Deriving the Basic Shape of the Zero Profit Function Analytically

First, some simple notation.

• Then, the results.

Some Notation and Results

Let:
$$G(\bar{\omega}) \equiv \int_0^{\bar{\omega}} \omega dF(\omega) = \begin{bmatrix} \int_0^{\bar{\omega}} \omega & \overbrace{dF(\omega)}^{\bar{\omega}} \\ \int_0^{\bar{\omega}} \omega & F(\bar{\omega}) \end{bmatrix} F(\bar{\omega}) = \underbrace{F[\omega | \omega < \bar{\omega}]}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}_{\text{expected value of } \omega, \text{ conditional on } \omega < \bar{\omega}_{\text{expected value$$

$$\Gamma(\bar{\omega}) \equiv \bar{\omega}[1 - F(\bar{\omega})] + \int_0^{\bar{\omega}} \omega dF(\omega) = \bar{\omega}[1 - F(\bar{\omega})] + E[\omega|\omega < \bar{\omega}]F(\bar{\omega})$$

• Result:

$$G'(\bar{\omega}) = \frac{d}{d\omega} \int_0^{\bar{\omega}} \omega dF(\omega) \stackrel{\text{Leibniz's rule}}{=} \bar{\omega} F'(\bar{\omega})$$

$$\Gamma'(\bar{\omega}) = 1 - F(\bar{\omega}) - \bar{\omega}F'(\bar{\omega}) + G'(\bar{\omega}) = 1 - F(\bar{\omega}) \ge 0$$

$$\Gamma''(\bar{\omega}) = -F'(\bar{\omega}) < 0$$

 $\rightarrow \Gamma(\bar{\omega})$ increasing and concave

• Result:

$$\int_0^{\bar{\omega}} \omega dF(\omega) + \int_{\bar{\omega}}^{\infty} \omega dF(\omega) = 1$$

$$E[\omega|\omega<\bar{\omega}]F(\bar{\omega})+E[\omega|\omega>\bar{\omega}][1-F(\bar{\omega})]=1$$

$$\to E[\omega|\omega > \bar{\omega}][1 - F(\bar{\omega})] = 1 - E[\omega|\omega < \bar{\omega}]F(\bar{\omega})$$

• Then:

$$1 - \Gamma(\bar{\omega}) = 1 - \bar{\omega}[1 - F(\bar{\omega})] - E[\omega|\omega < \bar{\omega}]F(\bar{\omega})$$

$$= 1 - E[\omega|\omega < \bar{\omega}]F(\bar{\omega}) - \bar{\omega}[1 - F(\bar{\omega})]$$

$$= E[\omega|\omega > \bar{\omega}][1 - F(\bar{\omega})] - \bar{\omega}[1 - F(\bar{\omega})]$$

$$= (E[\omega|\omega > \bar{\omega}] - \bar{\omega})[1 - F(\bar{\omega})] \ge 0$$

• Conclude: $0 \le \Gamma(\bar{\omega}) \le 1$, for all $\bar{\omega} \ge 0$.

Limiting Properties

According to our previous result:

$$\overbrace{0 \leq \bar{\omega}[1 - F(\bar{\omega})]}^{\Gamma(\bar{\omega})} + \int_{0}^{\bar{\omega}} \omega dF(\omega) \leq 1, \text{ for all } \bar{\omega} \geq 0$$

- So that, $\bar{\omega}[1 F(\bar{\omega})] \le 1 \int_0^{\bar{\omega}} \omega dF(\omega) \to 0, \text{ as } \bar{\omega} \to \infty$
- But, $0 \le \bar{\omega}[1-F(\bar{\omega})] \le 1-\int_0^{\bar{\omega}}\omega dF(\omega)$, so $\lim_{\bar{\omega}\to\infty}\bar{\omega}[1-F(\bar{\omega})]=0.$
- Conclude: $\lim_{\bar{\omega} \to \infty} \Gamma(\bar{\omega}) = \lim_{\bar{\omega} \to \infty} \bar{\omega} [1 F(\bar{\omega})] + \lim_{\bar{\omega} \to \infty} G(\bar{\omega})$ = 0 + 1 = 1.

More Limiting Properties

Obvious results:

$$\lim_{\bar{\omega}\to\infty} G(\bar{\omega}) = 1, \ \lim_{\bar{\omega}\to 0} G(\bar{\omega}) = 0, \text{ where } G(\bar{\omega}) = \int_0^{\bar{\omega}} \omega dF(\omega)$$

$$\lim_{\bar{\omega}\to 0} \Gamma(\bar{\omega}) = \lim_{\bar{\omega}\to 0} \left(\bar{\omega}[1 - F(\bar{\omega})] + \int_0^{\bar{\omega}} \omega dF(\omega)\right) = 0$$

Finally,

$$\lim_{\bar{\omega} \to 0} [\Gamma(\bar{\omega}) - \mu G(\bar{\omega})] = 0$$

$$\lim_{\bar{\omega} \to \infty} [\Gamma(\bar{\omega}) - \mu G(\bar{\omega})] = 1 - \mu$$

Expressing Zero Profit Condition In Terms of New Notation

share of entrepreneurial profits (net of monitoring costs) given to bank

$$(1 - F(\bar{\omega}))\bar{\omega} + (1 - \mu) \int_0^{\bar{\omega}} \omega dF(\omega) = \frac{1 + R}{1 + R^k} \frac{L - 1}{L}$$

$$\Gamma(\bar{\omega}) - \mu G(\bar{\omega}) = \frac{1+R}{1+R^k} \frac{L-1}{L}$$

$$L = \frac{1}{1 - \frac{1 + R^k}{1 + R} \left[\Gamma(\bar{\omega}) - \mu G(\bar{\omega}) \right]}$$

- Formula for L indicates that we want to know about $q(\bar{\omega}) \equiv \Gamma(\bar{\omega}) \mu G(\bar{\omega})$
- The hazard function is increasing for log normal F (see BGG):

$$h(\bar{\omega}) = \frac{\bar{\omega}F'(\bar{\omega})}{1-F(\bar{\omega})}$$

• Differentiate $q(\bar{\omega})$:

$$q'(\bar{\omega}) = 1 - F(\bar{\omega}) - \mu \bar{\omega} F'(\bar{\omega})$$

$$= 1 - F(\bar{\omega}) - \mu h(\bar{\omega}) (1 - F(\bar{\omega}))$$

$$= [1 - F(\bar{\omega})][1 - \mu h(\bar{\omega})]$$

• So, $q(\bar{\omega})$ initially rises and then falls. L does too, explaining the basic shape of the zero profit function (see BGG(1999, p. 1382)).

Bank zero profit condition, in (leverage, ω - bar) space

conclude: possible equilibrium $\bar{\omega}$'s, [0, 1.13]