Mt−1
Pt−1

≈ M

P

π

1 + π

b. Use of Inflation Tax Permits Reducing Some Other Tax Rate

c. Extra Distortion in Economizing Cash Balances Compensated by Reduced
Distortion Elsewhere.

d. With Distortions a Convex Function of Tax Rates, Would Always Want to
Tax All Goods (Including Money) At Least A Little.

e. Inflation Tax Particularly Attractive if Interest Elasticity of Money Demand
Low.
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Question: Who is Right, Friedman or Phelps?

• Answer: Friedman Right Surprisingly Often

• Depends on Income Elasticity of Demand for Money

• Will Address the Issue From a Straight Public Finance Perspective, In the
Spirit of Phelps.

• Easy to Develop an Answer, Exploiting a Basic Insight From Public Finance.
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Question: Who is Right, Friedman or Phelps? ...

Some Basic Ideas from Ramsey Theory
• Policy, π, Belonging to the Set of ‘Budget Feasible’ Policies, A.
• Private Sector Equilibrium Allocations, Equilibrium Allocations, x,

Associated with a Given π; x ∈ B.

• Private Sector Allocation Rule, mapping from π to x (i.e., π : A→ B).
• Ramsey Problem: Maximize, w.r.t. π, U(x(π)).
• Ramsey Equilibrium: π∗ ∈ A and x∗, such that π∗ solves Ramsey Problem

and x∗ = x(π∗). ‘Best Private Sector Equilibrium’.
• Ramsey Allocation Problem: Solve, x̃ = argmax U(x) for x ∈ B

• Alternative Strategy for Solving the Ramsey Problem:
a. Solve Ramsey Allocation Problem, to Find x̃.
b. Execute the Inverse Mapping, π̃ = x−1(x̃).

c. π̃ and x̃ Represent a Ramsey Equilibrium.

• Implementability Constraint: Equations that Summarize Restrictions on
Achievable Allocations, B, Due to Distortionary Tax System.
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Question: Who is Right, Friedman or Phelps? ...

 

Policy, π 

Set, A, of Budget-
Feasible Policies 

Private sector Allocation 
Rule, x(π)

Set, B, of Private Sector 
Allocations Achievable by 
Some Budget-Feasible Policy 

Private Sector 
Equilibrium 

Allocations, x

Utility 
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Example

• Households:

max
c,l

u(c, l)

c ≤ z(1− τ )l,

z ∼ wage rate

τ ∼ labor tax rate
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Example ...

• Household Problem Implies Private Sector Allocation Rules, l(τ ), c(τ ),
defined by:

ucz(1− l) + ul = 0, c = (1− τ )zl

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
  

l(τ) l

u[z(1-τ)l,l] ucz(1-τ)+ul=0 

Private Sector Allocation Rules: 
l(τ),  c(τ) = z(1-τ)l 
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Example ...

• Ramsey Problem:

max
τ

u(c(τ ), l(τ ))

subject to g ≤ zl(τ )τ

• Ramsey Equilibrium: τ ∗, c∗, l∗ such that

a. c∗ = c(τ ∗), l∗ = l(τ ∗)

∗ ‘Private Sector Allocations are a Private Sector Equilibrium’

b. τ ∗ Solves Ramsey Problem

∗ ‘Best Private Sector Equilibrium’
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Analysis of Ramsey Equilibrium

• Simple Utility Specification:

u(c, l) = c− 1
2
l2

• Two Ways to Compute the Ramsey Equilibrium

a. Direct Way: Solve Ramsey Problem (In Practice, Hard)

b. Indirect Way: Solve Ramsey Allocation Problem, or Primal Problem (Can
Be Easy)
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Analysis of Ramsey Equilibrium ...

Direct Approach
• Private Sector Allocation Rules:

c(τ ) = z2(1− τ )2, l(τ ) = z(1− τ )

• ‘Utility Function’ for Ramsey Problem:

u(c(τ ), l(τ )) =
1

2
z2(1− τ )2

• Constraint on Ramsey Problem:
g ≤ zl(τ )τ = z2(1− τ )τ

• Ramsey Problem:
max
τ

1

2
z2(1− τ )2

subject to : g ≤ τz2(1− τ ).

34



Analysis of Ramsey Equilibrium ...

 

¼z2 

g 

τz2(1-τ) ‘Laffer Curve’

0 1 
τ

½z2(1-τ)2

τ1 τ2 

τ* = τ1 =½ -½[ 1 – 4 g/z2 ]½ τ2 =½+½[ 1 – 4 g/z2 ]½

l(τ*) =½{ z+[ z2 – 4 g ]½ } 

A

Government Preferences
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Analysis of Ramsey Equilibrium ...

Indirect Approach
• Approach: Solve Ramsey Allocation Problem, Then ‘Inverse Map’ Back into

Policies
• Problem: Would Like a Characterization of B that Only Has (c, l), Not the

Policies
B = {c, l : ∃τ , with ucz(1− τ ) + ul = 0,

c = (1− τ )zl, g ≤ τzl}
• Solution: Rearrange Equations in B, So That Only (c, l) Appears

(∗) ucc + ull = 0, (∗∗) c + g ≤ zl.

• Conclude: B = D, where:

D =

⎧⎪⎪⎨⎪⎪⎩(c, l) : c + g ≤ zl| {z }
resource constraint

, ucc + ull = 0| {z }
implementability constraint

⎫⎪⎪⎬⎪⎪⎭
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Analysis of Ramsey Equilibrium ...

• Express Ramsey Allocation Problem:

max
c,l

u(c, l), subject to (c, l) ∈ D

• Alternatively:

max
c,l

u(c, l),

s.t. ucc + ull = 0, c + g ≤ zl

• Or,

max
l

1

2
l2

s.t. l2 + g ≤ zl
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Analysis of Ramsey Equilibrium ...

  

0 

Ramsey Allocation Problem: 
 
 

Max ½l2  
Subject to l2 + g ≤  zl 
 
Solution: 
 
l2 = ½{ z + [ z2 - 4g ]½ } 
 
Same Result as Before! 

l2 - zl +g = 0  

½z l1 l2 

g - ¼z2 

½l2
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Analysis of Ramsey Equilibrium ...

Lucas-Stokey Cash-Credit Good Model
• Households
• Firms
• Government
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Analysis of Ramsey Equilibrium ...

Households
• Household Preferences:

∞X
t=0

βtu(c1t, c2t, lt),

c1t ˜ cash goods, c2t ˜ credit goods, lt ˜ labor

• Distinction Between Cash and Credit Goods:

– All Goods Paid With Cash At the Same Time, After Goods Market, in Asset
Market

– Cash Good: Must Carry Cash In Pocket Before Consuming It

Mt ≥ Ptc1t

– Credit Good: No Need to Carry Cash Before Purchase.
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Analysis of Ramsey Equilibrium ...

Household Participation in Asset and Good Markets

• Asset Market: First Half of Period, When Household Settles Financial Claims
Arising From Activities in Previous Asset Market and in Previous Goods
Market.

• Goods Market: Second Half of Period, Goods are Consumed, Labor Effort is
Applied, Production Occurs.
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Analysis of Ramsey Equilibrium ...

t t+1

Asset Market Goods Market 

Sources of Cash for 
Household: 
• Md

t-1 - Pt-1c1,t-1 - Pt-1c2,t-1 
• Rt-1Bd

t-1 
• (1-τt-1)zlt-1 

Uses of Cash 
• Bonds, Bd

t 
• Cash, Md

t 

• c1,t , c2,t Purchased 
• lt Supplied 
• Production Occurs 
• Md

t  Not Less Than  
Ptc1,t 

• Constraint On Households in Asset Market (Budget Constraint)

Md
t +Bd

t

≤ Md
t−1 − Pt−1c1t−1 − Pt−1c2t−1

+Rt−1B
d
t−1 + (1− τ t−1)zlt−1
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Analysis of Ramsey Equilibrium ...

Household First Order Conditions
• Cash versus Credit Goods:

u1t
u2t
= Rt

• Cash Goods Today versus Cash Goods Tomorrow:

u1t = βu1t+1Rt
Pt

Pt+1

• Credit Goods versus Leisure:

u3t + (1− τ t)zu2t = 0.
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Analysis of Ramsey Equilibrium ...

Firms
• Technology: y = zl

• Competition Guarantees Real Wage = z.
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Analysis of Ramsey Equilibrium ...

Government
• Inflows and Outflows in Asset Market (Budget Constraint):

Ms
t −Ms

t−1 +Bs
t| {z }

Sources of Funds

≥ Rt−1B
s
t−1 + Pt−1gt−1 − Pt−1τ t−1zlt−1| {z }

Uses of Funds

• Policy:

π = (Ms
0 ,M

s
1 , ..., B

s
0, B

s
1, ..., τ 0, τ 1, ...)
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Analysis of Ramsey Equilibrium ...

Ramsey Equilibrium
• Private Sector Allocation Rule:

For each policy, π ∈ A, there is a Private Sector Equilibrium:
x = ({c1t} , {c2t} , {lt} , {Mt} , {Bt})

p = ({Pt} , {Rt})
Mt =Ms

t =Md
t

Bt = Bs
t = Bd

t

Rt ≥ 1 (i.e., u1t/u2t ≥ 1)
• Ramsey Problem:

max
π∈A

U(x(π))

• Ramsey Equilibrium:
π∗, x(π∗), p(π∗),

Such that π∗ Solves Ramsey Problem.
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Finding The Ramsey Equilibrium By Solving the
Ramsey Allocation Problem

max
{c1t,c2t,lt}∈D

∞X
t=0

βtu(c1t, c2t, lt),

where D is the set of allocations, c1t, c2t, lt, t = 0, 1, 2, ..., such that

∞X
t=0

βt[u1tc1t + u2tc2t + u3tlt] = u2,0a0,

c1t + c2t + g ≤ zlt,
u1t
u2t
≥ 1,

a0 =
R−1B−1

P0
∼ real value of initial government debt

56



Lagrangian Representation of Ramsey Allocation
Problem

• There is a λ ≥ 0, s. t. Solution to R A Problem Also Solves:

max
{c1t,c2t,lt}

∞X
t=0

βtu(c1t, c2t, lt) + λ

Ã ∞X
t=0

βt[u1tc1t + u2tc2t + u3tlt]− u2,0a0

!
subject to c1t + c2t + g ≤ zlt,

u1t
u2t
≥ 1,

or,

max
{c1t,c2t,lt}

W̄ (c10, c20, l0;λ) +
∞X
t=1

βtWt(c1t, c2t, lt;λ)

subject to : c1t + c2t + g ≤ zlt,
u1t
u2t
≥ 1,

W̄ (c10, c20, l0;λ) = u(c1,0, c2,0, l0) + λ ([u1,0c1,0 + u2,0c2,0 + u3,0l0]− u2,0a0)

W (c1,t, c2,t, lt;λ) = u(c1,t, c2,t, lt) + λ ([u1,tc1,t + u2,tc2,t + u3,tlt)
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Ramsey Allocation Problem

• Lagrangian:

max
{c1t,c2t,lt}

W̄ (c10, c20, l0;λ) +
∞X
t=1

βtW (c1t, c2t, lt;λ)

subject to : c1t + c2t + g ≤ zlt,
u1t
u2t
≥ 1,

W̄ (c10, c20, l0;λ) = u(c1,0, c2,0, l0) + λ ([u1,0c1,0 + u2,0c2,0 + u3,0l0]− u2,0a0)

W (c1,t, c2,t, lt;λ) = u(c1,t, c2,t, lt) + λ ([u1,tc1,t + u2,tc2,t + u3,tlt)

• How to Solve this?
– Fix λ ≥ 0, Solve The Above Problem
– Evaluate Implementability Constraint
– Adjust λ Until Implemetability Constraint is Satisfied

61



Special Structure of Ramsey Allocation Problem

• Given λ (If we Ignore u1t
u2t
≥ 1), Looks Like Standard Optimization Problem:

max
{c1t,c2t,lt}

W̄ (c10, c20, l0;λ) +
∞X
t=1

βtW (c1t, c2t, lt;λ)

s.t. c1t + c2t + g ≤ zlt.

• After First Period, ‘Utility Function’ Constant

• Problem: For Exact Solution, Need λ...Not Easy to Compute!

• But,
– Can Say Much Without Knowing Exact Value of λ (Will Pursue this Idea

Now)
– Under Certain Conditions, Can Infer Value of λ From Data (Will Pursue

this Idea Later)
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Special Structure of Ramsey Allocation Problem ...

• Ignoring u1t
u2t
≥ 1, after Period 1 :

W1(c1, c2, l;λ)

W2(c1, c2, l;λ)
= 1

• ‘Planner’ Equates Marginal Rate of Substitution Between Cash and Credit
Good to Associated Marginal Rate of Technical Substitution
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Restricting the Utility Function

• Utility Function:

u(c1, c2, l) = h(c1, c2)v(l),

h ∼ homogeneous of degree k, v ∼ strictly decreasing.

• Then, u1c1 + u2c2 + u3l = h [kv + v0], so

W (c1, c2, l;λ) = hv + λh [kv + v0] = h(c1, c2)Q(l, λ).

• Conclude - Homogeneity and Separability Imply:

1 =
W1(c1, c2, l;λ)

W2(c1, c2, l;λ)
=
h1(c1, c2, l)Q(l, λ)

h1(c1, c2, l)Q(l, λ)
=
h1(c1, c2, l)

h1(c1, c2, l)
=
u1(c1, c2, l)

u2(c1, c2, l)
.
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Surprising Result: Friedman is Right More Often
Than You Might Expect

• Suppose You Can Ignore u1t/u2t ≥ 1 Constraint. Then, Necessary Condition
of Solution to Ramsey Allocation Problem:

W1(c1, c2, l;λ)

W2(c1, c2, l;λ)
= 1.

• This, In Conjunction with Homogeneity and Separability, Implies:

u1(c1, c2, l)

u2(c1, c2, l)
= 1.

• Note: u1t/u2t ≥ 1 is Satisfied, So Restriction is Redundant Under Homogene-
ity and Separability.

• Conclude: R = 1, So Friedman Right!
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Generality of the Result

• Result is True for the Following More General Class of Utility Functions:

u(c1, c2, l) = V (h(c1, c2), l),

where h is homothetic.

• Analogous Result Holds in ‘Money in Utility Function’ Models and ‘Transac-
tions Cost’ Models (Chari-Christiano-Kehoe, Journal of Monetary Economics,
1996.)

• Actually, strict homotheticity and separability are not necessary.
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Interpretation of the Result

• ‘Looking Beyond the Monetary Veil’ -

– The Connection Between The R = 1 Result and the Uniform Taxation
Result for Non-Monetary Economies

• The Importance of Homotheticity

– The Link Between Homotheticity and Separability, and The Consumption
Elasticity of Money Demand.
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Uniform Taxation Result from Public Finance For
Non-Monetary Economies

• Households:

max
c1,c2,l

u(c1, c2, l) s.t. zl ≥ c1(1 + τ 1) + c2(1 + τ 2)

⇒ c1 = c1(τ 1, τ 2), c2 = c2(τ 1, τ 2), l = l(τ 1, τ 2).

• Ramsey Problem:

max
τ 1,τ 2

u(c1(τ 1, τ 2), c2(τ 1, τ 2), l(τ 1, τ 2))

s.t. g ≥ c1(τ 1, τ 2)τ 1 + c2(τ 1, τ 2)τ 2

• Uniform Taxation Result:
if u = V (h(c1, c2), l), h ∼ homothetic

then τ 1 = τ 2.

Proof : trivial! (just study Ramsey Allocation Problem)
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Similarities to Monetary Economy

• Rewrite Budget Constraint:

zl

1 + τ 2
≥ c1

1 + τ 1
1 + τ 2

+ c2.

• Similarities:

1

1 + τ 2
∼ 1− τ ,

1 + τ 1
1 + τ 2

∼ R.

• Positive Interest Rate ‘Looks’ Like a Differential Tax Rate on Cash and Credit
Goods.

• Have the Same Ramsey Allocation Problem, Except Monetary Economy
Also Has:

u1
u2
≥ 1.
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What Happens if You Don’t Have Homotheticity?

• Utility Function:

u(c1, c2, l) =
c1−σ1

1− σ
+

c1−δ2

1− δ
+ v(l)

• ‘Utility Function’ in Ramsey Allocation Problem:

W (c1, c2, l) = [1 + (1− σ)λ]
c1−σ1

1− σ

+ [1 + (1− δ)λ]
c1−δ2

1− δ
+ v(l) + λv0(l)l
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What Happens if You Don’t Have Homotheticity? ...

• Marginal Rate of Substitution in Ramsey Allocation Problem That Ignores
u1/u2 ≥ 1 Condition:

1 =
W1(c1, c2, l;λ)

W2(c1, c2, l;λ)
=
1 + (1− σ)λ

1 + (1− δ)λ
× u1
u2
,

or, since u1/u2 = R :

R =
1 + (1− δ)λ

1 + (1− σ)λ
• Finding:

δ = σ ⇒ R = 1 (homotheticity case)
δ > σ ⇒ R ≥ 1 Binds, so R = 1
δ < σ ⇒ R > 1.

Note: Friedman Right More Often Than Uniform Taxation Result, Because
u1/u2 ≥ 1 is a Restriction on the Monetary Economy, Not the Barter Economy.
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Consumption Elasticity of Demand

• Homotheticity and Separability Correspond to Unit Consumption Elasticity of
Money Demand.

• Money Demand:

R =
u1
u2
=
h1
h2
= f

µ
c2
c1

¶

= f

Ã
c− M

P
M
P

!

= f̃

µ
c

M/P

¶
.

• Note: Holding R Fixed, Doubling c Implies Doubling M/P
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Money Demand and Failure of Homotheticity

• Money Demand:

R =
u1
u2
=
c−σ1
c−δ2

=

¡
M
P

¢−σ¡
c− M

P

¢−δ
• Taylor Series Approximation About Steady State (m ≡M/P in steady state) :

m̂ =
1

m
c +

σ
δ

¡
1− m

c

¢| {z }×ĉ
Consumption Money Demand Elasticity, εM

− 1

δ m
c−m + σ| {z }×R̂
Interest Elasticity

• Can Verify:

Utility Function Non-Monetary Monetary
Parameters εM Economy Economy
δ > σ εM > 1 τ 2 ≥ τ 1 R = 1
δ < σ εM < 1 τ 2 < τ 1 R > 1
δ = σ εM = 1 τ 1 = τ 2 R = 1
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Bottom Line:

• Friedman is Right (R = 1) When Consumption Elasticity of Money Demand
is Unity or Greater

• Implicitly, High Interest Rates Tax Some Goods More Heavily that Others.
Under Homotheticity and Separability Conditions, Want to Tax Goods at Same
Rate.
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Bottom Line: ...

• What is Consumption Elasticity in the Data?
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• Answer: Not Far From Unity - Velocity and the Interest Rate Are Both
Roughly Where they Were in the 1960, Though Consumption is Higher.
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What To Do, When g, z Are Random?

• Results for Optimal R Completely Unaffected

• Ramsey Principle: Minimize Tax Distortions

– After Bad Shock to Government Constraint:
∗ Tax Capital
∗ Raise Price Level to Reduce Value of Government Debt

– After Good Shock To Government Budget Constraint
∗ Subsidize Capital
∗ Reduce Price Level to Reduce Value of Government Debt
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What To Do, When g, z Are Random? ...

• If there is Staggered Pricing in the Economy, Desirability of Price Volatility
Depends on Two Forces

– Fiscal Force Just Discussed, Which Implies the Price Level Should Be
Volatile

– Relative Price Dispersion Considerations Which Suggest that Prices Should
Not Be Volatile

• Schmitt-Grohe/Uribe and Henry Siu Find:

– For Shocks of the Size of Business Cycles, the Relative Price Dispersion
Considerations Dominate

• Henry Siu Finds:
– For War-Size Shocks, Fiscal Considerations Dominate.
– Some Evidence for this in the Data
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Wars are 
inflationary. Peace 
times are 
deflationary. 
Historically, prices 
soared during wars, 
plunged during 
peace times. Wars 
are trade barriers. 
There is more 
competition and 
technological 
innovation during 
peace times.
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#2

So far, the end of 
the 50-Year Modern 
War hasn’t been 
deflationary globally. 
Easy money has 
averted deflation. 
Nevertheless, 
inflation is the 
lowest in 30 years in 
most industrial 
economies. There is 
some deflation in 
Japan.
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Financing War: Barro versus Ramsey

When War (or Other Large Financing Need) Suddenly Strikes:

• Barro:

– Raise Labor and Other Tax Rates a Small Amount So That When Held
Constant at That Level, Expected Value of War is Financed

– This Minimizes Intertemporal Substitution Distortions

– Involves a Big Increase in Debt in Short Run

– Prediction for Labor Tax Rate: Random Walk.
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Financing War: Barro versus Ramsey ...

• Ramsey:

– Tax Existing Capital Assets (Human, Physical, etc) For Full Amount of
Expected Value of War. Do This at the First Sign of War.

– This Minimizes Intertemporal and Intratemporal Distortions (Don’t Change
Tax Rates on Income at all).

– Reduce Outstanding Debt

– Make Essentially No Change Ever to Labor Tax Rate
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Financing War: Barro versus Ramsey ...

– Example:

∗ Suppose War is Expected to Last Two Periods, Cost: $1 Per Period

∗ Suppose Gross Rate of Interest is 1.05 (i.e., 5%)

∗ Tax Capital 1 + 1/1.05 = 1.95 Right Away.

∗ Debt Falls $0.95 in Period When War Strikes.

– Involves a Reduction of Outstanding Debt in Short Run.

– Prediction for Labor Tax Rate: Roughly Constant.
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A Computational Issue

• Conditional On a Value for λ, Finding Ramsey Allocations Easy (Can Use
Simple Linearization Procedures!)

• Policies Can Then Be Computed From Ramsey Allocations.

– Example: Labor Tax Rate Can Be Computed from Ramsey Allocations By
Solving for τ t :

ul (ct, lt) + uc (ct, lt)× fn (kt, lt)× (1− τ t) = 0

• But, How To Get λ?

– Get it the Hard Way, Outlined Above

– Under Very Limited Conditions, can Calibrate λ

103



Calibrating the Multiplier, λ

• Conditional on λ :

– Nonstochastic Steady State Consumption, Capital Stock, Labor, Labor Tax
Rate Functions of λ :

c = c (λ) , l = l (λ)

– Steady State Policy Variable (debt, labor tax, capital tax rate) Can Be
Computed:

τ (λ) = 1 +
ul (c, l)

uc (c, l) fn (k, l)

• In Practice, τ (λ) is a Monotone Function of λ. Choose λ̂ So That

τ̂ = τ
³
λ̂
´
, τ̂ ∼ Sample Average of Labor Tax Rate
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Problem With Calibrating Multiplier

• Implicitly, this Assumes the Economy Was in an Optimal Policy Regime in the
Historical Sample

• Problem

– When People Compute Optimal Policy, they Want to be Open to the
Possibility that Policy Outcomes are Not Optimal

– Want to Use the Ramsey-Optimal Policies as a Basis For Recommending
Better Policies

• Still, Calibration of λ Works for an Analyst Who Seriously Entertains the
Hypothesis that Policy in the Sample Was Optimal

• Related to Woodford’s Idea of the Timeless Perspective
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Optimal Monetary Policy When the Intertemporal
Budget Constraint Does Not Bind

• Current Generation of Monetary Models Put Government Budget Constraint in
Background by Assuming Presence of Lump Sum Taxes to Balance Budget.

• Ramsey Optimal Policies in These Models Easy to Compute.
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Optimal Monetary Policy When the Intertemporal Budget Constraint Does Not Bind ...

• Suppose:

– You Have a Very Simple Model, With One Equation Characterizing the
Equilibrium of the Private Economy, and One For the Policy Rule.

– The Private Economy Equation is:

πt − βπt+1 − γyt = 0, t = 0, 1, ... (1)

– You Want to Do Optimal Policy. So You Threw Away the Policy Rule.

– The Setup At this Point Has One Equation, (1) in Two Unknowns, πt, yt.
Need More Equations!

– The Additional Equations Come In When We Optimize.
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Optimal Monetary Policy When the Intertemporal Budget Constraint Does Not Bind ...

– Lagrangian Problem:

max
{πt,yt;t=0,1,...}

∞X
t=0

βt{u (πt, yt) + λt [πt − βπt+1 − γyt]}

– Equations that Characterize the Optimum: (1), and

uπ (πt, yt) + λt − βλt−1 = 0

uy(πt, yt)− γλt = 0, t = 0, 1, ...

– We Made Up for the One Missing Equation, By Adding Two Equations
and One New Unknown.
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