Expectation Traps and Monetary Policy

by

Stefania Albanesi, Bocconi University

V.V. Chari, University of Minnesota

Lawrence J. Christiano, Northwestern University
Countries Have Experienced Destructive Periods of High and Variable Inflation (‘Great Inflation’ of 1970s).

Can Absence of Commitment in Monetary Policy Account for This?
Absence of Commitment and Variable Inflation

² Kydland-Prescott, Barro-Gordon: Variability Reflects Movements in Fundamentals

² Possibility Explored Here: Variability Reflects Movements in Expectations.
Expectation Traps

Low Inflation

Private Agents Expect Low Inflation → Private Actions → Monetary Authority Supplies low Inflation

High Inflation

Private Agents Expect High Inflation → Private Actions → Monetary Authority Supplies High Inflation
Objective:

² This Paper:
 – Study the Nature of Equilibria in Standard Models
 – Are there Expectation Trap Equilibria?

² Longer-Term:
 Quantitative, Empirical Assessment of Expectation Trap Hypothesis.

² What’s At Stake?
Outline:

(1) Version of Lucas-Stokey Cash-Credit Good Model With
 – Some Preset Prices.
 – Svensson Timing ($P c \cdot M_{i_1}$).
 – Endogeneity of Cash/Credit Good Distinction.

(2) Findings

(3) Conclusion.
Preview of Findings

² Expectation Traps Can Occur.

² Financial Variables More Variable When Inflation is High.

² Money Demand Implications of the Model Promising.
The Model

² Households, Firms, Monetary Authority.
² Continuum of Goods.
² Infinite Horizon.
Timing

- Private Agents Expect High Inflation
 - P^e Set High
 - Number of Goods Bought With Cash Reduced
- Monetary Authority May Produce High Inflation
 - Monopoly Distortion
 - Inflation Distortion
Basic Idea

Drive Towards a ‘Best Response Function’. Will Do So By Constructing a Mapping from P^e to \hat{P} for each possible θ, g, z.
State of The Economy At Various Points in the Period

- Shocks Realized, After Which the State is:

 \[\theta, g, z \]

 \(z \) is a ‘money demand shock’ which is later endogenized

- Sticky Price Firms Select \(P^e \). After this the State is:

 \[S = (\theta, g, z, P^e) \]

- Monetary Authority Selects Money Growth Rate, \(x \). After this the State is:

 \[S_1 = (S, x). \]
Firms

• Each Good Produced by a Monopolist:

\[y(\omega) = \theta n(\omega), \; \omega \in (0, 1). \]

• Wage Rate:

\[W(S, x). \]

• 1 – \(\mu \) ‘flexible price firms’ set \(\hat{P}(S, x) \)

\[\hat{P}(S, x) = \frac{W(S, x)}{\theta \rho}, \; 0 < \rho < 1 \]

• \(\mu \) ‘sticky price firms’ set \(P^e \) Before Observing \(x \). They ‘Conjecture’ \(x = X(S) \)

\[
\begin{align*}
P^e(\theta, g, z) &= W(\theta, g, z, P^e(\theta, g, z), X(\theta, g, z, P^e(\theta, g, z))) \\
&= \frac{P^e(\theta, g, z)}{\theta \rho}
\end{align*}
\]
Representative Household

Preferences:

\[\sum_{t=0}^{\infty} \beta^t u(c_t, n_t), \quad c_t = \left[\int_0^1 c_t(\omega)^\rho d\omega \right]^{1/\rho}, \]

\[c_t(\omega) \sim \text{consumption of type } \omega \text{ good} \]

\[\omega > z \sim \text{credit goods} \]

\[\omega < z \sim \text{cash goods} \]

\[n_t \sim \text{labor time} \]
• Asset Allocation Constraint:

\[M + B \leq A. \]

All Nominal Quantities Scaled by Aggregate Stock of Money.

• Cash In Advance Constraint:

\[M - \left[P^e \mu z c_{11} + \hat{P}(S, x)(1 - \mu) z c_{12} \right] \geq 0 \]

\(c_{11} \sim \) cash goods from sticky price producers
\(c_{12} \sim \) cash goods from flexible price producers
• Asset Evolution Equation:

\[0 \leq W(S, x)n + (1 - R(S, x))M \]
\[-z \left[P^e \mu c_{11} + \hat{P}(S, x)(1 - \mu)c_{12} \right] \]
\[-(1 - z) \left[P^e \mu c_{21} + \hat{P}(S, x)(1 - \mu)c_{22} \right] \]
\[+ R(S, x)A + (x - 1) + D(S, x) - xA' \].

\[c_{21} \sim \text{credit goods from sticky price producers} \]
\[c_{22} \sim \text{credit goods from flexible price producers} \]
Recursive Representation of Household Problem

\[v(A, S, x) = \max_{n, M, A', c_{ij}; i, j = 1,2} \{ u(c, n) \]
\[+ \beta E_{\theta', g', z'} [v(A', S', X(S'))|\theta, g, z] \}

with:

\[c = [z \mu c_{11}^\rho + z(1 - \mu)c_{12}^\rho \]
\[+ (1 - z)\mu c_{21}^\rho + (1 - z)(1 - \mu)c_{22}^\rho]^{\frac{1}{\rho}}. \]

\[S' = (\theta', g', z', P^e(\theta', g', z')). \]
Solution to Household Problem

\[n(A, S, x), \ M(A, S, x), \ v(A, S, x), \ A'(A, S, x), \ c_{ij}(A, S, x), \ i, j = 1, 2 \]
Private Sector Equilibrium

Definition: Given a monetary policy rule, $X(S)$, and a current money growth rate, x, a Private Sector Equilibrium is a collection of functions $P^e(\theta, g, z)$, $\hat{P}(S_1)$, $W(S_1)$, $v(A, S_1)$, $c_{ij}(A, S_1)$, $n(A, S_1)$, $M(A, S_1)$, $A'(A, S_1)$, $R(S_1)$, where $S_1 = (\theta, g, z, P^e(\theta, g, z), x)$, such that:

1. Functions v, c_{ij}, n, M, A' solve household problem,

2. Firm optimization conditions satisfied,

3. Asset markets clear:

 $$A'(1, S_1) = 1 \text{ and } M(1, S_1) = 1,$$

4. Resource constraint satisfied: $\theta n(1, S_1) = g + z [\mu c_{11} + (1 - \mu) c_{12}] + (1-z) [\mu c_{21} + (1 - \mu) c_{22}]$.
Monetary Authority Problem

\[
\max_x u(c(1, S, x), n(1, S, x)) + \beta E_{\theta', g', z'}[v(1, S', X(S'))|\theta, g, z],
\]

where

\[S' = (\theta', g', z', P^e(\theta', g', z'))\]

Definition A Markov equilibrium is a private sector equilibrium and a monetary policy rule such that \(X(S')\) solves Monetary Authority’s Problem.
Monetary Authority

² Problem:

\[\max_{\hat{P}} U (\hat{P}; P^e; \mu; g; z) \]

Equilibrium

² (off R₁ corner):

\[U_{\hat{P}} = 0; \hat{P} = P^e, \]
\[c_{\text{cash; preset price}} = c_{\text{cash; flex price}} + c_{\text{cash}} \]
\[c_{\text{credit; preset price}} = c_{\text{credit; flex price}} + c_{\text{credit}} \]
Findings

\[U_p \Rightarrow \ddot{A}(\frac{c_{\text{cash}}}{c_{\text{credit}}}; z) = i \ddot{A}_{\text{ID}}(\frac{c_{\text{cash}}}{c_{\text{credit}}}; z) + \ddot{A}_{\text{MD}}(\frac{c_{\text{cash}}}{c_{\text{credit}}}; z): \]

Inflation Distortion:

\[\ddot{A}_{\text{ID}} \frac{\mu}{c_{\text{credit}}}; z \Rightarrow (R \cdot 1) \frac{M}{P} \]

Monopoly Distortion:

\[\ddot{A}_{\text{MD}} \frac{\mu}{c_{\text{credit}}}; z = [u_n + \mu u_{\text{credit}}] n_P \]
Two Examples

² Cash-Credit Distinction Exogenous
Calibration:

‘Money Demand Regression’ \(z = 0.182; \frac{1}{2}z = 0.643; \)
Parks \(1 = 0.01 \)
Christiano-Eichenbaum \(\tilde{\alpha} = 4 \)
\(\mu = 1; g = 0.05 \)
Two Markov Equilibria : \(R = 1:20; 1:60; \)

² Cash-Credit Distinction Endogenous
Marginal Costs and Benefits of Unexpected Inflation: Calibrated Parameter Values

\[\theta = 1, \mu = 0.1, \rho = 0.643, \psi = 4, z = 0.182, g = 0.05 \]
Money Demand Implications of Endogenous z Model

Money Demand Equation \((u_1 = u_2 = R)\)

\[
\frac{\text{consumption}}{M = P} = 1 + \frac{1}{z} \frac{i}{R} \frac{1}{z^{1/2}}
\]

Has potential to resolve money demand puzzles:

(1) ‘Short Run Elasticity of Demand Lower Than Long Run’.

(2) Money Demand Disturbances Highly Persistent.

(3) Upward Drift in Velocity.
Numerical Example

2 Non-Shock Parameters:

\[\bar{\gamma} = 1:03; \; \gamma' = 0.63; \; \tilde{\bar{A}} = 1:64; \; \frac{1}{2} = 0.83; \]
\[\gamma = 0:1; \; \dot{z} = 0:3; \; \frac{3}{4} = 1:01: \]

Shock Parameters, \(g; \mu; \gamma' \):

means : 0.55; 1; 0.01
std deviations : 0.001, 0.05, 0.0005
autocorrelations : 0.9, 0:9; 0:9:

2 Simulation Results:

<table>
<thead>
<tr>
<th></th>
<th>High Inflation</th>
<th>Low Inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{4})</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>(\frac{3}{4}_h)</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>(\frac{3}{4}_r)</td>
<td>0.002</td>
<td>0.00</td>
</tr>
<tr>
<td>(\frac{3}{4}_q)</td>
<td>0.025</td>
<td>0.017</td>
</tr>
</tbody>
</table>
Expected Money Growth, g

Actual Money Growth, G

A: For g Above This, Z Falls
Conclusion

² Expectation Traps Equilibria Occur in Simple Monetary Models.

² They are More Likely, the More Elastic is Money Demand.

² There is Reason to Expect that Models with Expectation Trap Equilibria Can Account for Other Key Features of the Data:
 – Classic Money Demand Puzzles.
 – Properties of High and Low Inflation Economies.

² The Expectation Trap Hypothesis About Variable Inflation Deserves Further Consideration.