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FINAL EXAM ANSWERS

1. Answer for question 1.

i. Sequence of markets equilibrium. At each date, t, the house-
hold maximizes discounted utility from then on:

1X

j=t

¯j¡tu(cj);

subject to a sequence of budget constraints:

cj + ipj · rjkpj + wjn¡ Tj; j ¸ t;

where wj and rj are market prices beyond the control of the
household. The household uses its entire endowment of time
for labor e®ort, n; because it does not value leisure. The ¯rms
choose nt and kp;t such that pro¯ts are maximized, where
pro¯ts are de¯ned as follows:

k°g;tn
(1¡®)
t k®pt ¡ wtnt ¡ rtkt:

A sequence of markets equilibrium is a set of prices and quan-
tities, frt; wt; t ¸ 0g; fyt; ct; n; ipt; igt; t ¸ 0g and taxes, fTt; t ¸
0g such that

² given taxes and prices, the quantities solve the household
problem.

² given the prices, the quantities solve the ¯rm problem.

² given the quantities and a value of s, the government bud-
get constraint is satis¯ed.

² the resource constraint is satis¯ed.
(a) the ¯rst order condition for the household is

uc;t = ¯uc;t+1[rt+1 + 1¡ ±p];
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and the ¯rm sets fkp;t+1 = rt+1; where fkp;t+1 is the marginal
product of private capital. Combining these, and taking functional
forms into account:

µ
ct+1
ct

¶º
= ¯[®

Ã
nkg;t+1
kp;t+1

!(1¡®)
+ 1¡ ±p]:

Let gc denote the gross growth rate of consumption in a balanced
growth path. Then,

(gc)
º = ¯[®(ns)(1¡®) + 1¡ ±p]:

Suppose gc corresponds to some given positive net growth rate,
ie., gc > 1: Then,

s =
1

n

(
1

®

"
gºc
¯
+ ±p ¡ 1

#) 1
1¡®
:

The number in square brackets is positive, so that s is well de¯ned.
Thus the Euler equation is consistent with constant consumption
growth in steady state. To fully answer the question, we need
to establish (i) that the other equations - the household budget
equation and the resource constraint - are also satis¯ed with a
constant consumption growth rate and (ii) that the other quantity
variables display positive growth too. Let gg and gp denote the
gross growth rates of government and private capital, respectively.
Then, the government's policy for choosing kg;t implies:

gg = gp = g;

say. Note that output can be written

k
(1¡®)
gt k®ptn

(1¡®) = kgt(kpt=kgt)
®n(1¡®) = kgts

®n(1¡®):

Divide the resource constraint by kgt:

ct
kgt

+ gt+1 ¡ (1¡ ±g) + gt+1 ¡ (1¡ ±p) = s®n(1¡®):
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So, in a constant growth steady state (i.e., gt+1 = g; constant)
the consumption to public capital ratio is a constant, equal to the
following:

s®n(1¡®) + (1¡ ±g) + (1¡ ±p) + 2g:
But, the consumption to public capital ratio being constant im-
plies:

gc = g:

The household budget constraint is trivially satis¯ed, since it is
equivalent with the resource constraint given the ¯rst order condi-
tions of ¯rms, linear homogeneity of the production function with
respect to ¯rms' choice variables, and the government budget con-
straint.

(b) The planner's problem is: choose ct; kg;t+1; kp;t+1; t ¸ 0 to maxi-
mize discounted utility. After substituting out consumption using
the resource constraint, the problem becomes:

max
fkg;t+1;kp;t+1g

1X

t=0

¯tu[k
(1¡®)
gt n(1¡®)k®pt + (1¡ ±g)kg;t + (1¡ ±p)kp;t

¡kp;t+1 ¡ kg;t+1];

subject to the object in square brackets (consumption) being non-
negative at all dates, and to kg;t; kp;t ¸ 0: The planner's ¯rst order
conditions are:

uc;t = ¯uc;t+1[fkp;t+1 + 1¡ ±p]
uc;t = ¯uc;t+1[fkg;t+1 + 1¡ ±g];

for t = 0; 1; 2; :::: With the functional forms:

µ
ct+1
ct

¶º
= ¯[®k°g;t+1

Ã
n

kp;t+1

!(1¡®)
+ 1¡ ±p]

µ
ct+1
ct

¶º
= ¯[°(kg;t+1)

°¡1n(1¡®) (kp;t+1)
® + 1¡ ±g]:

Substituting out consumption using the resource constraint, these
two equations represent a vector di®erence equation in k; k0; k00,
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where k = [kg kp]
0: There are many solutions to this equation that

are consistent with the given initial condition, k0 = [kg;0 kp;0]: One
can construct the whole family of solutions by indexing them by
k1: di®erent values of k1 give rise, by iterating on the euler equa-
tion, to di®erent sequences of capital. Not all are optimal. Only
the one solution that also satis¯es the transversality condition is
optimal. Thus, satisfying the Euler equation is not su±cient for
an optimum.

(c) Setting ° = 1¡ ® and equating the planner's two ¯rst order con-
ditions, we get:

¯[®

Ã
nkg;t+1
kp;t+1

!(1¡®)
+ 1¡ ±p]

= ¯[(1¡ ®)n(1¡®)
Ã
kp;t+1
kg;t+1

!®
+ 1¡ ±g];

which requires that kp;t+1
kg;t+1

be a particular constant for t = 0; 1; ::::

Call this constant s¤: By setting s = s¤ the government cannot do
better, since this achieves the planner's optimum.

2. To apply the Benveniste and Scheinkman theorem, ¯rst establish that
h 2 int(n : ¹n(k0; k0) · n · 1): To do this, note ¯rst that u[f (k0; n) ¡
k0; n] is di®erentiable in n because (by P1 and T1) u and f are. In
particular, this derivative is

r(n) = uc[f(k
0; n)¡ k0; n]fn(k0; n) + un[f(k0; n)¡ k0; n]:

As n ! 1, r(n) ! ¡1 because un ! ¡1 (by P3) and because uc
and fn go to well-de¯ned ¯nite numbers (see P7). Suppose ¹n > 0: As
n ! ¹n, r(n) ! 1 because uc ! 1 (by P2) and un; fn go to ¯nite
numbers (see P6). Suppose ¹n = 0: As n ! 0, r(n) ! 1 for the
reasons just given, plus the fact that now fn ! 1 too (see T3). Since
r is continuous, the fact that it passes from 1 to ¡1 as n goes from
¹n(k0; k0) to 1; implies that r(n) is zero somewhere on the interior of
this set. But, by P1 and T1, u[f(k0; n)¡ k0; n] is strictly concave in n,
so that a zero derivative is necessary and su±cient for an optimum. It
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follows that the value of n where r(n) = 0 is h(k0; k0): This establishes
h(k0; k0) 2 int(n : ¹n(k0; k0) · n · 1):

Next, it is easily established that there is a neighborhood; D; of k0 such
that k 2 D implies h(k0; k0) is feasible, i.e., ¹n(k; k0) · h(k0; k0) · 1:
This follows from our interiority result for h, and by the continuity of
¹n(k; k0) for k 2 D: The latter re°ects continuity of u and f (see P1 and
T1).

De¯ne
W (k) = u[f(k; h(k0; k0))¡ k0; h(k0; k0)]:

By feasibility of h(k0; k0) and the de¯nition of F (k; k0); it follows that:

F (k; k0) ¸ W (k); k 2 D
F (k0; k0) = W (k0):

Also, by P1 and T1, W (k) is di®erentiable and concave for all k 2
D: All we need to apply the Benveniste and Scheinkman theorem is
concavity of F (k; k0): In class (and the handout) we got strict concavity,
principally from strict concavity on u and f (P1 and T1). But, we also
used that f is strictly increasing in k and n (T1) and that fn is strictly
increasing in k (T6).

To apply the Benveniste and Scheinkman theorem, let V (x) and x be
F (k; k0) and k, respectively (k0 is treated as a constant throughout.)
Let x0 be k0: It then follows that F (k; k0) is di®erentiable at k = k0

and that the derivative there is the derivative of W (k) at k = k0: That
derivative, trivially, is

uc[f(k
0; h(k0; k0))¡ k0; h(k0; k0)]fk(k0; h(k0; k0)):

3. Question 3.

(a) A sequence of markets competitive equilibrium is a set of prices,

fp(st); w(st); r(st+1); R(st); all t; stg
and quantities,

fZ(st); B(st); k(st); n(st); c(st); y(st); all t; stg
such that, for each t; st:
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² given the prices, the quantities solve the household problem.
² given the prices, the quantities solve the ¯rm problem, with
free entry.

² the resource constraint is satis¯ed.
(b) The household fonc's for each t; st:

uc(s
t) = ¯

X

st+1jst
¹(st+1 j st)uc(st+1)r(st+1)

uc(s
t) = ¯

X

st+1jst
¹(st+1 j st)uc(st+1)R(st)

To get the ¯rm fonc's, ¯rst substitute out for capital from its
¯nance constraint (with strict equality). Then, the fonc's for
n(st+1); Z(st); B(st) are, respectively:

fn(s
t+1) = w(st+1)

0 =
X

st+1jst
¹(st+1 j st)uc(st+1)[fk(st+1) + 1¡ ± ¡ r(st+1)]

0 =
X

st+1jst
¹(st+1 j st)uc(st+1)[fk(st+1) + 1¡ ± ¡R(st)];

where fn and fk denote the partial derivatives of the production
function with respect to n and k, respectively.

Combining the household and ¯rm fonc's, we get:

0 = un(s
t) + uc(s

t)fn(s
t)

uc(s
t) = ¯

X

st+1jst
¹(st+1 j st)uc(st+1)[fk(st+1) + 1¡ ±];

for all t; st: It is easily veri¯ed that these ¯rst order conditions
correspond to the solution of the planning problem.

(c) That ¼(st) = 0 follows from two facts: (i) ex ante pro¯ts for the
¯rm are zero because of free entry, and (ii) ex ante pro¯ts are
a weighted average of ex post pro¯ts one period hence. Because
the weights are positive, and because ex post pro¯ts are non-
negative by the cash °ow constraint, it follows that pro¯ts must
be zero in each state of nature and each time period. We can use
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this result to derive the required expression for r(st+1): Note that
by linear homogeneity, output is fk(st+1)k(st) + fn(st+1)n(st+1).
Using ¯rm's ¯rst order condition for labor and substituting into
the ¼(st+1) = 0 equation, we get

[fk(s
t+1) + 1¡ ±](Z(st) +B(st))¡ r(st+1)Z(st)¡R(st)B(st) = 0:

Divide by Z(st) and impose the de¯nition of °(st); and the result
follows.

(d) For all °(st); the quantity allocations of the competitive equilib-
rium coincide with the allocations in the planner's problem. The
latter are independent of the value of °(st):

(e) Rewriting the household fonc:

R(st) =
1

P
st+1jst ¹(st+1 j st)m(st+1) =

1

Etmt+1

;

where m(st+1) = ¯uc(s
t+1)=uc(s

t): In this notation, the household
fonc for equity is:

1 =
X

st+1jst
¹(st+1 j st)m(st+1)r(st+1) = Etmt+1rt+1;

where, hopefully, the simpli¯ed notation is not misleading. Ap-
plying the formula in the hint,

Etmt+1Etrt+1 = Etmt+1rt+1 ¡ Covt(mt+1; rt+1)

= 1¡ Covt(mt+1; rt+1)

But, Etmt+1Etrt+1 = Etrt+1=Rt is by de¯nition the equity pre-
mium, P (st): Substituting for r in the covariance formula, one
gets

Pt = 1¡ Covt(mt+1; rt+1) = 1¡ (1 + °t)Covt(fk;t+1;mt+1);

where °t corresponds to °(st): The reason this substitution works
the way it does is that °t and Rt are constants relative to the date
t information set and because

Covt(fk;t+1 + at;mt+1) = Covt(fk;t+1;mt+1);
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for any at that is constant relative to the time t information set.
The result sought follows from two observations. First, real al-
locations (hence, Covt(fk;t+1;mt+1)) are independent of °t; and
second, the conditional covariance is negative.

4. Question 4. See the answer to question 1 in homework #7.

5. Question 5.

(a) The real business cycle story is that the cycle is driven by a shock
that rotates all production functions up. Given no change in work
e®ort, worker productivity would rise. But, there is a (small)
increase in employment. The increase by itself drives labor pro-
ductivity down because of concavity, but not by enough to com-
pensate for the productivity e®ects of the positive rotation of the
production function. Thus, labor goes up and productivity goes
up. There is some disenchantment with this explanation. Pri-
marily, this re°ects that the measured `productivity' shock seems
correlated with things (like monetary policy and military spend-
ing) that it should not be closely related to in the short run if it
were really productivity.

(b) According to the labor hoarding idea, when productivity goes up
in an expansion, that primarily re°ects a systematic measurement
error. The rise in measured productivity in times like this simply
re°ects increased work e®ort by workers that is not picked up in
the numbers, but which does not correspond to any technological
innovation.

(c) The increasing returns models say the `increasing returns' to labor
may re°ect nonconcave production functions, where productivity
automatically increases with an increase in employment. There
are two types of such models: one in which the increasing returns
is `internal' to the ¯rm, and the other in which the increasing
returns is external to the ¯rm.

8


