Christiano D11-1, Fall 1999

Notes for MIDTERM Answers

- 1. This is straighforward.
- 2. The interiority assumption on x_t^* guarantees that $v'(x_t^*) = u_1(x_t^*, x_{t+1}^*)$. The rest is easy, once you know the tricks.
- 3. To show that B(k, k') is non-empty requires verifying that $\underline{n} < 1$.
 - (a) The Euler equation can be derived simply by working out the fact that $c_t^* + \varepsilon$, $c_{t+1}^* \varepsilon A$ is a feasible deviation from the optimal path, for some $\varepsilon > 0$ (here, the Inada conditions are helpful). Then, differentiate the present discounted value of utility of the perturbed sequence with respect to ε and evaluate this at $\varepsilon = 0$. Optimality of the original sequence (and, differentiability of the objective) implies that this derivative must be zero.
 - (b) Suppose

$$\lim_{t \to \infty} \beta^t u'(c_t^*) A k_t^* = \Delta > 0.$$

(We need not consider the negative Δ case, because of the assumption that β , u' and k^* are non-negative.) The first order condition implies:

$$u_{c,0}^* = (\beta A)^t u_{c,t}^*, \ t = 0, 1, 2, \dots$$

Then,

$$\lim_{t\to\infty}\beta^t u'(c^*_t)Ak^*_t = u^*_{c,0}A\lim_{t\to\infty}\frac{k^*_t}{A^t} = \Delta,$$

or, for each $\delta > 0$ there exists a T such that

$$\left|\frac{k_t^*}{A^t} - \frac{\Delta}{u_{c,0}^*A}\right| < \delta, \text{ for all } t \ge T.$$

This places a lower bound on k_t^* :

$$\frac{k_t^*}{A^t} > \frac{\Delta}{u_{c,0}^* A} - \delta, \text{ for all } t \ge T.$$

In particular, consider δ sufficiently small that the last expression is positive.

Consider the following pertubation on $\{c_t^*, k_{t+1}^*\}_{t=0}^{\infty}, \{c_t, k_{t+1}\}_{t=0}^{\infty}$. Let the two sequences coincide up to date T. Then, let $c_T = c_T^* + \varepsilon$, $c_t = c_t^*$ for all t > T. This sequence of consumptions obviously generates higher utility than the $\{c_t^*\}_{t=0}^{\infty}$ sequence. If the sequence is also feasible, then we have a contradiction to the notion that $\{c_t^*, k_{t+1}^*\}_{t=0}^{\infty}$ is optimal.

Note that with the deviation path, $k_{t+1} = k_{t+1}^*$ for t = 0, 1, ..., T - 1. Then,

$$k_{T+1} = k_{T+1}^* - \varepsilon$$

$$k_{T+2} = k_{T+2}^* - A\varepsilon$$

$$\vdots$$

$$k_{T+j} = k_{T+j}^* - A^{j-1}\varepsilon$$

The question is whether ε can be chosen sufficiently small, but positive, to guarantee that the k_{T+j} 's satisfy non-negativity. This is tantamount to the requirement that k_{T+j}^* grow sufficiently fast so that it is not 'overtaken' by $A^{j-1}\varepsilon$. From the above expression, we see that this is true, because we established that k_t^* eventually grows at a rate faster than A. To see this formally, subsitute

$$k_t^* > A^t \left[\frac{\Delta}{u_{c,0}^* A} - \delta \right] > 0,$$

into the last expression, to get:

$$k_{T+j} > A^{T+j} \left[\frac{\Delta}{u_{c,0}^* A} - \delta \right] - A^{j-1} \varepsilon$$
$$A^{j-1} \left\{ A^{T+1} \left[\frac{\Delta}{u_{c,0}^* A} - \delta \right] - \varepsilon \right\}$$

So, fix a $\delta > 0$ such that the object in square brackets is positive, and identify the associated T. Then, it is always possible to find ε small enough, so that $k_{T+j} \geq 0$. This sequence of k_{T+j} 's is obviously feasible. (Note that if $\Delta = 0$, then a suitable $\delta > 0$ cannot be identified.)