
...

Solving Dynamic General Equilibrium Models Using
Log Linear Approximation
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Log-linearization strategy

• Example #1: A Simple RBC Model.
– Define a Model ‘Solution’
– Motivate the Need to Somehow Approximate Model Solutions
– Describe Basic Idea Behind Log Linear Approximations
– Some Strange Examples to be Prepared For

‘Blanchard-Kahn conditions not satisfied’
• Example #2: Bringing in uncertainty.
• Example #3: Stochastic RBC Model with Hours Worked (Matrix Generaliza-

tion of Previous Results)
• Example #4: Example #3 with ‘Exotic’ Information Sets.
• Summary so Far.
• Example #5: Sticky price model with no capital - log linearizing about a

particular benchmark.
– Will exploit the example to derive the nonlinear equilibrium conditions of a

New Keynesian model (will be used later in discussions of optimal policy).
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Log-linearization strategy ...

• Example #6: Log linearization as a strategy to compute the (Ramsey) optimal
policy - a toy example.
– Confronting the time inconsistency property of optimal plans.

• Example #7: Generalization of previous example to arbitrary cases.
• Example #8: Optimal policy in the sticky price model - the importance of the

working capital, or lending channel.

11



Example #1: Nonstochastic RBC Model

Maximize{ct,Kt+1}

∞X
t=0

βt C
1−σ
t

1− σ
,

subject to:

Ct +Kt+1 − (1− δ)Kt = Kα
t , K0 given

First order condition:

C−σt − βC−σt+1

£
αKα−1

t+1 + (1− δ)
¤
,

or, after substituting out resource constraint:

v(Kt,Kt+1,Kt+2) = 0, t = 0, 1, ...., with K0 given.
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Example #1: Nonstochastic RBC Model ...

• ‘Solution’: a function, Kt+1 = g(Kt), such that

v(Kt, g(Kt), g[g(Kt)]) = 0, for all Kt.

• Problem:

This is an Infinite Number of Equations
(one for each possible Kt)
in an Infinite Number of Unknowns
(a value for g for each possible Kt)

• With Only a Few Rare Exceptions this is Very Hard to Solve Exactly
– Easy cases:
∗ If σ = 1, δ = 1⇒ g(Kt) = αβKα

t .
∗ If v is linear in Kt, Kt+1, Kt+1.

– Standard Approach: Approximate v by a Log Linear Function.
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Approximation Method Based on Linearization

• Three Steps
– Compute the Steady State
– Do a Log Linear Expansion About Steady State
– Solve the Resulting Log Linearized System

• Step 1: Compute Steady State -
– Steady State Value of K, K∗ -

C−σ − βC−σ
£
αKα−1 + (1− δ)

¤
= 0,

⇒ αKα−1 + (1− δ) =
1

β

⇒ K∗ =

"
α

1
β − (1− δ)

# 1
1−α

.

– K∗ satisfies:
v(K∗, K∗,K∗) = 0.
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Approximation Method Based on Linearization ...

• Step 2:
– Replace v by First Order Taylor Series Expansion About Steady State:

v1(Kt −K∗) + v2(Kt+1 −K∗) + v3(Kt+2 −K∗) = 0,

– Here,

v1 =
dvu(Kt,Kt+1,Kt+2)

dKt
, at Kt = Kt+1 = Kt+2 = K∗.

– Conventionally, do Log-Linear Approximation:

(v1K) K̂t + (v2K) K̂t+1 + (v3K) K̂t+2 = 0,

K̂t ≡
Kt −K∗

K∗
.

– Write this as:
α2K̂t + α1K̂t+1 + α0K̂t+2 = 0,

α2 = v1K, α1 = v2K, α0 = v3K
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Approximation Method Based on Linearization ...

• Step 3: Solve
– Posit the Following Policy Rule:

K̂t+1 = AK̂t,

Where A is to be Determined.
– Compute A :

α2K̂t + α1AK̂t + α0A
2K̂t = 0,

or
α2 + α1A+ α0A

2 = 0.

– A is the Eigenvalue of Polynomial
• In General: Two Eigenvalues.

– Can Show: In RBC Example, One Eigenvalue is Explosive. The Other Not.
– There Exist Theorems (see Stokey-Lucas, chap. 6) That Say You Should

Ignore the Explosive A.
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Some Strange Examples to be Prepared For

• Other Examples Are Possible:
– Both Eigenvalues Explosive
– Both Eigenvalues Non-Explosive
– What Do These Things Mean?
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Some Strange Examples to be Prepared For ...

• Example With Two Explosive Eigenvalues
• Preferences:

∞X
t=0

βtC
γ
t

γ
, γ < 1.

• Technology:
– Production of Consumption Goods

Ct = kαt n
1−α
t

– Production of Capital Goods

kt+1 = 1− nt.
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Some Strange Examples to be Prepared For ...

• Planning Problem:

max
∞X
t=0

βt

h
kαt (1− kt+1)

1−α
iγ

γ

• Euler Equation:

v(kt, kt+1, kt+2) = −(1− α)kαγt (1− kt+1)
[(1−α)γ−1] + βαk

(αγ−1)
t+1 (1− kt+2)

(1−α)γ

= 0,

t = 0, 1, ...

• Steady State:

k =
αβ

1− α + αβ
.
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Some Strange Examples to be Prepared For ...

• Log-linearize Euler Equation:

α0k̂t+2 + α1k̂t+1 + α2k̂t = 0

• With β = 0.58, γ = 0.99, α = 0.6, Both Roots of Euler Equation are
explosive:

−1.6734, − 1.0303

• Other Properties:
– Steady State:

0.4652

– Two-Period Cycle:

0.8882, 0.0870
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Some Strange Examples to be Prepared For ...

• Meaning of Stokey-Lucas Example
– Illustrates the Possibility of All Explosive Roots
– Economics:
∗ If Somehow You Start At Single Steady State, Stay There
∗ If You are Away from Single Steady State, Go Somewhere Else

– If Log Linearized Euler Equation Around Particular Steady State Has Only
Explosive Roots
∗ All Possible Equilibria Involve Leaving that Steady State
∗ Log Linear Approximation Not Useful, Since it Ceases to be Valid

Outside a Neighborhood of Steady State
– Could Log Linearize About Two-Period Cycle (That’s Another Story...)
– The Example Suggests That Maybe All Explosive Root Case is Unlikely

– ‘Blanchard-Kahn conditions not satisfied, too many explosive roots’
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Some Strange Examples to be Prepared For ...

• Another Possibility:

– Both roots stable

– Many paths converge into steady state: multiple equilibria

– How can this happen?
∗ strategic complementarities between economic agents.
∗ inability of agents to coordinate.
∗ combination can lead to multiple equilibria, ‘coordination failures’.

– What is source of strategic complementarities?
∗ nature of technology and preferences
∗ nature of relationship between agents and the government.
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Some Strange Examples to be Prepared For ...

• Strategic Complementarities Between Agent A and Agent B
– Payoff to agent A is higher if agent B is working harder

– In following setup, strategic complementarities give rise to two equilibria:
Me Everyone else

work hard take it easy
work hard 3 0
take it easy 1 1

– Everyone ‘take it easy’ equilibrium is a coordination failure: if everyone
could get together, they’d all choose to work hard.

– Example closer to home: every firm in the economy has a ‘pet investment
project’ which only seems profitable if the economy is booming

∗ Equilibrium #1: each firm conjectures all other firms will invest, this
implies a booming economy, so it makes sense for each firm to invest.
∗ Equilibrium #2: each firm conjectures all other firms will not invest, so

economy will stagnate and it makes sense for each firm not to invest.
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Some Strange Examples to be Prepared For ...

– Example even closer to home:
∗ firm production function -

yt = AtK
α
t h

1−α
t ,

At = Y γ
t , Yt ˜ economy-wide average output

∗ resource constraint -
Ct +Kt+1 − (1− δ)Kt = Yt

∗ equilibrium condition -

Yt = yt ‘economy-wide average output is average of individual firms’ production’

∗ household preferences -
∞X
t=0

βtu (Ct, ht)

∗ γ large enough leads to two stable eigenvalues, multiple equilibria.
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Some Strange Examples to be Prepared For ...

• Lack of commitment in government policy can create strategic complementar-
ities that lead to multiple equilibria.

– Simple economy: many atomistic households solve

maxu (c, h) = c− 1
2
l2

c ≤ (1− τ )wh,

w is technologically determined marginal product of labor.

– Government chooses τ to satisfy its budget constraint

g ≤ τwl
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Some Strange Examples to be Prepared For ...

– Laffer curve

g 

Government revenues 

Tax rate Lowest possible τ High τ 

– Two scenarios depending on ‘order of moves’
∗ commitment: (i) government sets τ (ii) private economy acts
· lowest possible τ only possible outcome

∗ no commitment: (i) private economy determines h (ii) government chooses τ
· at least two possible equilibria - lowest possible τ or high τ
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Some Strange Examples to be Prepared For ...

• There is a coordination failure in the Lafffer curve example.....

– If everyone could get together, they would all agree to work hard, so that
the government sets low taxes ex post.

– But, by assumption, people cannot get together and coordinate.
(Also, because individuals have zero impact on government finances, it

makes no sense for an individual person to work harder in the hope that this
will allow the government to set low taxes.)

• There are strategic complementarities in the previous example

– If I think everyone else will not work hard then, because this will require
the government to raise taxes, I have an incentive to also not work hard.

• For an environment like this that leads to too many stable eigenvalues, see
Schmitt-Grohe and Uribe paper on balanced budget, JPE.
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Example #2: RBC Model With Uncertainty

• Model

Maximize E0
∞X
t=0

βt C
1−σ
t

1− σ
,

subject to

Ct +Kt+1 − (1− δ)Kt = Kα
t εt,

where εt is a stochastic process with Eεt = ε, say. Let

ε̂t =
εt − ε

ε
,

and suppose
ε̂t = ρε̂t−1 + et, et˜N(0, σ

2
e).

• First Order Condition:
Et

©
C−σt − βC−σt+1

£
αKα−1

t+1 εt+1 + 1− δ
¤ª
= 0.
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Example #2: RBC Model With Uncertainty ...

• First Order Condition:
Etv(Kt+2,Kt+1,Kt, εt+1, εt) = 0,

where
v(Kt+2,Kt+1,Kt, εt+1, εt)

= (Kα
t εt + (1− δ)Kt −Kt+1)

−σ

−β (Kα
t+1εt+1 + (1− δ)Kt+1 −Kt+2)

−σ

×
£
αKα−1

t+1 εt+1 + 1− δ
¤
.

• Solution: a g(Kt, εt), Such That

Etv (g(g(Kt, εt), εt+1), g(Kt, εt),Kt, εt+1, εt) = 0,

For All Kt, εt.

• Hard to Find g, Except in Special Cases
– One Special Case: v is Log Linear.
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Example #2: RBC Model With Uncertainty ...

• Log Linearization Strategy:

– Step 1: Compute Steady State of Kt when εt is Replaced by Eεt

– Step2: Replace v By its Taylor Series Expansion About Steady State.

– Step 3: Solve Resulting Log Linearized System.

• Logic: If Actual Stochastic System Remains in a Neighborhood of Steady
State, Log Linear Approximation Good
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Example #2: RBC Model With Uncertainty ...

• Caveat: Strategy not accurate in all conceivable situations.
– Example: suppose that where I live -

ε ≡ temperature =
½

140 Fahrenheit, 50 percent of time
0 degrees Fahrenheit the other half .

– On average, temperature quire nice: Eε = 70 (like parts of California)

– Let K = capital invested in heating and airconditioning

∗ EK very, very large!
∗ Economist who predicts investment based on replacing ε by Eε would

predict K = 0 (as in many parts of California)

– In standard model this is not a big problem, because shocks are not so
big....steady state value of K (i.e., the value that results eventually when ε
is replaced by Eε) is approximately Eε (i.e., the average value of K when
ε is stochastic).
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Example #2: RBC Model With Uncertainty ...

• Step 1: Steady State:

K∗ =

"
αε

1
β − (1− δ)

# 1
1−α

.

• Step 2: Log Linearize -

v(Kt+2,Kt+1,Kt, εt+1, εt)

' v1 (Kt+2 −K∗) + v2 (Kt+1 −K∗) + v3 (Kt −K∗)

+v3 (εt+1 − ε) + v4 (εt − ε)

= v1K
∗
µ
Kt+2 −K∗

K∗

¶
+ v2K

∗
µ
Kt+1 −K∗

K∗

¶
+ v3K

∗
µ
Kt −K∗

K∗

¶
+v3ε

µ
εt+1 − ε

ε

¶
+ v4ε

µ
εt − ε

ε

¶
= α0K̂t+2 + α1K̂t+1 + α2K̂t + β0ε̂t+1 + β1ε̂t.
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Example #2: RBC Model With Uncertainty ...

• Step 3: Solve Log Linearized System
– Posit:

K̂t+1 = AK̂t +Bε̂t.

– Pin Down A and B By Condition that log-linearized Euler Equation Must
Be Satisfied.
∗ Note:

K̂t+2 = AK̂t+1 +Bε̂t+1
= A2K̂t +ABε̂t +Bρε̂t +Bet+1.

∗ Substitute Posited Policy Rule into Log Linearized Euler Equation:

Et

h
α0K̂t+2 + α1K̂t+1 + α2K̂t + β0ε̂t+1 + β1ε̂t

i
= 0,

so must have:
Et{α0

h
A2K̂t +ABε̂t +Bρε̂t +Bet+1

i
+α1

h
AK̂t +Bε̂t

i
+ α2K̂t + β0ρε̂t + β0et+1 + β1ε̂t} = 0
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Example #2: RBC Model With Uncertainty ...

∗ Then,
Et

h
α0K̂t+2 + α1K̂t+1 + α2K̂t + β0ε̂t+1 + β1ε̂t

i
= Et{α0

h
A2K̂t +ABε̂t +Bρε̂t +Bet+1

i
+α1

h
AK̂t +Bε̂t

i
+ α2K̂t + β0ρε̂t + β0et+1 + β1ε̂t}

= α(A)K̂t + F ε̂t
= 0

where
α(A) = α0A

2 + α1A + α2,

F = α0AB + α0Bρ + α1B + β0ρ + β1

∗ Find A and B that Satisfy:

α(A) = 0, F = 0.
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Example #3 RBC Model With Hours Worked and
Uncertainty

• Maximize

Et

∞X
t=0

βtU(Ct,Nt)

subject to

Ct +Kt+1 − (1− δ)Kt = f(Kt,Nt, εt)

and
Eεt = ε,

ε̂t = ρε̂t−1 + et, et˜N(0, σ
2
e)

ε̂t =
εt − ε

ε
.
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Example #3 RBC Model With Hours Worked and Uncertainty ...

• First Order Conditions:
EtvK(Kt+2, Nt+1,Kt+1, Nt,Kt, εt+1, εt) = 0

and
vN(Kt+1, Nt,Kt, εt) = 0.

where
vK(Kt+2, Nt+1,Kt+1, Nt,Kt, εt+1, εt)

= Uc (f(Kt,Nt, εt) + (1− δ)Kt −Kt+1, Nt)

−βUc (f(Kt+1, Nt+1, εt+1) + (1− δ)Kt+1 −Kt+2, Nt+1)

× [fK(Kt+1, Nt+1, εt+1) + 1− δ]

and,
vN(Kt+1, Nt,Kt, εt)

= UN (f(Kt,Nt, εt) + (1− δ)Kt −Kt+1, Nt)

+Uc (f(Kt,Nt, εt) + (1− δ)Kt −Kt+1, Nt)

×fN(Kt,Nt, εt).

• Steady state K∗ and N∗ such that Equilibrium Conditions Hold with εt ≡ ε.
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Example #3 RBC Model With Hours Worked and Uncertainty ...

• Log-Linearize the Equilibrium Conditions:

vK(Kt+2, Nt+1,Kt+1, Nt,Kt, εt+1, εt)

= vK,1K
∗K̂t+2 + vK,2N

∗N̂t+1 + vK,3K
∗K̂t+1 + vK,4N

∗N̂t + vK,5K
∗K̂t

+vK,6εε̂t+1 + vK,7εε̂t

vK,j ˜ Derivative of vK with respect to jth argument, evaluated in steady state.

vN(Kt+1, Nt,Kt, εt)

= vN,1K
∗K̂t+1 + vN,2N

∗N̂t + vN,3K
∗K̂t + vN,4εε̂t+1

vN,j ˜ Derivative of vN with respect to jth argument, evaluated in steady state.
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Example #3 RBC Model With Hours Worked and Uncertainty ...

• Representation Log-linearized Equilibrium Conditions
– Let

zt =

µ
K̂t+1

N̂t

¶
, st = ε̂t, �t = et.

– Then, the linearized Euler equation is:

Et [α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st] = 0,

st = Pst−1 + �t, �t ∼ N(0, σ2e), P = ρ.

– Here,

α0 =

∙
vK,1K

∗ vK,2N
∗

0 0

¸
, α1 =

∙
vK,3K

∗ vK,4N
∗

vN,1K
∗ vN,2N

∗

¸
,

α2 =

∙
vK,5K

∗ 0
vN,3K

∗ 0

¸
,

β0 =

µ
vK,6ε
0

¶
, β1 =

µ
vK,7ε
vN,4ε

¶
.

• Previous is a Canonical Representation That Essentially All Log Linearized
Models Can be Fit Into (See Christiano (2002).)
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Example #3 RBC Model With Hours Worked and Uncertainty ...

• Again, Look for Solution

zt = Azt−1 +Bst,

where A and B are pinned down by log-linearized Equilibrium Conditions.
• Now, A is Matrix Eigenvalue of Matrix Polynomial:

α(A) = α0A
2 + α1A+ α2I = 0.

• Also, B Satisfies Same System of Log Linear Equations as Before:

F = (β0 + α0B)P + [β1 + (α0A+ α1)B] = 0.

• Go for the 2 Free Elements of B Using 2 Equations Given by

F =

∙
0
0

¸
.
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Example #3 RBC Model With Hours Worked and Uncertainty ...

• Finding the Matrix Eigenvalue of the Polynomial Equation,

α(A) = 0,

and Determining if A is Unique is a Solved Problem.
• See Anderson, Gary S. and George Moore, 1985, ‘A Linear Algebraic

Procedure for Solving Linear Perfect Foresight Models,’ Economic Letters, 17,
247-52 or Articles in Computational Economics, October, 2002. See also, the
program, DYNARE.
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Example #3 RBC Model With Hours Worked and Uncertainty ...

• Solving for B
– Given A, Solve for B Using Following (Log Linear) System of Equations:

F = (β0 + α0B)P + [β1 + (α0A + α1)B] = 0

– To See this, Use

vec(A1A2A3) = (A03 ⊗A1) vec(A2),

to Convert F = 0 Into

vec(F 0) = d + qδ = 0, δ = vec(B0).

– Find B By First Solving:

δ = −q−1d.
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Example #4: Example #3 With ‘Exotic’
Information Set

• Suppose the Date t Investment Decision is Made Before the Current Realiza-
tion of the Technology Shock, While the Hours Decision is Made Afterward.

• Now, Canonical Form Must Be Written Differently:

Et [α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st] = 0,

where
EtXt =

∙
E [X1t|ε̂t−1]
E [X2t|ε̂t]

¸
.

• Convenient to Change st:

st =

µ
ε̂t
ε̂t−1

¶
, P =

∙
ρ 0
1 0

¸
, �t =

µ
et
0

¶
.

• Adjust βi’s:

β0 =

µ
vK,6ε 0
0 0

¶
, β1 =

µ
vK,7ε 0
vN,4ε 0

¶
,
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Example #4: Example #3 With ‘Exotic’ Information Set ...

• Posit Following Solution:
zt = Azt−1 +Bst.

• Substitute Into Canonical Form:
Et [α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st]

= α(A)zt−1 + EtFst + Etβ0�t+1 = α(A)zt−1 + EtFst = 0,
• Then,

EtFst = Et
∙
F11 F12
F21 F22

¸
st = Et

∙
F11ε̂t + F12ε̂t−1
F21ε̂t + F22ε̂t−1

¸
=

∙
0 F12 + ρF11
F21 F22

¸
st = F̃ st.

• Equations to be solved:
α(A) = 0, F̃ = 0.

• F̃ Only Has Three Equations How Can We Solve for the Four Elements of B?
• Answer: Only Three Unknowns in B Because B Must Also Obey Information

Structure:
B =

∙
0 B12
B21 B22

¸
.
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Summary so Far

• Solving Models By Log Linear Approximation Involves Three Steps:
a. Compute Steady State
b. Log-Linearize Equilibrium Conditions
c. Solve Log Linearized Equations.

• Step 3 Requires Finding A and B in:
zt = Azt−1 +Bst,

to Satisfy Log-Linearized Equilibrium Conditions:
Et [α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st]

st = Pst−1 + �t, �t ∼ iid
• We are Led to Choose A and B so that:

α(A) = 0,

(standard information set) F = 0,

(exotic information set) F̃ = 0

and Eigenvalues of A are Less Than Unity In Absolute Value.
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Example #5: A Sticky Price Model
(Clarida-Gali-Gertler)

• Technology grows forever: equilibrium of model has no constant steady state.

• Deviations of the equilibrium from a particular benchmark (‘natural equilib-
rium’) does have a steady state.

• Model is approximately log-linear around natural equilibrium allocations.

• Natural equilibrium

– allocations in which the two potential inefficiencies in the model have been
eliminated

– inefficiencies: aggregate employment may be too low because of monopoly
power and aggregate labor productivity may be too low relative to aggregate
labor input because of price distortions.
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Example #5: A Sticky Price Model (Clarida-Gali-Gertler) ...

• Model:

– Households choose consumption and labor.

– Monopolistic firms produce and sell output using labor, subject to sticky
prices

– Monetary authority obeys a Taylor rule.
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Household

• Preferences & budget constraint:

E0

∞X
t=0

βt

⎛⎜⎝logCt − exp (τ t)
N1+ϕ

t

1 + ϕ
− υ

³
PtCt

Md
t

´1+σq
1 + σq

⎞⎟⎠ , τ t = λτt−1 + ετt .

PtCt +Md
t +Bt+1 ≤Md

t−1 +BtRt−1 +WtNt + Transfers and profitst

• Household efficiency conditions (ignore money because υ is small):

C−1t = βEtC
−1
t+1Rt/π̄t+1,

π̄t+1 ≡
Pt+1

Pt
,

MRSt = exp (τ t)N
ϕ
t Ct =

Wt

Pt
.
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Firms

• Final Good Firms (simple!)

– Buy Yi,t, i ∈ [0, 1] at prices Pi,t and sell Yt at price Pt

– Technology:

Yt =

µZ 1

0

Y
ε−1
ε

i,t di

¶ ε
ε−1

, ε ≥ 1. (1)

– Demand for intermediate good (fonc for optimization of Yi,t):

Yi,t = Yt

µ
Pi,t

Pt

¶−ε
(2)

– Eqs (1) and (2) imply:

Pt =

µZ 1

0

P
(1−ε)
i,t di

¶ 1
1−ε

(3)
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Firms ...

• Intermediate Good Firms (an astounding amount of algebra!)

– Technology:
Yi,t = AtNi,t, at = logAt,

∆at = ρ∆at−1 + εt.

– Marginal cost of production for ith firm (with subsidy, νt) :

st =

net of subsidyz }| {
(1− νt)

‘Normal’ Marginal Costz}|{
Wt

AtPt

fraction, ψ, of labor costs requires bank financez }| {
(1− ψ + ψRt)

– Calvo price-setting frictions:

∗ A fraction, θ, of intermediate good firms cannot change price:
Pi,t = Pi,t−1

∗ A fraction, 1− θ, set price optimally:
Pi,t = P̃t

88



Firms ...

• Decision of intermediate good firm

– Only choice problem: optimize price, Pi,t, whenever opportunity arises.

– Otherwise, always produce the quantity dictated by demand.

• The firm’s periodic optimization gives rise to equilibrium conditions needed to
solve the model.

– Ultimate equilibrium conditions simple.

– Lot’s of (simple) algebra to get them.
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Firms ...

• Solving intermediate good firm optimization problem
– Discounted profits:

Et

∞X
j=0

βj
Lagrange multiplier on household budget constraintz}|{

υt+j

period t+j profits sent to householdz }| {" revenuesz }| {
Pi,t+jYi,t+j −

total costz }| {
Pt+jst+jYi,t+j

#

– Each of the 1− θ firms that have opportunity to reoptimize price, Pi,t, select
P̃t so maximize:

Et

∞X
j=0

βj

in selecting price, firm only cares about
future states in which it can’t reoptimizez}|{

θj υt+j
£
P̃tYi,t+j − Pt+jst+jYi,t+j

¤
.
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Firms ...

• Substitute out for intermediate good firm output using demand curve:

Et

∞X
j=0

(βθ)j υt+j
£
P̃tYi,t+j − Pt+jst+jYi,t+j

¤
= Et

∞X
j=0

(βθ)j υt+jYt+jP
ε
t+j

£
P̃ 1−εt − Pt+jst+jP̃

−ε
t

¤
.

• Differentiate with respect to P̃t :

Et

∞X
j=0

(βθ)j υt+jYt+jP
ε
t+j

h
(1− ε)

¡
P̃t

¢−ε
+ εPt+jst+jP̃

−ε−1
t

i
= 0,

or,

Et

∞X
j=0

(βθ)j υt+jYt+jP
ε+1
t+j

"
P̃t

Pt+j
− ε

ε− 1st+j

#
= 0.

• When θ = 0, get standard result - price is fixed markup over marginal cost.
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Firms ...

• Substitute out the multiplier:

Et

∞X
j=0

(βθ)j

marginal utility of a dollar = υt+jz }| {
u0 (Ct+j)

Pt+j
Yt+jP

ε+1
t+j

"
P̃t

Pt+j
− ε

ε− 1st+j

#
= 0.

• Use utility functional form and goods market clearing condition, Ct+j = Yt+j :

Et

∞X
j=0

(βθ)j P ε
t+j

"
P̃t

Pt+j
− ε

ε− 1st+j

#
= 0.

or,

Et

∞X
j=0

(βθ)j (Xt,j)
−ε
∙
p̃tXt,j −

ε

ε− 1st+j
¸
= 0,

p̃t =
P̃t

Pt
, Xt,j =

½ 1
π̄t+jπ̄t+j−1···π̄t+1, j ≥ 1

1, j = 0.
, Xt,j = Xt+1,j−1

1

π̄t+1
, j > 0
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Firms ...

• Want p̃t in:

Et

∞X
j=0

(βθ)j (Xt,j)
−ε
∙
p̃tXt,j −

ε

ε− 1st+j
¸
= 0

• Solve for p̃t :

p̃t =
Et

P∞
j=0 (βθ)

j (Xt,j)
−ε ε

ε−1st+j

Et

P∞
j=0 (βθ)

j (Xt,j)
1−ε =

Kt

Ft
,

• We’ve almost finished solving the intermediate firm problem!

• But, still need expressions for Kt, Ft.
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Firms ...

Kt = Et

∞X
j=0

(βθ)j (Xt,j)
−ε ε

ε− 1st+j

=
ε

ε− 1st + βθEt

∞X
j=1

(βθ)j−1
µ
1

π̄t+1
Xt+1,j−1

¶−ε
ε

ε− 1st+j

=
ε

ε− 1st + βθEt

µ
1

π̄t+1

¶−ε ∞X
j=0

(βθ)j X−εt+1,j

ε

ε− 1st+1+j

=
ε

ε− 1st + βθ

=Et by LIMEz }| {
EtEt+1

µ
1

π̄t+1

¶−ε ∞X
j=0

(βθ)j X−εt+1,j

ε

ε− 1st+1+j

=
ε

ε− 1st + βθEt

µ
1

π̄t+1

¶−ε exactly Kt+1!z }| {
Et+1

∞X
j=0

(βθ)j X−εt+1,j

ε

ε− 1st+1+j

=
ε

ε− 1st + βθEt

µ
1

π̄t+1

¶−ε
Kt+1
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Firms ...

• So,

Kt =
ε

ε− 1st + βθEt

µ
1

π̄t+1

¶−ε
Kt+1.

• Simplify marginal cost term:

ε

ε− 1st =
ε

ε− 1 (1− νt)
Wt

AtPt
(1− ψ + ψRt)

=
ε

ε− 1 (1− νt)

=Wt
Pt

by household optimizationz }| {
exp (τ t)N

ϕ
t Ct

1− ψ + ψRt

At
.
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Firms ...

• Conclude:

– Optimal price:

p̃t =
Et

P∞
j=0 (βθ)

j (Xt,j)
−ε ε

ε−1st+j

Et

P∞
j=0 (βθ)

j (Xt,j)
1−ε =

Kt

Ft
,

where

Kt = (1− νt)
ε

ε− 1
exp (τ t)N

ϕ
t Ct

At
(1− ψ + ψRt) + βθEt

µ
1

π̄t+1

¶−ε
Kt+1.

Similarly,

Ft ≡ Et

∞X
j=0

(βθ)j (Xt,j)
1−ε = 1 + βθEt

µ
1

π̄t+1

¶1−ε
Ft+1
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Aggregate Conditions

• We now have optimization conditions for households and firms.

• Need some aggregate conditions:

– Relationship among prices

– Relationship between aggregate inputs (e.g., technology, At, and labor, Nt)
and aggregate output (e.g., Yt).
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Aggregate Conditions ...

• Aggregate Price Relationship

Pt =

∙Z 1

0

P
(1−ε)
i,t di

¸ 1
1−ε

=

∙Z
firms that reoptimize price

P
(1−ε)
i,t di +

Z
firms that don’t reoptimize price

P
(1−ε)
i,t di

¸ 1
1−ε

all reoptimizers choose same pricez}|{= ∙
(1− θ) P̃

(1−ε)
t +

Z
firms that don’t reoptimize price

P
(1−ε)
i,t di

¸ 1
1−ε
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Aggregate Conditions ...

• Rewrite integral of prices of intermediate good firms that do not reoptimize:Z
firms that don’t reoptimize price in t

P
(1−ε)
i,t di

add over prices, weighted by # of firms posting that pricez}|{=

Z ⎡⎣‘number’ of firms that had price, P (ω), in t−1 and were not able to reoptimize in tz }| {
ft−1,t (ω) P (ω)(1−ε)

⎤⎦ dω
In principle, HARD integral to evaluate!
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Aggregate Conditions ...

• By Calvo randomization assumption:

ft−1,t (ω) = θ ×
total ‘number’ of firms with price P (ω) in t−1z }| {

ft−1 (ω) , for all ω

• Substituting:

Z
firms that don’t reoptimize price

P
(1−ε)
i,t di =

Z
ft−1,t (ω)P (ω)

(1−ε) dω

= θ

Z
ft−1 (ω)P (ω)

(1−ε) dω

= θP
(1−ε)
t−1

• Trivial!
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Aggregate Conditions ...

• Conclude that the following relationship holds between prices:

Pt =
h
(1− θ) P̃

(1−ε)
t + θP

(1−ε)
t−1

i 1
1−ε

.

• Divide by Pt :

1 =

"
(1− θ) p̃

(1−ε)
t + θ

µ
1

π̄t

¶(1−ε)# 1
1−ε

• Rearrange:

p̃t =

"
1− θπ̄

(ε−1)
t

1− θ

# 1
1−ε
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Aggregate Conditions ...

• Aggregate inputs and outputs

– Technically, there is no ‘aggregate production function’:

i.e., simple relationship between output, Yt, and aggregate inputs, Nt, At

– Aggregate output, Yt, is not only a function of total labor input, Nt, and At,
but also of the distribution of labor input among intermediate goods.

– Tak Yun (JME) developed a simple characterization of the connection
between N , A, Y and the distribution of resources.
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Aggregate Conditions ...

– Define Y ∗t :

Y ∗t =

Z 1

0

Yi,tdi

Ã
=

Z 1

0

AtNi,tdi
labor market clearingz}|{= AtNt

!

demand curvez}|{= Yt

Z 1

0

µ
Pi,t

Pt

¶−ε
di

= YtP
ε
t

Z 1

0

(Pi,t)
−ε di

= YtP
ε
t (P

∗
t )
−ε

where

P ∗t ≡
∙Z 1

0

P−εi,t di

¸−1
ε

=
h
(1− θ) P̃−εt + θ

¡
P ∗t−1

¢−εi−1ε
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Aggregate Conditions ...

– Relationship between aggregate inputs and outputs:

Yt =

µ
P ∗t
Pt

¶ε

Y ∗t

= p∗tAtNt,

where
p∗t ≡

µ
P ∗t
Pt

¶ε

.

– ‘Efficiency distortion’, p∗t :

p∗t :

½
≤ 1
= 1 Pi,t = Pj,t, all i, j

– When prices of different intermediate goods differ, then resources allocated
inefficiently.
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Aggregate Conditions ...

– Example:

Pj,t =

½
P 1 0 ≤ j ≤ α
P 2 α ≤ j ≤ 1 .

– Then

p∗t =

µ
P ∗t
Pt

¶ε

=

⎛⎜⎜⎜⎜⎝
∙
α + (1− α)

³
P 2

P 1

´−ε¸−1ε
h
α + (1− α)

¡
P 2

P 1

¢1−εi 1
1−ε

⎞⎟⎟⎟⎟⎠
ε

α = 0.5, ε = 5

0.5 1 1.5 2 2.5 3
0.85

0.9

0.95

1
distortion, p∗ 

P1/P2
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Summary of Equilibrium Conditions

• Combining efficiency condition of intermediate firms with household static
efficiency:

Kt = (1− νt)
ε

ε− 1
exp (τ t)N

ϕ
t Ct

At
(1− ψ + ψRt) + βθEtπ̄

ε
t+1Kt+1 (CGG1)

Ft = 1 + βθEtπ̄
ε−1
t+1Ft+1 (CGG2)

• Intermediate good firm optimality and restriction across prices:

=p̃t by firm optimalityz}|{
Kt

Ft
=

=p̃t by restriction across pricesz }| {"
1− θπ̄

(ε−1)
t

1− θ

# 1
1−ε

(CGG3)
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Summary of Equilibrium Conditions ...

• Law of motion for efficiency distortion:

p∗t =

⎡⎣(1− θ)

Ã
1− θπ̄

(ε−1)
t

1− θ

! ε
ε−1

+
θπ̄εt
p∗t−1

⎤⎦−1 (CGG4)

• Household intertemporal condition:

1

Ct
= βEt

1

Ct+1

Rt

π̄t+1
(CGG5)

• Aggregate inputs and outputs:

Ct = p∗tAtNt (CGG6)

• 8 unknowns - νt, Ct, p
∗
t , Nt, π̄t,Kt, Ft, Rt - 6 equations.

• Need two more equations to close the model!
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Two Ways to Close the Model: Ramsey-Optimal
and Exogenous Policy

• Choose Ramsey-optimal policy (I substituted out Ct):

max
νt,p∗t ,Nt,Rt,π̄t,Ft,Kt

E0

∞X
t=0

βt{
Ã
logNt + log p

∗
t − exp (τ t)

N1+ϕ
t

1 + ϕ

!
+λ1t

∙
1

p∗tNt
−Et

Atβ

p∗t+1At+1Nt+1

Rt

π̄t+1

¸
+λ2t

⎡⎣ 1
p∗t
−

⎛⎝(1− θ)

Ã
1− θ (π̄t)

ε−1

1− θ

! ε
ε−1

+
θπ̄εt
p∗t−1

⎞⎠⎤⎦
+λ3t

£
1 +Etπ̄

ε−1
t+1βθFt+1 − Ft

¤
+λ4t

∙
(1− νt)

ε

ε− 1 exp (τ t)N
1+ϕ
t p∗t (1− ψ + ψRt) + Etβθπ̄

ε
t+1Kt+1 −Kt

¸
+λ5t

"
Ft

∙
1− θπ̄ε−1t

1− θ

¸ 1
1−ε

−Kt

#
}
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Two Ways to Close the Model: Ramsey-Optimal and Exogenous Policy ...

• Ramsey-Optimal policy

– Unknowns: 7 plus 5 multipliers = 12.

– Equations: 5 plus 7 Ramsey first order conditions = 12

– Can solve this system using the linearization methods

– Can ask: should we stabilize inflation, π̄t, the price level, Pt?

– More on this later...
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Two Ways to Close the Model: Ramsey-Optimal and Exogenous Policy ...

• Another way to close the model: add two exogenous equations

– Taylor rule: designed so that in steady state, π̄ = 1.

– Exogenous setting for νt : eliminate the labor wedge,

(1− νt)
ε

ε− 1 (1− ψ + ψRt) = 1

• Steady state (delete time subscripts from variables in CCG1-CGG5 and solve):

R =
1

β
, p∗ = 1, F = K =

1

1− βθ
, N = exp

µ
− τ

1 + ϕ

¶
= 1 (since τ = 0).

129



Two Ways to Close the Model: Ramsey-Optimal and Exogenous Policy ...

• Natural equilibrium: absence of price distortions induces cross-industry
efficiency:

Ni,t = Nt all i
so that

Yt = AtNt, yt = at + nt (4)

– Labor market efficiency (in logs):
log MRStz }| {

ct + ϕnt + τ t =
log MPL,tz}|{

at (5)

– Combine (4) and (5):
at = yt + ϕ (yt − at) + τ t

so that natural level of output and employment is:

y∗t = at −
1

1 + ϕ
τt, n

∗
t = y∗t − at = −

1

1 + ϕ
τt
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Two Ways to Close the Model: Ramsey-Optimal and Exogenous Policy ...

• Interest rate in the ‘natural’ equilibrium steers households to choose efficient
levels of employment and consumption.

– Household intertemporal Euler equation:

C−1t = βEtC
−1
t+1Rt/π̄t+1.

– In logs:

−ct = log β + rt + log
£
EtC

−1
t+1/π̄t+1

¤
= log β + rt + log [Et exp (−ct+1 − πt+1)]

' log β + rt + log [exp (−Etct+1 −Etπt+1)]

= rt − rr −Etct+1 −Etπt+1

rr ≡ − log β
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Two Ways to Close the Model: Ramsey-Optimal and Exogenous Policy ...

• Intertemporal Euler equation (repeated)

ct = − [rt −Etπt+1 − rr] + Etct+1

• To determine ‘natural’ real interest rate, rr∗t , substitute ‘natural’ output, y∗t ,
and inflation, πt = 0, into household Euler equation:

y∗tz }| {
at −

1

1 + ϕ
τt = − [rr∗t − rr] + Et

y∗t+1z }| {µ
at+1 −

1

1 + ϕ
τt+1

¶
or,

rr∗t = rr + ρ∆at +
1

1 + ϕ
(1− λ) τ t.

• Recall:
τ t = λτt−1 + ετt , ∆at = ρ∆at−1 + εt
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Two Ways to Close the Model: Ramsey-Optimal and Exogenous Policy ...

• Natural rate:

rr∗t = rr + ρ∆at +
1

1 + ϕ
(1− λ) τ t.

– ∆at jumps
∗ at will keep rising in future (if ρ > 0)
∗ rise in c∗t smaller than rise in c∗t+1
∗ people would like to use financial markets to smooth away from this
∗ discourage this by having a high interest rate.

– τ t jumps
∗ τ t will be less high in the future (unless λ > 1)
∗ c∗t falls more than c∗t
∗ people want to smooth away
∗ discourage this by having a high interest rate.

133



Two Ways to Close the Model: Ramsey-Optimal and Exogenous Policy ...

• Taylor Rule

rt = αrt−1 + (1− α) [rr + φππt + φxxt] + ut, , xt ≡ yt − y∗t .

ut = δut−1 + ηt.

• Intertemporal equations:

Taylor rule equilibrium: yt = − [rt −Etπt+1 − rr] + Etyt+1

Natural equilibrium: y∗t = − [rr∗t − rr] + Ety
∗
t+1

• Subtract, to obtain ‘New Keynesian IS equation’:

xt = − [rt −Etπt+1 − rr∗t ] +Etxt+1
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Two Ways to Close the Model: Ramsey-Optimal and Exogenous Policy ...

• With Taylor rule, cannot rule out fluctuations in inflation. So, in presence of
shocks Ni,t varies across i and:

yt = log p
∗
t + nt + at, log p

∗
t =

½
= 0 if Pi,t = Pj,t for all i, j
≤ 0 otherwise .

• Along a nonstochastic steady state, zero inflation growth path, log p∗t = 0.
Log-linear expansion of equilibrium law of motion for p∗t yields:

p̂∗t ≈ θp̂∗t−1 + 0× π̄t, (→ p∗t ≈ 1)

• We still need the equilibrium conditions associated with sticky prices.
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Two Ways to Close the Model: Ramsey-Optimal and Exogenous Policy ...

• Sticky price equilibrium conditions (i.e., CGG1-CGG3, recall the setting of
νt):

Kt =
exp (τ t)N

ϕ
t Ct

At
+ βθEtπ̄

ε
t+1Kt+1 (CGG1)

Ft = 1 + βθEtπ̄
ε−1
t+1Ft+1 (CGG2) ,

Kt

Ft
=

"
1− θπ̄

(ε−1)
t

1− θ

# 1
1−ε

(CGG3)

• Replace these by log-linear expansion about steady state (use Ct = Yt =
p∗tAtNt, p

∗
t ' 1):

dτt + (1 + ϕ) N̂t +
βθ

1− βθ
Et

h
εb̄πt+1 + K̂t+1

i
=

1

1− βθ
K̂t (CGG1)

βθEt

h
(ε− 1) b̄πt+1 + F̂t+1

i
= F̂t (CGG2)

F̂t +
θ

1− θ
b̄πt = K̂t (CGG3)
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Two Ways to Close the Model: Ramsey-Optimal and Exogenous Policy ...

• equations (CGG1)-(CGG3) reduce to the usual Phillips curve

– substitute (CGG3) into (CGG1)

dτ t + (1 + ϕ) N̂t +
βθ

1− βθ
Et

∙
εb̄πt+1 + F̂t+1 +

θ

1− θ
b̄πt+1¸

=
1

1− βθ

∙
F̂t +

θ

1− θ
b̄πt¸

• substitute (CGG2) into the previous expression, and rearrange:

b̄πt = (1− βθ) (1− θ)

θ

percent deviation of real marginal cost from ssz }| {h
dτ t + (1 + ϕ) N̂t

i
+ βb̄πt+1,
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Two Ways to Close the Model: Ramsey-Optimal and Exogenous Policy ...

• previous equation, repeated:

b̄πt = (1− βθ) (1− θ)

θ

percent deviation of real marginal cost from ssz }| {h
dτ t + (1 + ϕ) N̂t

i
+ βb̄πt+1,

• Note:

xt = yt − y∗t = at + nt −
∙
at −

1

1 + ϕ
τt

¸
= nt +

1

1 + ϕ
τt,

so (recall, N̂t = log(Nt/N) = log(Nt), dτ t = τ t − τ = τ t)

b̄πt = (1− βθ) (1− θ)

θ
(1 + ϕ)xt + βb̄πt+1,

• We now have three equations (‘IS curve, Phillips curve and policy rule’) in
three unknowns: πt, rt, xt.
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Equations of Taylor rule Equilibrium

βEtπt+1 + κxt − πt = 0 (Calvo pricing equation)

− [rt −Etπt+1 − rr∗t ] +Etxt+1 − xt = 0 (intertemporal equation)

αrt−1 + ut + (1− α)φππt + (1− α)φxxt − rt = 0 (policy rule)

rr∗t − ρ∆at −
1

1 + ϕ
(1− λ) τ t = 0 (definition of natural rate)

• rt and rr∗t expressed in deviations from steady state
• Preference and technology shocks enter system through rr∗t
• Optimal equilibrium can be supported by setting nominal rate to natural rate:

rt = rr∗t .

• Practical issue: how to measure rr∗t ???
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Solving the Sticky Price Model

• Exogenous shocks:

st =

⎛⎝ ∆at
ut
τ t

⎞⎠ =

⎡⎣ ρ 0 0
0 δ 0
0 0 λ

⎤⎦⎛⎝ ∆at−1
ut−1
τ t−1

⎞⎠+
⎛⎝ εt

ηt
ετt

⎞⎠
st = Pst−1 + �t

• Equilibrium conditions:⎡⎢⎢⎣
β 0 0 0
1
σ 1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
⎛⎜⎜⎝

πt+1
xt+1
rt+1
rr∗t+1

⎞⎟⎟⎠+
⎡⎢⎢⎣

−1 κ 0 0
0 −1 −1σ

1
σ

(1− α)φπ (1− α)φx −1 0
0 0 0 1

⎤⎥⎥⎦
⎛⎜⎜⎝

πt
xt
rt
rr∗t

⎞⎟⎟⎠
+

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 α 0
0 0 0 0

⎤⎥⎥⎦
⎛⎜⎜⎝

πt−1
xt−1
rt−1
rr∗t−1

⎞⎟⎟⎠+
⎛⎜⎜⎝
0 0 0
0 0 0
0 0 0
0 0 0

⎞⎟⎟⎠ st+1 +

⎛⎜⎜⎝
0 0 0
0 0 0
0 1 0

−σψρ 0 − 1
σ+ϕ (1− λ)

⎞⎟⎟⎠ st

Et [α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st] = 0
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Solving the Sticky Price Model ...

• Collecting:
Et [α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st] = 0

st − Pst−1 − �t = 0.

• Solution:
zt = Azt−1 +Bst

• As before, want A such that

α0A
2 + α1A + α2 = 0,

• Want B such that:

F = (β0 + α0B)P + [β1 + (α0A + α1)B] = 0

• Note: if α = 0, A = 0.
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Examples with Sticky Price Model

φx = 0, φπ = 1.5, β = 0.99, ϕ = 1, ρ = 0.2, θ = 0.75, α = 0, δ = 0.2, λ = 0.5.
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Dynamic Response to a Technology Shock

0 5 10
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• Interest rate not increased enough, employment and inflation rise.
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Examples with Sticky Price Model ...

0 2 4 6
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Dynamic Response to a Preference Shock
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• Under policy rule, interest rate not increased enough.
– This encourages consumption above what is needed for the zero-inflation

equilibrium.
– The extra demand drives up output gap, inflation
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Examples with Sticky Price Model ...
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Dynamic Response to a Monetary Policy Shock
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• Monetary policy shock drives up the interest rate
– High interest rate discourages current consumption
– Output, output gap and employment fall
– Fall in costs causes inflation to drop.

147




