1. Answer to second question. Establishing quasi-monotonicity is easy.

2. Consider an economy with a large number of identical households, each having preferences, \(\frac{1}{t} \sum_{t=0}^{\infty} u(c_t) \): Suppose the resource constraint is \(c_t + i_t \cdot f(k_t) \); where \(k_{t+1} = i_t + (1 - \varepsilon) k_t \); \(f \) is strictly increasing and concave, \(f'(k) \) ! 1 as \(k \rightarrow 0 \), \(f'(k) \) ! 0 as \(k \rightarrow 1, 0 < \varepsilon < 1 \):

Assume investment, \(i_t \); is irreversible, i.e., \(i_t \geq 0 \): In addition, suppose \(c_t; k_t \geq 0 \) and that \(k_0 > 0 \) is given. Consider the functional equation associated with this problem:

\[
v(k) = \max_{k_0 \in (k)} u(f(k) + (1 - \varepsilon) k \cdot k^0) + v(k^0)
\]

(a) State a set of assumptions on \(\bar{u} \) and \(u \) that guarantee there is a unique, differentiable, concave \(v \) that solves the above functional equation. For each property of \(v \); explain which assumptions are used to get it.

(b) Show that monotonicity of \(i(k) \), Assumption 4.6 in S-L., fails so that one of the conditions of Theorem 4.7 which guarantee strictly increasing \(v \); is not satisfied.

(c) Show that the feasible set for this economy satisfies the following `quasi-monotonicity property': if \(k \leq k' \); then \(\mu(i(k)) + (1 - \varepsilon)(k') \mu(i(k)) \mu(i(k')) \): Here, the sum of a set, say \(X \); and a number, say \(a \); is a new set, \(X + a \); where \(X + a \) \(\cup \) \(fX + a : x \in X \): g;

(d) Show: \(v \) is an increasing function in \(k \): (Hint: (i) following the basic strategy of the proof of Theorem 4.7, it’s enough to establish that the assumptions of Theorem 4.7 with the monotonicity assumption on \(i \); replaced by quasi-monotonicity guarantee \(Tw \) is increasing if \(w \) is; (ii) make use of the fact that if \(k^0 \geq i(k) \); then \(k^0 \geq k^0 + (1 - \varepsilon)(k') \geq k^0 \); \(R^0 > k^0 \); and \(f(k^0) + (1 - \varepsilon)k^0 \); \(R^0 > f(k) + (1 - \varepsilon)k \); \(k^0 \): Can you provide intuition for the fact that \(v \) is increasing even though \(i \); fails to satisfy monotonicity?
3. Consider the economy in question (1); except that $\varepsilon = 1$: Define a recursive competitive equilibrium for this economy, and display explicitly the household's value function ($V(K;k)$ in S-L, p. 30), policy function, $H(K;k)$; the aggregate law of motion for capital, $k^0 = h(k)$; and the aggregate pricing functions, $R(k)$ and $! (k)$; for this economy.