Christiano D11-2, Winter 1996

FINAL EXAM ANSWERS

- 1. Answer for question 1.
 - (a) Market decentralizations.
 - i. Sequence of markets equilibrium. At each date, t, the household maximizes discounted utility from then on:

subject to a sequence of budget constraints:

$$c_{j} + i_{pj} \cdot r_{j} k_{pj} + w_{j} n_{j} T_{j} + \frac{1}{4} ; j t;$$

where w_j and r_j are market prices beyond the control of the household. The household uses its entire endowment of time for labor e®ort, n; because it does not value leisure. The ⁻rms choose n_t and $k_{p;t}$ such that pro⁻ts are maximized, where pro⁻ts are de⁻ned as follows:

$$\mathcal{V}_{t} = k_{g;t}^{\circ} n_{t}^{(1_{i} \otimes)} k_{pt}^{\otimes} i w_{t} n_{t} i r_{t} k_{t};$$

A sequence of markets equilibrium is a set of prices and quantities, $fr_t; w_t; t \downarrow 0g; fy_t; c_t; n_t; k_{pt}; k_{gt}; i_{pt}; i_{gt}; t \downarrow 0g taxes, fT_t; t \downarrow 0g; and pro^-ts, f¼_tg; such that$

- ² for each t; given taxes, pro⁻ts and prices, the quantities solve the household problem.
- ² given the prices and sequence of government capital stocks, the quantities solve the ⁻rm problem, for all t.
- ² given the quantities and a value of s, the government budget constraint is satis⁻ed for all t.
- ² the resource constraint is satis⁻ed for all t.

ii. Date zero, Arrow-Debreu equilibrium. Let fptg denote the sequence of date t consumption goods prices, denominated in date 0 consumption units. Let frtg and fwtg denote the sequences of capital rental rates and wage rates, denominated in date t consumption units. The household's budget constraint is:

$$\overset{\textbf{X}}{\underset{t=0}{\times}} p_t[c_t + i_{pt}] \cdot \overset{\textbf{X}}{\underset{t=0}{\times}} p_t[r_r k_{pt} + w_t n_t i_j T_t] + \frac{1}{2} :$$

At date 0, the household enters all markets, and selects quantities to maximize utility.

Consider the ⁻rm problem. At date 0, the ⁻rm rents factors of production at all dates in order to solve

$$\[\] \[\] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \] \[\] \] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \[\] \] \[\] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \] \[\] \$$

subject to the production function, and the given sequences of prices and k_{gt} :

The government's budget constraint is:

$$\mathbf{X}_{t=0} \mathbf{p}_t[\mathbf{i}_{gt \mathbf{i}} \ \mathbf{T}_t] \cdot \mathbf{0}:$$

A date 0 Arrow-Debreu competitive equilibrium is a set of prices fp_t ; r_t ; w_t ; $t \ 0g$; quantities, fy_t ; c_t ; n_t ; k_{pt} ; k_{gt} ; i_{pt} ; i_{gt} ; $t \ 0g$; and a level of pro⁻ts, $\frac{1}{4}$; such that

- ² given the prices and level of pro⁻ts, the quantities solve the household problem.
- ² given the prices and sequence of government capital stocks, the quantities solve the ⁻rm problem
- ² given the quantities and a value of s, the government budget constraint is satis⁻ed.
- ² the resource constraint is satis⁻ed for all t:
- iii. A recursive competitive. First, de ne the household problem. To de ne the problem, for the household to know three numbers: K_p; K_g; and k_p; where the rst two objects are the economy-wide stocks of private and government capital (note

the slight switch in notation regarding government capital), and the individual household's stock of capital. They also need four functions, $\frac{1}{4}(K_p; K_g); r(K_p; K_g); w(K_p; K_g); T(K_p; K_g); I(K_p; K_g); which are the level of pro_ts, competitive rental rate and wage rate, the level of taxes and economy-wide average level of investment. The problem is to choose an investment level, <math>i(K_p; K_g; k_p)$; and a level of employment $n(K_p; K_g; k_p)$ to solve

$$v(\mathsf{K}_{p};\mathsf{K}_{g};\mathsf{k}_{p}) = \max_{i_{g};\hat{n}}u(c) + \ \ v(\mathsf{K}_{p}^{0};\mathsf{K}_{g}^{0};\mathsf{k}_{p}^{0});$$

subject to $0 \cdot \hat{n} \cdot n$; c $_{\circ} 0$; $k_p^0 = (1_i \pm)k_p + i_p$; and

$$\mathsf{K}_{g}^{\emptyset} = (\mathsf{1}_{\mathsf{i}} \ \underline{\mathtt{t}})\mathsf{K}_{g} + \mathsf{I}(\mathsf{K}_{p};\mathsf{K}_{g}); \ \mathsf{c} + \mathsf{i}_{g} \cdot \mathsf{r}(\mathsf{K}_{p};\mathsf{K}_{g})\mathsf{k}_{p} + \mathsf{w}(\mathsf{K}_{p};\mathsf{K}_{g})\mathsf{h}_{\mathsf{i}} \ \mathsf{T}(\mathsf{K}_{p};\mathsf{K}_{g}):$$

The ⁻rm problem is to solve

$$\mathscr{U}(\mathsf{K}_{\mathsf{p}};\mathsf{K}_{\mathsf{g}}) = \max_{\mathsf{k}_{\mathsf{p}};\mathsf{n}}\mathsf{y}_{\mathsf{i}} \mathsf{r}(\mathsf{K}_{\mathsf{p}};\mathsf{K}_{\mathsf{g}})\mathsf{k}_{\mathsf{p}}_{\mathsf{i}} \mathsf{w}(\mathsf{K}_{\mathsf{p}};\mathsf{K}_{\mathsf{g}})\mathsf{n}:$$

The government has to satisfy a period-by-period budget constraint, $i_g = T(K_p; K_g)$: There are two consistency conditions:

$$k_p = K_p$$
; and $i(K_p; K_p; K_g) = I(K_p; K_g)$:

The rst of these says that everyone's individual stock of capital has to equal the aggregate (economy-wide average) stock. The second says that everyone's individual investment decision has to correspond to the economy wide average.

A recursive competitive equilibrium is a set of functions: $\mathcal{M}(K_p; K_g); r(K_p; K_g); w(K_p; K_g); T(K_p; K_g); I(K_p; K_g); i(K_p; K_g; k_p); n(K_p; K_g; k_p); v(K_p; K_g; k_p); which satisfy:$

- ² given ¼; r; w; T; I; the functions v; i and n solve the household problem, for each k_p; K_p; K_g:
- ² for each K_p; K_g; the quantities K_p; ¼(K_p; K_g) and n(K_p; K_g; K_p) solve the ⁻rm problem, given r(K_p; K_g); w(K_p; K_g):
- ² the consistency conditions are satis⁻ed
- ² the resource constraint is satis⁻ed, $c + i_g + i_p \cdot y$; for all K_p ; K_q :

(b) the ⁻rst order condition for the household is

$$u_{c;t} = [u_{c;t+1}[r_{t+1} + 1_i \pm_p];$$

and the rm sets $f_{k_p;t+1} = r_{t+1}$; where $f_{k_p;t+1}$ is the marginal product of private capital. Combining these, and taking functional forms into account:

$$\frac{\mu_{C_{t+1}}}{C_t} \prod_{i=1}^{n_o} = \frac{A_{nk_{g;t+1}}}{k_{p;t+1}} + 1_{i=1} \prod_{j=1}^{n_{e_{ij}}} + 1_{i=1} \prod_{j=1}^{n_{e_{ij}}} \prod_{j=1$$

Let g_c denote the gross growth rate of consumption in a balanced growth path. Then,

$$(g_c)^{\circ} = [(R(ns)^{(1_i R)} + 1_i \pm_p]:$$

Suppose g_c corresponds to some given positive net growth rate, ie., $g_c > 1$: Then,

$$S = \frac{1}{n} \frac{(\prod_{i=1}^{n} g_{c}^{\circ} + \pm_{p} i)}{\frac{1}{n} g_{c}^{\circ}} + \pm_{p} i$$

The number in square brackets is positive, so that s is well de⁻ned. Thus the Euler equation is consistent with constant consumption growth in steady state. To fully answer the question, we need to establish (i) that the other equations - the household budget equation and the resource constraint - are also satis⁻ed with a constant consumption growth rate and (ii) that the other quantity variables display positive growth too. Let g_g and g_p denote the gross growth rates of government and private capital, respectively. Then, the government's policy for choosing $k_{g;t}$ implies:

$$g_{g} = g_{p} = g;$$

say. Note that output can be written

$$k_{gt}^{(1_{i} \ @)}k_{pt}^{@}n^{(1_{i} \ @)} = k_{gt}(k_{pt}=k_{gt})^{@}n^{(1_{i} \ @)} = k_{gt}s^{@}n^{(1_{i} \ @)}:$$

Divide the resource constraint by k_{gt} :

$$\frac{c_t}{k_{gt}} + g_{t+1} i (1 i \pm_g) + g_{t+1} i (1 i \pm_p) = s^{\text{\tiny (B)}} n^{(1i^{\text{\tiny (B)}})}$$

So, in a constant growth steady state (i.e., $g_{t+1} = g$; constant) the consumption to public capital ratio is a constant, equal to the following:

$$s^{(1_i)} n^{(1_i)} + (1_i \pm_g) + (1_i \pm_p) + 2g$$
:

But, the consumption to public capital ratio being constant implies:

$$g_c = g$$
:

The household budget constraint is trivially satis⁻ed, since it is equivalent with the resource constraint given the ⁻rst order conditions of ⁻rms, linear homogeneity of the production function with respect to ⁻rms' choice variables, and the government budget constraint.

(c) The planner's problem is: choose c_t ; $k_{g;t+1}$; $k_{p;t+1}$; t] 0 to maximize discounted utility. After substituting out consumption using the resource constraint, the problem becomes:

$$\max_{\substack{fk_{g;t+1};k_{p;t+1}g\\ i \ k_{g;t+1} \ i \ k_{g;t+1}]}} \frac{1}{t} u[k_{gt}^{(1_{i} \ @)} n^{(1_{i} \ @)} k_{pt}^{@} + (1_{i} \ \pm_{g}) k_{g;t} + (1_{i} \ \pm_{p}) k_{p;t}$$

subject to the object in square brackets (consumption) being non-negative at all dates, and to $k_{g;t}$; $k_{p;t}$, 0: The planner's <code>-rst</code> order conditions are:

$$\begin{array}{rcl} u_{c;t} & = & {}^{-}u_{c;t+1}[f_{k_p;t+1}\,+\,1_{\,i}\,\,\pm_p] \\ u_{c;t} & = & {}^{-}u_{c;t+1}[f_{k_g;t+1}\,+\,1_{\,i}\,\,\pm_g]; \end{array}$$

for $t = 0; 1; 2; \dots$ With the functional forms:

Substituting out consumption using the resource constraint, these two equations represent a vector di[®]erence equation in k; k^0 ; k^{00} ,

where $k = [k_g k_p]^0$: There are many solutions to this equation that are consistent with the given initial condition, $k_0 = [k_{g;0} k_{p;0}]$: One can construct the whole family of solutions by indexing them by k_1 : di®erent values of k_1 give rise, by iterating on the euler equation, to di®erent sequences of capital. Not all are optimal. Only the one solution that also satis⁻es the transversality condition is optimal. Thus, satisfying the Euler equation is not su±cient for an optimum.

(d) Setting $^{\circ} = 1_{i}$ $^{\otimes}$ and equating the planner's two $\bar{}$ rst order conditions, we get:

$$\begin{array}{c} \tilde{\mathbf{A}} & \mathbf{I} & \mathbf{I}_{(1_{i} \otimes)} \\ & & \left[\otimes & \frac{n k_{g;t+1}}{k_{p;t+1}} & \mathbf{I}_{i} \pm_{p} \right] \\ & = & \left[(1_{i} \otimes) n^{(1_{i} \otimes)} & \frac{\tilde{\mathbf{A}}}{k_{g;t+1}} & \mathbf{I}_{i} \pm_{g} \right]; \end{array}$$

which requires that $\frac{k_{p;t+1}}{k_{g;t+1}}$ be a particular constant for t = 0; 1; ...Call this constant s^{α} : By setting $s = s^{\alpha}$ the government cannot do better, since this achieves the planner's optimum.