Christiano Econ 411, Fall 2008

MIDTERM EXAM

There are four questions. The total number of possible points is 100, and the number of points per question is given in parentheses. If a question seems ambiguous, state why, sharpen it up and answer the revised question. You have 2 hours. Good luck!

1. (35) The typical household can engage in two types of activities: producing current output and studying at home. Although time spent on studying at home sacrifices current production, it augments future output by increasing the household's future stock of human capital, k_{t+1} . The household has one unit of time available to split between home study and current production. Any given amount of human capital accumulation, k_{t+1}/k_t , leaves an amount of time, h_t , left over for producing current output, where $h_t = \phi(k_{t+1}/k_t)$. Here, ϕ is strictly decreasing, strictly concave, and continuously differentiable, with

$$\phi(1-\delta) = 1 \text{ for some } \delta \in (0,1),$$

$$\phi(1+\lambda) = 0 \text{ for some } \lambda > 0,$$

where

$$\beta \left(1+\lambda\right)^{\alpha\sigma} < 1$$

The variable, h_t , must satisfy $0 \le h_t \le 1$. A household's effective labor input into production is the product of its time and human capital: $h_t k_t$. Total output is related to effective labor input by

$$f(h_t k_t) = (h_t k_t)^{\alpha}, \ \alpha \in (0, 1).$$

The resource constraint for this economy is

$$c_t \le f(h_t k_t),$$

and the initial level of human capital, k_0 , is given. The utility value of a given sequence of consumption, c_t , is given by

$$\sum_{t=0}^{\infty} \beta^t u(c_t), \text{ where } u(c_t) = c_t^{\sigma} / \sigma, \ \sigma < 1.$$

- (a) Write out the sequence problem. Let $v(k_0)$ denote the present discounted value of utility, conditional on the initial stock of human capital, associated with the efficient allocations.
- (b) Show that $v(k) = Ak^{\sigma\alpha}$.
- (c) Show that $-\infty < A < \infty$. Show how the assumed bound on λ is used in establishing this result.
- (d) Show that A can be expressed as the fixed point of a mapping from a bounded subset of the real line into itself. Show that that mapping is a contraction mapping, so that the solution is unique. Display an algorithm that can be used to find the solution.
- (e) Explain why the efficient allocations are attained by a policy function of the form, $g(k) = \theta k$ for some $(1 - \delta) \le \theta \le (1 + \lambda)$.
- 2. (25) Consider the following sequence problem:

$$\max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t),$$

subject to:

$$c_t + k_{t+1} - (1 - \delta)k_t + g \leq f(k_t),$$

$$c_t, k_{t+1} \geq 0, \ u, f \text{ strictly concave, increasing, } g > 0,$$

$$f'(k) \to 0 \text{ as } k \to \infty.$$

Note that this resource constraint differs from the type of constraint considered in class because of the presence of g > 0. We can think of this as a fixed level of government spending.

- (a) Show that there is some $\underline{k} > 0$ such that if ever $k_t < \underline{k}$, then $c_{t+j} \ge 0$ for all $j \ge 0$ is technologically infeasible.
- (b) Show that there is some $\overline{k} > \underline{k}$ such that if $k_t \leq \overline{k}$, then technological feasibility requires $k_{t+j} \leq \overline{k}$ for all $j \geq 0$.
- 3. (20) Consider a household which solves the following problem:

$$v(k, r, w) = \max_{c,l \in B(k, r, w)} u(c, l),$$

where $u : \Re^2_+ \to \Re$ is a strictly concave, twice continuously differentiable, strictly increasing function in its two arguments: consumption, c, and leisure, l. The constraints the household must obey in selecting c, l are summarized by B:

$$B(k, r, w) = \{c, l : 0 \le c \le rk + w(1 - l), \ 0 \le l \le 1\}.$$

Here, r > 0 is the market rental rate on capital and w > 0 is the market wage rate, neither of which the household can control. Also, k > 0 is the household's stock of capital. Prove that the derivative of v with respect to k exists, and display a formula for it. If you make use of a theorem to help prove your result, be sure to state it clearly.

4. (20) Consider the canonical model with the following sequence representation:

$$v(x_0) = \max_{x_{t+1} \in \Gamma(x_t)} \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1}), \ x_t \in X,$$

where $F : A \to R$, $A = \{x, x' : x \in X, x' \in \Gamma(x)\}$, $\Gamma : X \to X$. Suppose A1: X is convex; Γ is non-empty, compact, continuous, A2: F is bounded, continuous and $0 < \beta < 1$. Also, A3: F is strictly increasing in its first argument for each fixed value of its second argument, A4: Γ is monotone. Prove formally that v is strictly increasing. You may simply state results which guarantee v exists and is unique. Be sure to point out the role in the argument of each of the assumptions, A1-A4.