Deriving the Basic Shape of the
Zero Profit Function Analytically

e First, some simple notation.

e Then, the results.



Some Notation and Results
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Limiting Properties

According to our previous result:
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More Limiting Properties

e Obvious results:
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Expressing Zero Profit Condition
In Terms of New Notation

share of entrepreneurial profits (net of monitoring costs) given to bank
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Formula for L indicates that we want to know
about q(®) = I'(®) — uG(@)

The hazard function is increasing for log
normal F (see BGG):
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Differentiate q(®):
q'(@) = 1-F(@) - uoF'(@)
= 1-F(@®) — ph(@®)(1 - F(@))
= [1-F(@®)][1 - uh(®)]

So, q(@) initially rises and then falls. L does

too, explaining the basic shape of the zero
profit function (see BGG(1999, p. 1382)).
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conclude: possible equilibrium @'’s, [0,1.13]






