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1. Introduction

We describe a dynamic, general equlibrium model with banking and financial frictions. We
combine features from three papers. First, we incorporate the features of the real economy
analyzed in Christiano, Eichenbaum and Evans (2001). We do this because of their finding
that the features that they emphasize are helpful for matching empirical evidence on the
monetary transmission mechanism. Second, we incorporate the neoclassical model of banking
studied in Chari, Christiano and Eichenbaum (1995). We do this because we are interested
in a model which allows us to study the demand for different monetary aggregates, such
as demand deposits, time deposits, reserves and excess reserves. Third, we incorporate
a version of the costly state verification (CSV) setup described in Bernanke, Gertler and
Gilchrist (1999).! We do this because we wish to explore the role of asset prices in the
propagation of shocks. Asset prices play a role in the propagation of shocks through their
impact on net worth. Net worth matters in the determination of aggregate economic activity
because it determines the amount of lending that banks do.

The model has a range of shocks. There are disturbances to the banking services and
production technologies. There are also various types of velocity shocks to the transactions
technology. These include shocks to household preferences for holding demand deposits ver-
sus currency. In addition, we have various shocks to money demand by firms. The presence
of these shocks and the various banking frictions make the model suitable for evaluating
the operating characteristics of alternative monetary policies presently under discussion. We
think the analysis will be especially interesting because, although the various model features
have been discussed before, now is the first time that they are being incorporated into a
single framework. The analysis will be made particularly relevant for the Euro area because
we plan to estimate model parameters using Euro-wide data.

Our model is sufficiently developed that it will allow us to go beyond the usual analysis
of monetary policy rules. It provides a framework for studying major problems in the control
of money that are reputed to have occurred in the past. A particularly famous example is
the Friedman and Schwartz hypothesis about the severity of the US Great Depression in the
1930s. They argued much of the responsibility for this lays with the US Federal Reserve,
which made a policy mistake when it targeted the monetary base rather than M1 in the face
of a shift away from demand deposits and towards currency. Our model is sufficiently rich
that it can be used to credibly address this hypothesis. We think that this episode, though
it occurred long ago, continues to hold important lessons for monetary policy makers today.

On the empirical dimension, this project will confront some unique challenges and op-

!This work builds on Townsend (1979), Gale and Hellwig (1985), Williamson (1987). Other
recent contributions to this literature include Fisher (1996) and Carlstrom and Fuerst (1997,
2000).



portunities. First, we do this project in the middle of a historic change in monetary policy.
We cannot treat the past 25 years’ of data as being drawn from a single regime. This fact
must be accommodated in the econometric strategy that we use to estimate and test the
model. One challenge is that in specifying the model we must take a stand on the nature
of the sources of long-term growth. For example, we must decide whether the exogenous
shocks are trend stationary or have a unit root. The literature reports that it is difficult
to distinguish between these two specifications, even in data sets with a span as long at 50
years. Second, the model we plan to work on incorporates a working capital channel into the
monetary transmission mechanism. That is; in addition to the usual demand channels, the
model specifies that interest rate changes operate on the economy via a supply-side mecha-
nism arising from firms’ needs for working capital. Evidence from US data suggests that the
amount of borrowing to finance short-term variable costs is quite high. To parameterize our
model, we will have to gather the same evidence for the Euro area. This type of evidence and
this channel for monetary policy has, up until recently, received relatively little attention.

The following section describes a benchmark model economy, which we will use at the
start of our analysis. After that there is a very brief indication of the econometric analysis
we plan to do. Once we have an empirically defensible model in hand, we plan to apply it
to analyze monetary policy questions.



2. The Model Economy

In this section we describe our model economy and display the problems solved by intermedi-
ate and final good firms, entrepreneurs, producers of physical capital, banks and households.
Final output is produced using the usual Dixit-Stiglitz aggregator of intermediate inputs. In-
termediate inputs are produced by monopolists who set prices using a variant of the approach
described in Calvo (1983). These firms use the services of capital and labor. We assume that
a fraction of these variable costs (‘working capital’) must be financed in advance by banks.
Capital services are supplied by entrepreneurs who own the physical capital and determine
its rate of utilization. They finance their acquisition of physical capital partially using their
own net worth and partially using the variant on the costly state verification (CSV) technol-
ogy described in Bernanke, Gertler and Gilchrist (1999) (BGG). As is standard in the CSV
literature with net worth, we need to make assumptions to guarantee that entrepreneurs do
not accumulate enough net worth to make the CSV technology unnecessary. We accomplish
this by assuming that a part of net worth is exogenously destroyed in each period. Physical
capital is produced by firms which combine old capital and investment goods to produce
new, installed, capital.

The model has banks which are the entities that make working capital loans to inter-
mediate good firms and which provide the standard CSV debt contracts to entrepeneurs to
help them finance their acquisition of new capital.

The timing of decisions during a period is important in the model. At the beginning of
the period, the shocks to the various technologies in the model are realized. Then, wage,
price, consumption, investment and capital utilization decisions are made. After this various
financial market shocks are realized and the monetary action occurs. Finally, goods and
asset markets meet and clear. See Figure 1 for reference.
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Figure 1: Timing in Model

2.1. Information

We divide up the shocks in the model into financial market shocks - money demand (by
banks, households and firms) and monetary policy shocks - and non-financial market shocks
(technology, government spending, preference for leisure, elasticities of demand for differen-
tiated products and labor, etc.). The time ¢ information set which includes period t — s,
s > 0, and period ¢ observations on the non-financial shocks is denoted €2;. The information
set which includes €; plus the current period financial market shocks is denoted Q. Also,

E[Xt|Qt] - EtXt
E[XQ7] = EjX.

2.2. Firm Sector

We describe three approaches to Calvo pricing here. They are differentiated according to
how people set their prices when they don’t have an opportunity to reoptimize. In the first
case, we suppose they can’t change their price at all. When steady state inflation is different
from zero, this leads to a very different system of equations than the norm. After this, we
review the standard Calvo equations.

We may in the future also want to consider the possibility that there is a costly state-
verification setup for financing firm inputs. This has been explored in Carlstrom and Fuerst



(2000, Federal Reserve Bank of Cleveland Working Paper 0011). A potential advantage of
this approach is that it may rationalize an ‘efficiency wedge’ in the resource constraint. This
is suggested by the Carlstrom-Fuerst result in equation (13) of page 13. There are a couple
of drawbacks to this approach, however. First, their impulse response functions suggest that
the CSV setup may not have a big quantitative effect. For example, the efficiency wedge
effects suggested by the results in figure 1 seem small. At the same time, it may be that
for the size shocks we are interested in considering, perhaps the effects are quantitatively
large. Second, by adopting a CSV approach we suspect we have to abandon Calvo pricing.
Under the CSV approach, firms are told how much they can borrow and so there is no more
discretion on how much to produce. But then, if firms set prices they will generically be
off their demand curve. This may introduce complicated non-linearities, depending on how
we handled disequilibrium phenomena. Third, by abandoning the Calvo model we lose a
potential efficiency wedge. This wedge does not show up with first order approximations
(although, for an exception, see the first subsection below), but it may be quantitatively
large if we consider second order approximations and shocks that are big enough. Fourth,
by abandoning the Calvo setup, we also lose heterogeneity among firms, and then we lose
the demand elasticity parameter, A\;. Shocks in this parameter represent direct shocks to the
price level (see below), and shocks like this will be useful for our analysis.

We adopt a standard Dixit-Stiglitz formulation. A homogeneous final good is produced
by a representative, competitive firm using a linear homogeneous production technology that
uses a continuum of differentiated intermediate goods as inputs. Each intermediate good is
produced by a monopolist who sets prices using two variants of the approach described in
Calvo (1983). The two variants are distinguished according to the stand they take how firms
set prices when they cannot reoptimize. In the version where they simply follow the previous
period’s aggregate inflation rate, the reduced form for inflation is:

(**) 7%,5 = —1 ﬁt—l + —6 Etﬁt+1 —+ (1 _(16%)6()16; gp)

1+ 5 1+3

Here, a hat over a variable indicates percent deviation from steady state. Also, s; denotes
real marginal cost of production for intermediate good firms and m; = P,/ P,_; is the inflation
rate in the price, F;, of the final good. In addition, , is the fraction of firms that cannot
reoptimize their price in a given period. Also, 8 € (0,1) is the household’s discount rate.
Finally, E; indicates expectation, conditional on the date ¢t nonfinancial market shocks only
(not on the financial market shocks). This timing reflects our assumption that period ¢
intermediate good prices are set at after the realization of the financial market shocks, but
before the realization of the financial market shocks (i.e., the money demand and money
supply shocks).

Note that a shock, A ft, has been added to As. That it ends up this way, symmetric with

[&@9+M4. (2.1)
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S, is simple to explain. There are three ways for S\ﬁt to show up in (2.1). To see this,
consider first the version of (C.1) that applies to the present setup. There, A\; shows up
in two ways. One is symmetric with s;. The other is as a power. The power term can in
fact be ignored because, in the version of (C.1) that is of interest here, the object in square
brackets is zero in steady state. So, of the two channels for A 7+ to show up in (2.1), only
the one where it is symmetric with §; is operative. The third channel for A #+ to show up
in (2.1) operates in principle via (C.2), which provides a mapping from inflation to p;. Note
that As shows up as a power there. Perturbations in A\; have no impact there, because, in
the version of (C.2) relevant to the current situation, the derivative of (C.2) with respect to
As involves a log, and that log is evaluated at unity in steady state. That is, it is evaluated
at the steady state value of p; and m;,_1/m;, both of which are unity in steady state.

The alternative formulation of Calvo pricing assumes that firms who cannot reoptimize
their price follow the steady state inflation rate. This leads to the following reduced form:

(1-586)(1 &)
3

The argument for why it is that shocks to Ay show up in the way indicated in (2.2) is the
same as the argument justifying (2.1).

We assume that intermediate good firms are commited to supply whatever demand occurs
at the price that they set. Once prices have been set, and after the realization of current
period uncertainty, they decide how to produce the required level of output at minimum
cost. The production function of the j** intermediate good firm is:

Y., — EtKﬁ (Ztljt)l_a - q)Zt if EtKﬁ (Ztljt)l_a > q)Zt
7t 0, otherwise

(#%) 71 = BBt + [Et (3,) + Xf,t} . (2.2)

, 0<a<l,

where @ is a fixed cost and K;; and [;; denote the services of capital and labor. The variable,
2, is a shock to technology, which has a covariance stationary growth rate. The variable,
€, is a stationary shock to technology. The time series representations for z; and ¢, are
discussed below. Firms are competive in factor markets, where they confront a rental rate,
PrF, on capital services and a wage rate, W;, on labor services. Each of these is expressed in
units of money. Also, each firm must finance a fraction, 1y, of its capital services expenses
in advance. Similarly, it must finance a fraction, 1, of its labor services in advance. The
interest rate it faces is R;,. Working capital includes the wage bill, W,;l;;, and the rent on
capital services, P,r¥K;. As a result, the marginal cost - after dividing by P, - of producing
one unit of Y}, is:

, (2.3)

1—a Q €t



where
Wi

ZtPt.

Wt =

Linearizing this about steady state:

(k%) 5 = a [ﬁwr (1 %Rt)] +(1-a) [wt+ (1%&)} _

R YR (Qﬁkt + Rt) . A YR <1/Afl,t + Rt) R
= « |+ T TR +(1—a) |0+ T TR — &
. (s . YR /- - R
- ozrf—i—oz ¢R<¢kt+Rt> (1—oz)wt+(1—a)1+l¢lR (¢z,t+Rt>_€t
. Ve R R R -
— arf—l—a ¢kat+( >wt+<1_a)1+l¢lR¢l’t

o R (I1—a)YyR] o .
+{1+1/%R+ 1+ YR ]Rt_q

Marginal cost must also satisfy another condition:

14 Y Ry B T[4 9 Ry - rE 1 + YRy
l-a l—-a 1—a?
e, (?j;) ey (F,{;&) e <—“Zk’:lt>

where 1! and v* are, respectively, the share of aggregate labor in the intermediate good sector
and the share of aggregate capital in the intermediate good sector. We have imposed here
that v/ = v* since the production function in the firm sector is the same as the (value-added)
production function in the banking sector. Also, [, and K; are the unweighted integrals of
employment and capital services hired by individual intermediate good producers. Then,

St =

(2.4)

() 8 = P+ 1T R — & —(1—a) (ﬂz,t+it—/%t>

(i <1/A1kt + Rt)
14+ YR

A

sk
= 7+

—e— (1= a) (et~ )

Final output is produced according to the following production function, by the repre-

sentative final good firm:
I R
Y, = [/ thkfd]} .
0



Total labor and capital services used by the intermediate good firms is:
1 1
K] = / Kjidj, 1y = / Lisdj.
0 0

There is a large, fixed, number of identical capital producers, who take prices as given. They
are owned by households and any profits or losses are transmitted in a lump-sum fashion
to households. The capital producer must commit to a level of investment, I;, before the
period t realization of the monetary policy shock and after the period ¢ realization of the
other shocks. Investment goods are actually purchased in the goods market which meets
after the monetary policy shock. The price of investment goods in that market is P, and
this is a function of the realization of the monetary policy shock. The capital producer also
purchases old capital in the amount, z, at the time the goods market meets. Old capital and
investment goods are combined to produce new capital, 2/, using the following technology:

2.3. Capital Producers

I/ =x+ F(_[t, It_1)7

where the presence of lagged investment reflects that there are costs to changing the flow
of investment. We denote the price of new capital by (g ;, and this is a function of the
realized value of the monetary policy shock. Since the marginal rate of transformation from
old capital into new capital is unity, the price of old capital is also Qg+ ,. The firm’s time ¢
profits, after the realization of the monetary policy shock are:

Hf = Q}‘(',t v+ F(Iy, Ii—1)] — QF{/,M — B

This expression for profits is a function of the realization of the period ¢t monetary policy
shock, because Qg ¢, ¥, and P; are. Since the choice of I; influences profits in period ¢ + 1,
the firm must incorporate that into the objective as well. But, that term involves [;;; and
Zy11. S0, state contingent choices for those variables must be made for the firm to be able
to select I; and x;. Evidently, the problem choosing z; and I; expands into the problem of
solving an infinite horizon optimization problem:

{Te4j,we45}

max E {Z 5j)\t+j (QI_(’,H—]‘ [$t+j + F(Iiyy, [t+jfl)] — Qi1 445 Tt4j — Pt+j]t+j) |Qt} )

Jj=0

where it is understood that I;; is a function of all shocks up to period t + j except the ¢+ j
financial market shocks and z;4; is a function of all the shocks up to period ¢t + j. Also, 2,

10



includes all shocks up to period t, except the period ¢ financial market shocks. These are
composed of shocks to monetary policy and to money demand.

From this problem it is evident that any value of x;,; whatsoever is profit maximizing.
Thus, setting x;y; = (1 — §) K, is consistent with both profit maximization by firms and
with market clearing.

The first order necessary condition for maximization of I; is:

ENPqiF1y — MNP+ Bt P1qesn Fo a1 |SU] = 0,

where ¢; is Tobin’s ¢ :

_ Qf{,t
qt _Pt .
Multiply by z; :
E\XaqiFie — Aoy + Az t41Gra1Fo 1|0 | = 0. (2.5)
Mz t+1

We have that:?2
F(I;, Iiy) =1 — S(1;/1;-1)] I

As a result:
Fi(li, Ii1) = =S (L)L) It/ -1 + 1 — S(1; /1),

or, after scaling variables®,

1 z, 1 2 { 2z,
Fl(Itaft—l) - _S,( e t) et +1_S( s t) ftv

U1 -1 T—1
say. Totally differentiating:
A 7 7 7 1
171 e bzt ezt ,uztA thz . t,uzt
fft—S( ) t T Tzt — —3 11
U1 1 | Y1 14—1 ’Lt,1

2The following function, S, satisfies S = S’ = 0 in steady state, and S” in steady state is a
given parameter:
S(x) = expa(z — z7)] + exp [-a(z — z7)] - 2,

with a = 1/S” /2, and where z* is the steady state value of x.

3Using the adjustment cost function of the previous footnote,

S(rl) = exp [a(j_i1 - uz)] + exp {—a(j_i1 - uz)] -2,
we have, using F(I,1_1) =[1—S(I/I_1)]I,

11



Here, we have anticipated that when the derivatives are evaluated in steady state, the other
terms in the total derivative disappear because S = S’ = 0. Evaluating in steady state:

= =S [+ froy — ], f1 =1

Now consider the other derivative:

. . 2
Pl 1) = $'(et) (b )
t t

say. Totally differentiating:

. . 2 . . .
A ) /) ) ) 7
2 79 1 vt 1z 41 t+1 Mz 641 Mz t+1 ~ t+1Mz « t+1Mz 41 o
[l = 8" . ) - U1 T e+l — 5l
1t 1t 1t 1t [n

As before, there is no need to include the rest in this derivative, because it disappears when
we evaluate it in steady state due to our specification, S = 0. Evaluating in steady state:
(corrected)

f2ft2+1 = 5”13 [ + flogsr — @]
With these results in hand, we proceed now to totally differentiate the object in braces
in (2.5). Rewriting it first:

)\thtftl — A+ )\zt+1Qt+1ft2+1

Mz t+1

Totally differentiating:
s

Aqf?t [S‘zt + G+ ftl] — Xt + —A.q [fQS\thLl + PG + f2f152+1 — [Pl

or, taking into account f2 = 0 and the results derived for ftl, f? ffﬂ :

N R ) R ) N 15} R ) R

A [)\zt +qr — S"ui (2 + fzp — thl)] — XA+ M—)\quﬂug (241 + flots1 — U

Now, divide by A,

N ) ) ) ) N 15} R ) )

Aot + Gt — SHM? (7t + o — 1) — Ast + M—qsﬂﬂi (2441 + flori1 — B,
or,

(%) E{qe = S"12(1+ B)iy — S"pi2 iz + S"pZts—1 + BS" piZinir + BS" 12tz g1 |4 } = 0

12



The coefficients in the canonical form are:

a1(4,9) 1

a(4,4) = —S201+5)
az(4,4) = Sﬁﬂi
ap(4,4) = pS"u
Fo(4,46) = BS"ul

51 (4, 46) —S"pi2

We need an equation linking investment and the capital stock:

t

)

Kt+1:(1_5>Kt+ l1—5<
It—l

or, after taking into account K;,; = zt/_ftﬂ and the scaling of I, :

_ - Tfbs
Ztk't+1 = (1 — 5)2,5_1]@ + thhzt

Divide both sides by z; :

1
Mz,t

ky +

E’t+1 =(1-9)

-5

1_5(.
L 1g—1

Lzt

14—1

oo
)

1¢.

Now, expand this:

kkea k

- ﬂz,t)

k ('Et - ,azt) + iy,

- S',uz [it + ﬂz,t - it—l] + {1 - S] Zit

2.4. Entrepreneurs

There is a large population of entrepreneurs. Consider the j* entrepreneur (see Figure 2).
During the period ¢ goods market, the j* entrepreneur accumulates net worth, N7 +1- This

13



abstract purchasing power, which is denominated in units of money, is determined as follows.
The sources of funds are the rent earned as a consequence of supplying capital services to the
period t capital rental market, the sales proceeds from selling the undepreciated component of
the physical stock of capital to capital goods producers. The uses of funds include repayment
on debt incurred on loans in period t — 1 and expenses for capital utilization. Net worth is
composed of these sources minus these uses of funds.

At this point, 1 — 7 entrepreneurs die and v survive to live another day. The newly
produced stock of physical capital is purchased by the v entrepreneurs who survive and 1 —+
newly-born entrepreneurs. The surviving entrepreneurs finance their purchases with their
net worth and loans from the bank. The newly-born entrepreneurs finance their purchases
with a transfer payment received from the government and a loan from the bank. We actually
allow ~v to be a random variable, but we delete the time subscript here to keep from cluttering
the notation too much. .

The j** entrepreneur who purchases capital, K7 11, from the capital goods producers at
the price, z+, in period ¢ experiences an idiosyncratic shock to the size of his purchase.
Just after the purchase, the size of capital changes from K7 41 to wK] 1. Here, wis a
unit mean, non-negative random variable distributed independently across entrepreneurs.
After observing the realization of the non-financial market shocks, but before observing the
financial market shock, the j* entrepreneur decides on the level of capital utilitzation in
period ¢t + 1, and then rents capital services. At the end of the period ¢ + 1 goods market,
the entrepreneur sells its undepreciated capital. At this point, the entrepeneur’s net worth,
N}.,, is the rent earned in period ¢ + 1, minus the utilization costs on capital, minus debt
repayment, plus the proceeds of the sale of the undepreciated capital, (1 — 5)wf(f - As
indicated above, the entrepreneur then proceeds to die with probability 1 —~, and to survive
to live another day with the complementary probability, .

The 1 — v entrepreneurs who are born and the v who survive receive a subsidy, W.
There is a technical reason for this. The standard debt contract in the entrepreneurial loan
market has the property that entrepreneurs with no net worth receive no loans. If new-
born entrepreneurs received no transfers, they would have no net worth and would therefore
not be able to purchase any capital. In effect, without the transfer they could not enter the
population of entrepeneurs. Regarding the surviving entrepreneurs, in each period a fraction
loses everything, and they would have no net worth in the absence of a transfer. Absent a
transfer, these entrepreneurs would in effect leave the population of entrepreneurs. Absent
transfers, the population of entrepreneurs would be empty. The transfers are designed to
avoid this. They are financed by a lump sum tax on households.

Entrepeneurial death in the model is a device to ensure that net worth does not grow
to the point where the CSV setup becomes redundant. Presumably, this corresponds to the
real-world observation that enormous concentrations of wealth, for various reasons, do not

14



survive for long.

We need to allocate the net worth of the entrepreneurs who die. We assume that a
fraction, O, of a dead entrepreneur’s net worth is used to finance the purchase of Cf of
final output. The complementary fraction is redistributed as a lump-sum transfer to the
household. In practice, © will be small or zero.

FIGURE 2: A Day in the Life of an Entrepreneur

Period ¢ Period ¢t+7

X Entrepreneur pays
Entrepreneur supplies off debt to bank.

capital services to determines current
capital services rental net worth,

market l
* End of period #: Using net worth, T I I

Nj.1, and loans, entrepreneur After realization of period
purchases new, end-of-period stock t+1 technology shocks, but
of capital from capital goods before financial market .
producers. Entrepreneur observes shocks and mongtary action,
idiosyncratic disturbance to its entrepreneur decides on
newly purchased capital. capital utilization rate.

Entrepreneur
sells
undepreciated
capital to capital
producers

If entrepreneur
survives another
period, goes back to *.

2.4.1. The Production Technology of the Entrepreneur

We now go into the details of the entrepreneur’s situation. The 4% entrepreneur produces
capital services, K7, ,, from physical capital using using the following technology:

j ]
Ki = uwkiyy,

where ug .1 denotes the capital utilization rate chosen by the j entrepreneur. Here, w is
drawn from a distribution with mean unity and distribution function, F :

Prw < z] = F(x).

Each entrepreneur draws independently from this distribution immediately after [_(tj+1 has
been purchased. Capital services are supplied to the capital services market in period ¢ + 1,
where they earn the rental rate, ry, ;.
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The capital utilization rate chosen by the j* entrepreneur, u{ +1, must be chosen before
period t + 1 financial market shocks, and after the other period t 4+ 1 shocks. Higher rates
of utilization are associated with higher costs as follows:

i -] '
Prpa(u, )wki,, ', a” > 0.

As in BGG, we suppose that the entrepreneur is risk neutral. As a result, the j* entrepreneur
chooses u]; to solve:

I%aXE { [u{+lrf+1 - a(u{+1)] WKg+1Pt+1|Qt+1} :
Uty

The first order necessary condition for optimization is:

Ey [r{ —d(u)] =0.

This reflects that K +1 Pi1 are contained in €,,. That P,y is in €4, is due to our as-
sumption that prices are set before the realization of the financial market shocks. Totally
differentiating the expression inside the conditional expectation:

kk ", o~
Ty — a udly,
and evaluating this in steady state when 7* = o’
"

a .
Ty — — Uy

Putting this back into the expectation operator, and letting o, = a”/a’ :*
(xx) Ey [ff — Uaﬂt] =0.

After the capital has been rented in period ¢+ 1, the j entrepreneur sells the undepreciated
part, (1 — §)wK7, ,, to the capital goods producer.

Below we introduce taxation on capital income. This does not enter into the above
first order condition because capital income taxation affects rental income and the cost
of utilization symmetrically. In addition, the capital income tax rate that applies to the
utilization rate at time ¢ + 1 is contained in the information set, €2;,4.

4An a function that has the properties that we use is:
o
a(u) = — [exp(oq [u —1]) = 1].

Oq
Note, a(1) = 0, a’'(u) = r¥ exp(o, [u — 1]) = r* when u = 1. Also, a” (u) = o,7% exp(0, [u — 1)) =
oqr® | when u = 1. Then, a”/a’ = o,. Here, r* is the steady state value of the rental rate of
capital.
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2.4.2. Taxation of Capital Income

We now discuss the taxation of capital income. It is convenient to begin the discussion
by considering, as a benchmark, an approach to the taxation of capital which parallels the
treatment of taxes on interest-bearing securities. This is convenient because it allows us to
compare the differential impact on entrepreneurial capital accumulation and on household
asset accumulation of inflation. To simplify, suppose for the moment that the return on cap-
ital is simply ¥, the real price of capital in period t is ¢, and the price of a consumption good
in period t is ;. We temporarily abstract from variable capital utilization and idiosyncratic
variation across entrepreneurs. The pretax nominal rate of return on capital from ¢ to ¢t + 1
is
Tf+1 + (1 =0)gi11 Py

qt P

Suppose that capital income is taxed in such a way that the after tax return is 1+(1—7)RF o

1 +Rf+1 =

i+ (1= 0)qi1 P

1+(1—7)Rf,, =1+ — 1| (1 —7).
(1), L (1)
The real after tax return, then, is:
P, K 1—9 P,
[1+(1-7)RE,] 5= Tiw + ( i1 (1—7)+ =1
Pt+1 q Pt+1

So, if the pre-tax real rate of return on capital, [er +(1- (5)qt+1} /q:, were invariant to
inflation, then the after tax rate of return obviously would not be invariant.
The ‘normal’ way of treating capital income taxes is the following:

i+ (1= 0) g1 P _ To1 (1 Prpr — 0qi )
qt P qc P '

1+ Rf,t+1 -

Note that we value depreciated capital at its historic cost. Then, the after tax gross real
return is:

k b rig+ (1 =0 T (rf P — oqB) P
(1 + RT,t+1) = -
P qs @b P
1—7F )k, +(1=9§ P,
_ ( Tt+1)rt+1 ( )i+1 b t
qt Py

Here too, the after tax rate of return is decreasing in inflation. This is because of the way
depreciation is treated. If instead capital could be depreciated at current market cost, then,
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we would have

P, t+1 qt qt

P 1—7F )k +(1-=6
(1+R¢,t+1) . ( TP g +Tt+15%7

and the after tax real return would be invariant to the rate of inflation (as long as the
pre-trax return were invariant).

We now turn back to our model, with variable capital utilization and idiosyncratically
different returns for different entrepreneurs. Following is the after tax rate of return on
capital, when the capital tax rate is 7% and all the details of our model are included, for
the entrepreneur with productivity, w. The expression assumes that depreciation occurs at
historic cost:

[wrrwrfyy — aur)w] Py + (1 — 6)wQpr 141

1+ Ry = Orrs
_7}/’C [ut“wrfﬂ — a(utﬂ)w} Py — Ttk5Qk',t
Qf(’,t
wwrtyy — a(ug)w + (1= 8)wgen — 7F [uewrfyy — alug)w] P 4 ks
— qt Pt t
) by ol 0 s P
q t

= (L4 Ry )w + 7.

The latter expression allows the possibility that total tax payments are negative. This
would occur when i
w (g7t — a(u)] Py — 0Qgr,
Qf(',t
We could restrict tax payments to be non-negative, simply by setting those payments to zero
whenever the above condition holds. This implies a critical value of w, the one that sets the
above to zero:
5@1‘{',1:

Ut+17“f+1 - a(ut+1)] Pt+1.

The appropriate formula for the rate of return now is, for the entrepreneur who receives
productivity w :

< 0.

W;Sk+1 = [

1+ Rfjrwl = (1 + ]?fﬂ)w + de X 1[w2w2‘+1]7
where

_Jlitw>wi,
lozupa] = { 0if w < wf,y

18



A shortcoming of this specification is that when w is low, the current owner loses part of the
depreciation allowances. Capital changes hands every period, and so throughout its life it
will periodically end up in the hands of someone with low income. As a result, capital is never
fully depreciated in this way of setting things up. In principle, ‘lost depreciation allowances’
could be carried forward, but this would be very awkward in our environment, with capital
changing hands. The model would have to include a way of carrying forward unclaimed
depreciation allowances. There is another problem with this specification. It appears that
this indicator function causes the cutoff productivity level in the CSV contract (discussed
below) to become a discontinuous function of the state. This is completely inconsistent with
the basic solution strategy we adopt. This makes this option essentially infeasible.

An alternative possibility is to work with the case where it’s the capital that’s available
after w is realized which can be depreciated, then the gross rate of return on capital is
proportional to w. In this case, the rate of return for an w—type entrepreneur in this case is:

14 RRe — {(1 - Ttk) [Ut+17"f+1 - a(ut+1)] + (1 = 0)q+1 Pra i Ttk(g} w

t+1 ¢ Pt
= (1+ R w.

Note how the rate of return on K¢, is a product of a rate of return, RF ;, which is the
same across all entrepreneurs and w. The shortcoming of this specification is that you can’t
depreciate the full amount of the initial capital purchase, when w is low. An interpretation
of this is that it captures the notion that you lose depreciation allowances when your income
is too low to deduct the full amount. It’s an awkward way to capture this, but it has the
advantage of being tractable.

Linearizing the previous measure of the rate of return on capital, which we rewrite here:

(1—7F) [Ut+17‘f+1 - a(“tﬂ)} + (1 = 0)q1

Rf,, = Top1 + 776 — 1
a

Linearizing:

- 1—7F)rk+(1-4 — ) 1 oTkRf
() Rfﬂ - ( ) Rkq ( )qﬂ [(1 -7/ [ut+17"f+1 - a(ut+1)] + (1= 0)Grs1 + Fie1 — Qti| + R—kt

(L=7)rh + (1 =8)g | (L—7%) r*ify — 755 + (1 — 6)gdes +a |4 orkzk
= 7T _
Rkq (1—7F)rk + (1 —0)q t+1 — Gt R

2.4.3. The Financing Arrangement for the Entrepreneur

How is the j* entrepreneur’s level of capital, f(tjﬂ, determined? At the moment the entre-
preneur enters the loan market, it’s state variable is its net worth. It is has nothing else. It
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owns no capital, for example. Apart from net worth, no other aspect of the entrepreneur’s
history is relevant at this point.

There are many entrepreneurs, all with different amounts of net worth. We imagine
that corresponding to each possible value of net worth, there are many entrepreneurs. They
participate in a competitive loan market with banks. That is, there is a competitive loan
market corresponding to each different level of net worth, NV;,;. In the usual CSV way, the
contracts traded in the loan market specify an interest rate and a loan amount. The contracts
are competitively determined. This means that they must satisfy a zero profit condition on
banks and they must be utility maximizing for entrepreneurs. Equilibrium is incompatible
with positive profits because of free entry and incompatible with negative profits because
of free exit. In addition, contracts must be utility maximizing (subject to zero profits) for
entrepreneurs because of competition. Equilibrium is incompatible with contracts that fail
to do so, because in any candidate equilibrium like this, an individual bank could offer a
better contract, one that makes positive profits, and take over the market.

The CSV contracts that we study are known to be optimal when there is no aggregate
uncertainty. However, the way we have set up our environment, there is such uncertainty.
We do this in part because we are interested exploring phenomena like the ‘debt deflation
hypothesis’ discussed by Irving Fisher. We interpret this hypothesis as corresponding to a
situation in which a shock (in this case, to the price level) occurs after entrepreneurs have
borrowed from banks, but before they have paid back what they owe. A problem with
what we do is that the contract we study is not known to be the optimal one. However,
we share BGG’s conjecture that in fact the contract is optimal, at least for sufficiently
risk averse households. This is because the contract has the property that uncertainty
associated with an aggregate shock is absorbed by entrepreneurs, while households receive
a state-noncontingent rate of return on their loans to entrepeneurs (these loans actually are
intermediated by banks). The reason this arrangement may not be optimal is as follows.
We have not ruled out the possibility that there could be a return for households which is
state contingent but compensates them for this, and which permits a CSV loan contract to
entrepreneurs that increases their welfare.

We now discuss the contracts offered in equilibrium to entrepreneurs with level of net
worth, NV;y;1. Denote the level of capital purchases by such an entrepreneur by f(ﬁl. To
finance such a purchase an NV;,;—type entrepreneur must borrow

Bt]il = Qf(’,tf(t]il - Nt+1- (2-6)

The standard debt contract specifies a loan amount, Bt]il, and a gross rate of interest, Zt]il,
to be paid if w is high enough that the entreprenuer can do so. Entrepreneurs who cannot
pay this interest rate, because they have a low value of w must give everything they have
to the bank. The parameters of the N;1—type standard debt contract, BY, Z},, imply a
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cutoff value of w, @ﬁrl, as follows:?

Wt+1 (1 + Rt+1) QK’ t+1 = Zt]LBi]L (2.7)

The amount of the loan, Bﬁl, extended to an NV;.;—type entrepreneur is obviously not
dependent on the realization of the period ¢ 4+ 1 shocks. For reasons explained below, the
interest rate on the loan, Z},, is dependent on those shocks. Since Ry, , and Z}, are
dependent on the period ¢ + 1 shocks, it follows from the previous expression that @;Y ; is in
principle also dependent upon those shocks.

For w < @ﬁl, the entrepreneur pays all its revenues to the bank:

(1 + Rt+1) wQK”,thJYHa

which is less than ZﬁlBﬁl. In this case, the bank must monitor the enterpreneur, at cost

14 (1 + Rfﬂ) ka/’tI_(ﬁl.

We now describe how the parameters, Bﬁl and Zﬁl, of the standard debt contract that is
offered in equilibrium to entrepreneurs with net worth N;,; are chosen.

We suppose that banks have access to funds at the end of the period ¢ goods market
at a nominal rate of interest, Iy ;. This interest rate is contingent on all shocks realized in
period t, and is not contingent on the realization of the idiosyncratic shocks to individual
N, 1—type entrepreneurs, and is also not contingent on the ¢ 4+ 1 aggregate shocks. Banks
obtain these funds for lending to entrepreneurs by issuing time deposits at the end of the
goods market in period ¢, which is when the entrepreneurs need funds for the purchase of
K{,. Zero profits for banks implies:

Wit _
[1 F (wt+1)] thilBtH +(1- N)/O wdF (w) (1 + Rt+1) Qf(’,th]YH - (1 + Rfﬂ) ngrl’)
2.8

or,

1+ R, B
1+ R QKN

5With the alternative treatment of depreciation, this expression becomes:

- F @) @), + 01— p /me wdF (w) = (2.9)

([1+ BE | @y + 76) Quo oKy = 28BN
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BGG argue that, given a mild regularity condition on F, the expression on the left of the
equality has an inverted U shape. There is some unique interior maximum, w*. It is increasing
for @Y, < @* and decreasing for @/, > &*. Conditional on a given ratio, B,/ (Qz,K}\) .
the right side fluctuates with R¥ .1 The setup resembles the usual Laffer-curve setup, with the
right side playing the role of the financing requirement and the left the role of tax revenues
as a function of function of the ‘tax rate’, @/,. So, we see that, generically, there are two
wpl4’s that solve the above equation for given B,/ (Qg K}\,) . Between these two, the
smaller one is preferred to entrepreneurs, so this is a candidate C'SV. The implication is that
in a CSV, @Y, <@*. Since, for &}, < &* the left side is increasing in a C'SV, we conclude
that any shock that drives up Rf,; will simultaneously drive down &} ;.

From (2.8), it is possible to see why Z}}, must be dependent upon the realization of the
period ¢ + 1 shocks. Substitute out for (1+ Rf,,) Qg K}, using (2.7), to obtain:

1—p (%
1-— F(@g_l) -+ TN/O wdF(w)

o ZtJ—VH = (1 + Rf+1) )
t+1

after dividing both sides by B ,. Recall our specification that R , is not dependent on
the period ¢ + 1 realization of shocks. The last expression then implies that if Z7Y, is not
dependent on the period ¢ + 1 shocks, then w,{il must not be either. In this case, it is
impossible for (2.7) to hold for all date ¢ + 1 states of nature. So, Z}\, must be dependent
on the period ¢ + 1 shocks.5 Of course, if R¢ 1 were state dependent, then perhaps we could
specify Z}, to be period ¢ + 1 state independent.

6This may appear implausible, at first glance. In practice, when banks extend loans the rate
of interest that is to be paid is specified in advance. One interpretation of the fact that Z}¥
is contingent on the realization of the aggregate shock is that banks are unwilling to extend
loans whose duration spans the whole period of the entrepreneur’s project. Instead, they extend
the loan for a part of the period, and that allows them to back out before too many funds
are commited, in case it looks like the project is going bad. This is closely related to the
interpretation offered in Bernanke, Gertler and Gilchrist (1999, footnote 10).
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Substituting out for Z;\, B, from (2.7) in the bank’s zero profit condition, we obtain:”
1+ R) By = [1=F@l)] @b (14 Biy) Qre L (2.10)
A .
+/ (1—p) (1 + Rt+1) wQ g K 1 dF (W)
0

= [F@QIH) - :U'G((Dﬁl)} (1 + Rt+1) Qf(’,tkﬁla

where I'(@;} ;) — uG(w;Y,) is the expected share of profits, net of monitoring costs, accruing
to the bank and

ol
G(wy,) = / wdF(w).
0
F((’Dﬁ—l) = @tJYH [1 - F(@ﬁﬂ} + G(@ﬁu)
It is useful to work out the derivative of I :

F,(‘Dﬁrl) = 1- F(@ﬁ—l) Wt+1F,(Wt+1) + G/(wt+1) (2-11)
= 1-F(@y,) >0

Dividing both sides of (2.10) by Qg , K}, (1 + RF,,) :

1+ Rf, ( Nisa > N N
—([1—-—7) = (@ — uG(w
1 + Rf—i—l Qf(’,thJil [ ( t+l) ( t+l)}

"Under the alternative treatment of depreciation,

(14 Rfy,) BL{YFI = [1- F(@ﬁdﬂ [(1 + Rfﬂ)@tﬂ + Ttk(ﬂ Qf(/,tf(t]L
[T w0 R ] ng,tf?i;ldF(w)
= [1- F@YD)] [+ R )@ + 0] Qe K
+G(‘I’ii1) (1—p) (L + Rt-s-l)Qf(',thJrl + F(Wt+1) (1—p) 7F6Q g tf(gﬂ
= [(1=F@) @+ G@f) (1= )] U+ BE)Qg KN + 7F0Qp: (K [1 = F(@f)u]
= [D@N) — pG@)] A+ RE)Qr KNy +7F6Qp KNy [1— F(@,)]
or, after dividing:

(1 - Ri\4) Bﬁ:l = [T@N,) - nG@N1)] + o [1— Fj(wﬁu)ﬂ]
(1+RF Qg KN, (1+Rf,)
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Multiply this expression by (Qz+,K}1/Nis1) (1+ Rf.,)/(1+ Rf,,), to obtain:

Qi thJil Qr thJYH 1+ Rfﬂ N N
— 1= : I'(w — uG(w .
Nt Nenw 1+ Ry, [ ( t+1) pG( t+1)]
Let
- 1+ Ry, _E (1 + Rfﬂ&f)
U1 = % 0 St+l = c
E (14 RF Q1) 1+ Riy,
Then, the non-negativity constraint on bank profits is:
Q 7 [_{N Q [/ KN - _ _
XKL < Mutﬂstﬂ [F@Jﬁrl) _ MG<Wﬁ1)] 7 (2.12)
Ny Nt

From this we can see that &%, is a function of the capital to net worth ratio and
(1+Rf,)/(1+ RF,,) only:

. 1+ Ry ( N, ))

N t+1 t+1

o =g ——= (1 - —Tr ) |. 2.13
i (1 + Rfﬂ QK',thJL ( )

As noted above, competition implies that the loan contract is the best possible one, from
the point of view of the entrepreneur. That is, it maximizes the entrepreneur’s ‘utility’
subject to the zero profit constraint just stated. The entrepreneur’s expected revenues over
the period in which the standard debt contract applies are:®

K {/ [(1 + Rerl) WQK’,tKﬁl - Zt]ilBt]YH] dF<W)|Qt;Xt}

N
t+1

= F {/ [w — (Diil} dF(CL)) (1 —+ Rf+1) |Qt, Xt} QR/,th]YFl'

N
t+1

8We treat this as the entrepreneur’s utility function, even though the entrepreneur will be
around in the future (either he will be around as a condemmed person eating his last meal in
the next period, or he will be around with at least one more period after that). Still, we drop
all reference to the future in our expression of his utility function. A possible rationale for this
is that future utility is a linear function of future net worth. We hope to show this in a future
draft.
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Note that? o 00
1= / wdF(w) = / wdF(w) + G(w,),
0 @

N
t+1

so that the objective can be written:
E{[1 =T@3)] (1+ Rin) 190} Qroa Kk,

or, after dividing by (1+ Rf, ;) N1 (which is a constant with respect to date ¢+ 1 aggregate
uncertainty), and rewriting:

s Qurakly 1+ RS B (1+ RE |9F)
E{1—=T(@N )] |V s ’—+7 Ut41 = — » St = e ’
{1 (@] Tt |} 521 Nit T EQ+ R Q)T L+ Ry 14)

where €)' denotes all period ¢ shocks. From this expression and the fact, I > 0, it is
evident that the objective is decreasing in &}, for given Q R',thJL /N¢y1. This property of
the objective was alluded to above.
The debt contract selects Qg K7, /Nyy1 and @}, to optimize (2.14) subject to (2.12).
It is convenient to denote: _
-, KN
K4 i

k=
t+1
Nit1

Writing the CSV problem in Lagrangian form,

max F { [1 — F(@N)} Upp15e1 kY + AV [/{Nﬁtﬂstﬂ (F(@N) — ,uG(cDN)) — kN + 1} |Qf} .

N EN
The single first order condition for k% is:

E{[1 = T(@%)] s + M [Teasa (D@Y) - pG@ky) —1] (94} =0. 2.15)
2.15

9Under the alternative treatment of depreciation,
oo ~ — ~ —
E [N K(l + Rf+1)w + Ttk(;) Qf(',thIYH - ([1 + Riﬂrl} ‘Dﬁl + Ttk(;) Qf(',thAJfrl} dF ()|, X;
w.

= E {/ [w—o,] dF (w) (1 + R{:H) |Qt,Xt} Qr KN,

N
t+1
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N

The first order conditions for @” are, after dividing by 18141k ;:

F/@ﬁrl) = )‘ﬁH [F/((‘Dz{il) - MG/(@iYH)} . (2.16)

Finally, there is the complementary slackness condition, AV [Nty 41511 (@) — pG@™)) — kN +1] =
0. Assuming the constraint is binding, so that A > 0, this reduces to:

kM teiasen (D(w,) — pG@py)) — ki, +1=0. (2.17)

It should be understood that A}, in (2.15) is defined by (2.16). We can think of (2.15)-
(2.17) as defining functions relating k%, and ;Y t0 s;11. Remember, k7Y is not indexed by
G41, while @fY | is. So, we think of @Y as a family of functions of s;.1, each function being
indexed by a different realization of u;,;. Note that N;;; does not appear in the equations
that define k7Y, and wf},. This establishes that the values of these variables in the CSV
contract is the same for each value of N;,;. For this reason, we can drop the superscript
notation, N. That is, the functions we are concerned with are k;,; and ;1.
We find it convenient to denote the function relating k; 1 to s;11 by:

ki1 = ¥(se11)- (2.18)

This function (at least, its Taylor expansion around the steady state value of s;,1) could be
used to play an important role in the computations. In general, it is difficult to characterize
Y analytically, from (2.15)-(2.17). One has to solve for this function by jointly solving for
it and the functions relating A\;1; and @w;y;1 to s;iq1. For purposes of computation it is not
necessary to characterize i analytically. We only need its value and derivative in steady
state, which we denote by v and 1’. We obtain its value by solving (2.15)-(2.17) in steady
state, and we obtain its derivative by differentiation.

We find it convenient to drop time subscripts to keep the notation simple, and because
it should entail no confusion. The equations that concern us are:

E{[1 -T(@)]as+ ANus (I'(w) — pG(@)) — 1]} =0, (2.19)
(@) = AMM(@) — pG'(@)] (2.20)
kus (T'(w) — uG(@)) —k+1=0. (2.21)

It is understood that the expectation operator is over different values of @, and k is constant
across @ while A and w vary with @. Let w, denote the derivative of w with respect to s and
define k, similarly. So, the values of k£ and k, are the 1) and ¢/’ that we seek.
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To obtain the steady state value of w substitute out for A from (2.20) into (2.19) and
evaluate in steady state, with u =1 :

1= @) + 5y oy (@) — HG@) = 1 =0, (222
1= @)+ s [5(1@) — 4Gi@) — 5+ 5= 1] =0,
1= T@)s~ iy L~ TN+ g [-0G(@) +5 = 1 =0,
PO L e | T = ey O o120
WG@ @

[1-T(@) T@) - puG@) @) - uG'(@)
(@

—pG'(w) 1 =T(@)]s =I"(@) [spG(w) + 1 — ],
peoF (@) [1 =T(@)]s + [1 = F(@)][s (nG(@) = 1) +1] = 0.
Dividing by 1 — F(@) :
OF' (@)

1_—F()[1—F(0J)]s—|—s(uG(@)—1)~|—1:0.

1

wF' (@
{“1——;’()) [1—-T'(w)]+ pG(w) — 1} s+1=0.
Note that if s = 1, then the object on the left is the sum of two positive numbers. This
cannot be zero. So, s = 1 cannot be a steady state equilibrium. BGG argue that a steady
state equilibrium requires s > 1. Presumably, this means that the object in braces in the
preceding expression is negative. That remains to be shown.

Taking into account, IV = 1 — F and G’ = @F’, we obtain from (2.22):

1—F(w)
1 - F(w) — poF'(w)

1-T(@))s+ s (N(@) — uG(@)) — 1] = 0.

We follow BGG in specifying that F' corresponds to a log-normal distribution. This has
two parameters. However, the requirement, Fw = 1, pins down one of them. In addition,
F(@) is treated as an observable variable. So, for purposes of computing the steady state,
we think of there being two unknowns: @ and the free parameter of F. These are solved for
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by enforcing the previous equation and the desired value of F(@).19 After this, ¢ may be
computed by solving (2.21) setting @ = 1.
Next, we consider ¢’. Differentiating (2.19)-(2.21), we obtain:

E{[-T"(@)ts + Aus (I'(@) — pG'(@0))] @5 + [ = D(@)] @ + A [ (I'(w) — pG(w))]
+As [us (D(@) — pG(@)) = 1]} =0,
{I'"(@) = AIM(@) = pG"(@)]} @5 = As [IM(@0) — pG'(@)] = 0
(F(@) = nG (@) ks + k (I'(@0) — pG' (@) 05 = 0
Evaluating these equations in steady state, and making use of (2.16):
[1=T@)]+ AT (@) = nG(@))
+As [s (@) — pG(@)) — 1] =0,
{I"(@) = A[M"(@0) = pG"(@)]} &5 = As [IM(@0) — pG'(@)] = 0
(D(@) = pG(@)) ks + K (I'(@0) — pG' (@) s = 0
To find the object of interest, k,, we need to solve these three equations for k,, w, and A;.
The first of these three equations can be solved for \,, the second w,. Then, the last equation
can be solved for k. This requires knowing I'”(w) and G”(w). From (2.11) we obtain that
I'(w) = —F'(w). Also, since G'(w) = wF'(w), so that
G"(w) = F'(0) + oF"(w).

This requires evaluating F”(@).!!

2.4.4. Aggregating Across Entrepreneurs

We now discuss the evolution of the aggregate net worth of all entrepreneurs. In terms of
the previous notation, if f;;1(/V) is the density of entrepreneurs having net worth N, 1, then
aggregate net worth, N;,q, is:

Nt+1 - / th+1(N)dN
0

10The MATLAB function, lognedf.m, can be used to compute F. The function, lognpdf.m,
can be used to compute F’. Computing G will require cooking a quadrature integration routine.
HTo obtain F"(@), differentiate the log-normal density function,

1 —(logz — M)T
Fl(z) = ex ,
xoN 2w P { 202

with respect to x, and evaluate the result at © = @.
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Applying this integral to (2.18), we obtain

B[(1+ R, (20,

Q]_(/7t[_(t+l :r(/}( (1+Re ) ) t+1,
t+1

where BGG argue 9(1) = 1, ¥/(.) > 0, and where K, is the aggregate, end of period ¢

stock of physical capital. We now linearize this, following the argument in BGG (page 1361).

First, however, we need to scale the variables:

E[(1+ Rfy) 194]
(1+Riy)

C]thﬂ = 1/’(

)nt+1v

where

7 Kt+1 Nipa
k = — = . 2.23
t+1 Zt y M4 P, ( )

Linearizing about steady state:

s T A 1+ RN 1+RFT RF R .,

kqq + qkkiy1 = hmig g +ny! (1 T R€> 1+ Re L T+ RE Ry, — mRt—l—l}

o o2 kq . 1+RFN\ 1+ R [ RF R ..

Kl + qkkis = Jhniteey 4y (1 + Re) 1+ Re [1 el Ry S
So, the linearized solution to the contracting problem is:

RF - Re -, . R
CSVL () e [REal | = i = =t [ = (a4 B
where
v 1+ R°

os =TT RE
This is an equation emphasized in BGG. However, we don’t use it in our solution procedure.

We now discuss the law of motion of aggregate net worth, n,,1. Suppose NV, is given. Let
VN denote the average of profits of N;—type entrepreneurs, net of repayments to banks:

VYV = (14 R) Qe K —T(@) (1+ RY) Qrrpr K.

The aggregate capital stock is:
K= [ hovRYaN
0
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Given that RF and @; are independent of N;, we have:

Vis [ RNVYON = (14 B) Qo 1K~ @) (14 RY) Qo 1K

0
Writing this out more fully:
Vi = (1+R})Qrry 1K — {[1 — F(@t)]cvt—k/ wdF(w)} (14 R}) Qi1 Ky
0
= (1 + Rf) Qf(’,t—th
- {[1 — F(wy)] oy + (1 — ,u)/ wdF(w) + ,u/ wdF(w)} (14 R}) Qg1 K.
0 0

Notice that the first two terms in braces correspond to the net revenues of the bank, which
must equal (1 + Ry) (Qg/, 1K — N;). Substituting:

K fwt wdF(w (1 :" Rf)ﬁQf(’,tflkt
Qrr 1K — Ny

Vi = (1 + Rf) Qf(’,tflf(t - {1 + Rf } (QK',tAKt - Nt)-

(2.24)

Since entrepreneurs are selected randomly for death, the integral over entrepreneurs’ net
profits is just vV;. So, the law of motion for N, is:

pfy wdF(w) (1+ RY) Qg 1K

1+ R +
T Qrrp—1Ki — N

N = v {(1 + Rf) Qrry 1K —

+W¢,

where Wy is the transfer payment to entrepreneurs. The (1 — =) entrepreneurs who are
selected for death, consume:
Pth == @(1 - ")/)‘/;

Finally, there seem to be at least two objects that could be called the ‘external finance
premium’. One is the ratio involving p in square brackets above. The other is Z; — (1 + RY) .
Either one is straightforward to compute. The former appears to correspond to the ‘av-
erage’ external finance premium, while the latter is only the external finance premium for
entrepreneurs who are able to repay Z;. In the case of the former, the ‘premium’ paid by
some is actually negative. For those entrepreneurs with w sufficiently small, they are paying
essentially nothing, and so in particular they pay less than Rf and so they have an ex post
negative premium. BGG refer to s as the external finance premium.
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We move now to the linear representation of (2.25). Simplifying that expression:

Nt = %Qzr 1 K, {Rf — RS — u/ wdF(w) (1 + Rf)} + W¢ + v (14 RY) Ny,
0

where a time subscript has been added to v to capture the possibility that there are random
disturbances to the death rate of entrepreneurs. By putting a coefficient of unity in front of
WE, we are implicitly making the assumption that when there is a shock to the death rate
of entrepreneurs, say ~; falls, then there is an equal shock in the other direction in the rate
of arrival of new entrepreneurs.

Dividing by 2;P; and taking into account (2.23):

N1 = Tt {Rf—Rf—,u/ wdF(w)(l—l—Rf)}ktqt1—|—wf+%(
0

Tzt

g,

1+ R;) 1
Mzt (2.25)

Tt

where
e_ﬁﬂ__ P _Qf{/,t

R TR MR
In this last expression, we see the fundamental reason for setting v < 1. The real interest
rate divided by the growth rate is 1/ in steady state, which would imply that n; explodes
when v = 1. This in turn implies that real net worth grows faster than the economy and,
hence, the capital stock. That means that eventually, net worth exceeds the capital stock
and the CSV arrangement becomes irrelevant. It is to avoid this outcome that v is assumed
to be small. X

We proceed now to linearize the equations. We do not want \; to be among the variables
to be solved for. So, we linearize (2.15) and (2.17), and use (2.16) to substitute out for the
multiplier. Writing out the object in braces in (2.15), and replacing ;4 1S¢41

LA R, [ R
1+ Ry, s Riy
Log-linearly expanding this about steady state:

14+ RE
- (W)1+Rewwt+1

w

[1 = T(@41)] (T(@e41) = pG(@r41)) — 1

-ne) (T - )

I m—f; (F(@) - 1G(@)) - 1]
A E j: };e (M(@) = pG(@)) - 11 ﬁi—gz@: (L(@r1) — pG(@41)) — 1
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We have:

TRk Rkﬁfﬂ T pe RRY,
1+Rﬁf=T:7g,1+RHf:1+Re
Also,
1+ Ry, o _
[1+Rt+1 (D(@t41) = pG(©0r41)) — 1
Rt 1 — —
B d [inf (D(@g1) = pG(@ey1)) — 1}
R L (D(@) — nG(@)) — 1
1+Re
th 1 0 7 i = ~ e e
ﬁgi ( ( ) ( ))th+1 + TTRe (F(w) — ,UJG(WD . (llrgek)z (F(UJ) _ ,LLG(LU)) R Rt+1

EE(1(@) - p0(@)) -
Substituting

L1+ RF
- (W)1+R Wit

1+ R* <Rka+1 Reﬁl§+1>

+[1-T(w)]

1+R\1+R 1+ Re

TR pe) - pot@)) - }

(M'(@) = pG' (@) @11
RkaJrl 1+ RF

T e @) —nG@) - WL (D(@) = nG(@)) R Ry 4]

Collecting terms:

A
IR T MR

L) e+ AT (6) - 1G] G

1+ Rk (kazfﬂ Reégﬂ)

+[1=T(@) + A ([(@) — pG(@))]

1+R\1+R 14+ Re

1+ RF
1+ Re

3 | T (1@~ 1G(@) = 1]
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Simplify this, using the steady state relation (see (2.15)):

[1-T@) g + A |7 (T@) — #G(@) - 1

1 k 1 k
L 1+R A{+R ~ }:Q

we obtain

1+ R* 1+ RF ~
_1—\/ —. — FI -\ __ !/ — _ -
IO T + Mg (U6) — 16 (@) ] G

i\ Rka—‘rl . R@}}fﬂ
1+RF 1+ Re

G 14+ RF:
-1 -T(@)] T

From (2.16):
10 (@) = AM[M(@) — pG'(@)] .

Substituting this into the previous expression, the coefficient on &y, turns out to be zero.
So, we are left with:

RkaJrl ReRf+1 .1 —f-RkA )
E{)\<1+Rk N 1+ Re +[1_P(w)]1+Re)‘t+l|Qt}—O-

The correct terms is actually:

Rk}?k ReRe 1—|—RkA
EQ( s t“)-ﬂ-rwﬂ———&ﬂmﬂ:u

1+ Rk 1+ Re 1+ Re

P,((DiYH) = )‘ﬁu [P,((Dﬁl) - MG,(@ﬁlﬂ
Expanding (2.16) and making use of (2.20):

I (@)ab 1 = AT (@) + A 1(@) — pG"(@)] @D,

or,

A = I (@) B (@) — pG" (@) @ -~
t+ Fl(@) F’((D) t+1-
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Substituting, we obtain the log-linearized version of (2.15):

%k Rkaﬂ ReR;Ll

() B{A <1+Rk - 1+Re>
L1+ RET"@)w  AI(0) — pG"(@)] @
O [Py - U@

Now we log-linearize (2.17). Writing (2.17) out:

N
Qk/vth-Fl

gl KN ]_‘I—Rk
QK A | t+1 (F((Dﬁ-l) . MG((Dt]le)) _ TH +1=0.

Niyw 1+ REy

Take into account
Kiy1 = ziki1, Nipr = 2ePnga, Qe = i,

so that . _ _
QF{gthH _ G P2k _ Gk
Nij1 2Py 41 7
and
Qtl_ftﬂ 1+ Rf+1 -N -N C]t/_ftﬂ
I'(w — uG(w — +1=0.
Teet 1+R§+1( (@h1) — nG( t+1)) e
Then,
qff Qt]%t+1 1+ Rfﬂ -N - {qk ] |:th15+1
— -1 I'w — uG(oN =|—-1| |— —
| e P (nayy) - el ) - B -] |2
Now,

L —

kip1 1+ RF
Bl L (M@l,) - nGl@)

i1 1+ Ry

- . 1+ Ry, N Y AN
= G+ k1 — N1+ ———+ (F(WH-l) - MG(WtH))
1+ Riy,

A T . RkaH ReRteH

= G+ ke — g + R 1+ Re
(@) = pG'(@)) =N
(P(@) — pG(w))
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and

—

l%l_ftﬂ _ 1} _

[7ES]

SIEN

[(jt + Et—f—l — ﬁt+1i|

-1

Putting all this together, the log-linearized expression is:

£

[Cjt + E’t+1 — ﬁt+1} )

LT -
qt —|— t+1 nt+1 + 1+ Rk 1+ Re + (F(w) — /,[,G(UT))) MW#F].

RFRE,  RRS,, (I'(@)— pG'(@)) AN]

s &

or,

k RERE ReRe () —uG (D)) — =N
[q_ - 1} [ 1+1—§z1 - 1+1i2+61 + ((FE@LZG(E*J))))W%H

e

— <(jt + ]_ft+1 — 7A"bt+1> =

Note that this must hold in every realized state of nature. Perhaps the best way to implement
this equation is to require that it hold in the first period and in later periods, rather than
just starting in the second period. It is different from the following expression, which is what
showed up in the initial version of the linearized writeup of the (2.26):

k Dk e pe =\ 1~
(**)RRt+1_R t+1+(F(w) MG(W))w@i\:LI

1+R  14+R  (I'w)—pG(@))
— (th + kyy1 — ﬁtﬂ) = 0.

Finally, we log-linearize the law of motion of aggregate net worth, (2.25), which we repeat
here for convenience:

Ny,

Niy1 = Tt {Rf—Rf—u/ wdF(w)(1+Rf)}/5tqt_1+wf+%(
0

Tg bzt

1+R§) 1

T Mzt
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so that:
A . i
Ngt1 = {E[
—{ 7 lR _ R —
T,

_{L lR _pe_
T,

u/ wdF (w
0

kq ~
g ,UJLUQF/( ) (1 —i—Rk) _q@
7T,LLZ n

e

1+R\ 1,
+fy T /,L_nb

or:

/wdF( ) (
i wdF( ) (

+—L {Rk R u/ wdF(w) (1+ Rk)} il [Et + q},l} + e
0 n n

3 1+ R\ 1
1+R’“)1 Tf+v( +R)—}%

(e

k 1+ R\ 1
1+Rk)173+7( hi )—}ﬂz,t

(e

k 1+ R 1
]

@ 11 k
4+ (1—u/ wdF(w )—q RFR 1 [ S opo L qR@] R
T, 0 n T Tz TV

e

~ Pk pe 7 ~e 2 A ~ ~ = ~
(%) Nyy1 = ag Ry + a1 Ry + agky + azwy + asYe + as@y + agflsg + arGi—1 + agwy + agny,
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where

@ k
ap = 7 (1 —,u/ wdF(w)) 4 Rk
T 0 n

( fcq) YRe
ay = 1——
n ) mw,

ay = —L {Rk—Re—u/ wdF(w)(HR’f)}@
T, 0 n
we
a3 — —
n
1+ R
KT
as = —a4
g — —Q4
a7 = QG2
k
ag = — 7 p? F' (@) (1+Rk)—q
T, n

1+ R\ 1
ag = 7% - ,U_

We assume that there is a continuum of identical, competitive banks. All bank decisions are
taken after the realization of the current period shocks. Each bank operates a technology
to convert capital, K?, labor, I?, and excess reserves into real deposit services, D;/F;. The
production function is:

2.5. Banks

o 11—« &t ET 1=¢
2=t (K" (i)' ) (F> (2.27)

Here a® is a positive scalar, and 0 < o < 1. Also, 2% is a unit-mean technology shock that
is specific to the banking sector. In addition, & € (0,1) is a shock to the relative value of
excess reserves, [/]. The stochastic process governing these shocks will be discussed later. We
include excess reserves as an input to the production of demand deposit services as a reduced
form way to capture the precautionary motive of a bank concerned about the possibility of
unexpected withdrawals.

b
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We now discuss a typical bank’s balance sheet. The bank’s assets consist of cash reserves
and loans. It obtains cash reserves from two sources. Households deposit A; dollars and the
monetary authority credits households’ checking accounts with X; dollars. Consequently,
total time ¢ cash reserves of the banking system equal A; + X;. Bank loans are extended to
firms and other banks to cover their working capital needs, and to entrepreneurs to finance
purchases of capital.

The bank has two types of liabilities: demand deposits, D;, and time deposits, 7;. Demand
deposits, which pay interest, R,;, are created for two reasons. First, there are the household
deposits, A; + X; mentioned above. We denote this by DI. Second, working capital loans
made by banks to firms and other banks are granted in the form of demand deposits. We
denote firm and bank demand deposits by Df . Total deposits, then, are:

D, = D!+ D/

Time deposit liabilities are issued by the bank to finance the standard debt contracts that
they offer to entrepreneurs. Time and demand deposits differ in three respects. First, demand
deposits yield transactions services, while time deposits do not. Second, time deposits have
a longer maturity structure. Third, demand deposits are backed by working capital loans
and reserves, while time deposits are backed by standard debt contracts to entrepreneurs.

We now discuss the demand deposit liabilities. We suppose that the interest on demand
deposits that are created when firms and banks receive working capital loans, are paid to
the recipient of the loans. Firms and banks just sit on these demand deposits. The wage
bill isn’t actually paid until a settlement period that occurs after the goods market.

We denote the interest payment on working capital loans, net of interest on the associated
demand deposits, by R;. Since each borrower receives interest on the deposit associated with
their loan, the gross interest payment on loans is R;+ R,;. Put differently, the spread between
the interest on working capital loans and the interest on demand deposits is R;.

The maturity of period ¢ working capital loans and the associated demand deposit liabil-
ities coincide. A period ¢t working capital loan is extended just prior to production in period
t, and then paid off after production. The household deposits funds into the bank just prior
to production in period ¢ and then liquidates the deposit after production.

We now discuss the time deposit liabilities. Unlike in the case of demand deposits, we
assume that the cost of maintaining time deposit liabilities is zero. Competition among
banks in the provision of time deposits and entrepreneurial loans drives the interest rate on
time deposits to the return the bank earns (net of expenses, including monitoring costs) on
the loans, R;y. The maturity structure of time deposits coincides with that of the standard
debt contract, and differs from that of demand deposits and working capital loans. The
maturity structure of the two types of assets can be seen in Figure 3. Time deposits and
entrepeneurial loans are created at the end of a given period’s goods market. This is the
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time when newly constructed capital is sold by capital producers to entrepreneurs. Time
deposits and entrepreneurial loans pay off at the end of next period’s goods market, when
the entrepreneurs sell their undepreciated capital to capital producers (who use it as a raw
material in the production of next period’s capital). The payoff on the entrepreneurial loan
coincides with the payoff on time deposits. Competition in the provision of time deposits
guarantees that these payoffs coincide.

The maturity difference between demand and time deposits implies that the return on the
latter carries risks not present in the former. In the case of demand deposits, no shocks are
realized between the creation of a deposit and its payoff. In the case of time deposits, there are
shocks whose value is realized between creation and payoff (see Figure 3). So, the household
that acquires a time deposit bears the uncertainty in the payoff of the underlying physical
capital whose accumulation is being financed with the time deposit. The entrepreneur also
bears risk, for the same reason.

All .
Period t All Period ﬁg ES’i%gl(js
Shocks t +1Shocks Realized
Realized Realized calize
Demand Deposits
Created Before Current
Goods Market, and
t Liquidated After t+2

Current Goods Market

e W WY
| | |
Time Deposits Created at End of Current Period Goods
Market and Liquidated at End of Next Period Goods Market.

Figure 3: Maturity Structure of Time and
Demand Deposits

We now discuss the assets and liabilities of the bank in greater detail. We describe the
banks’ books at two points in time within the period: just before the goods market, when
the market for working capital loans and demand deposits is open, and just after the goods
market. At the latter point in time, the market for time deposits and entrepreneurial loans
is open. Liabilities and assets just before the goods market are:

Dt + 7},1 — At —|— Xt + SZU + Bt, (228)

where S} denotes working capital loans. The monetary authority imposes a reserve require-
ment that banks must hold at least a fraction 7 of their demand deposits in the form of
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currency. Consequently, nominal excess reserves, Ey, are given by
E{ = At + Xt — TtDt' (229)

The bank’s ‘T’ accounts are as follows:

Assets Liabilities
Reserves
Ay D,
Xi

Short-term Working Capital Loans
5S¢’

Long-term, Entrepreneural Loans
B, Ti 4

After the goods market, demand deposits are liquidated, so that D, = 0 and A; + X; is
returned to the households, so this no longer appears on the bank’s balance sheet. Similarly,
working capital loans, S}, and ‘old’” entrepreneurial loans, B;, are liquidated at the end of
the goods market and also do not appear on the bank’s balance sheet. At this point, the
assets on the bank’s balance sheet are the new entrepreneurial loans issued at the end of the
goods market, B; 1, and the bank liabilities are the new time deposits, 7;.

At the end of the goods market, the bank settles claims for transactions that occured in
the goods market and that arose from it’s activities in the previous period’s entrepreneurial
loan and time deposit market. The bank’s sources of funds at this time are: net interest
from borrowers and A; + X; of high-powered money (i.e., a mix of vault cash and claims on
the central bank).'? Working capital loans coming due at the end of the period pay R; in
interest and so the associated principal and interest is

(1 + Rt)SZU = (1 + Rt) (wl,ttht + wkﬂgPﬂ’fKt) .

Loans to entrepreneurs coming due at the end of the period are the ones that were extended
in the previous period, Qf ;1K; — Ny, and they pay the interest rate from the previous
period, after monitoring costs:

(1 + Rf) (Qf(’,t—th - Nt)

Its uses of funds are (i) interest and principle obligations on demand deposits and time de-
posits, (1 + Ry) Dy and (1 + RS)T; 4, respectively, and (ii) interest and principal expenses

2For now, we suppose that interest is not paid by the central bank on high-powered money.
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on working capital, i.e., capital and labor services. Interest and principal expenses on fac-
tor payments in the banking sector are handled in the same way as in the goods sector.
In particular, banks must finance a fraction, 4 ,, of capital services and a fraction, ¥,
of labor services, in advance, so that total factor costs as of the end of the period, are
(14 ¢+ Ry) PrFK?. The bank’s net source of funds, I12, is:

' = (A + X))+ (1+ R+ Ru)S” — (1+ Ru) D,
— [(1 4+ YweRe) Pirf K7] — [(1 4 vy Re) Wil

Hfowt wdF (w) (1 + Rf) Q1K
+ |1+ R + — : B
! Qf(’7t—1Kt - N '
i [ wdF@) (14 ) Qoo 1K~ (14 RO Tic
0
+1; — By

Because of competition, the bank takes all wages and prices and interest rates as given and
beyond its control.

We now describe the bank’s optimization problem. The bank pays II? to households in
the form of dividends. It’s objective is to maximize the present discounted value of these
dividends. In period 0, it’s objective is:

Ey  BMITY,
t=0

where ); is the multiplier on II? in the Lagrangian representation of the household’s opti-
mization problem. It takes as given its time deposit liabilities from the previous period,
T_1, and its entrepreneurial loans issued in the previous period, By. In addition, the bank
takes all rates of return and \; as given. The bank optimizes its objective by choice of
{S, Bii1, Dy, Ty, KP, EJ;t >0}, subject to (2.27)-(2.29).

In the previous section, we discussed the determination of the variables relating to en-
trepreneurial loans. There is no further need to discuss them here, and so we take those
as given. To discuss the variables of concern here, we adopt a Lagrangian representation
of the bank problem which uses a version of (2.30) that ignores variables pertaining to the
entrepeneur. The Lagrangian representation of the problem that we work with is:

Atﬁ%lg{}ztsgv — Rt (A + X3) — [(1 4 Yo Re) Py K] — [(1 4 ¢ Re) Wily] }
At—i-Xt—Tt(At—i—Xt‘{—Stw)
I

A+ X, + 8¢

+AL [t K71 2

7£t7$11?72t) -
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|, max, lb{RtS;"“ — R (A + Xy) — RVF, — [(1+ Yn Re) Porf K7 — [(1+ ¢ Re) Wil ]}

At+Xt+E—Tt<At+Xt+SZU) (At—f—Xt‘i‘S,;w)

N k(2 KPP b —
TA (xtv ts ' P, >€t>$t7zt> P,
fonc for F; :
R} = Nhey— = ———
t t 7tP Tther7t +1
where
r @ 1—a\ & N 1—E&
Pt K, 6ol ) = alag (D) (adf)' ™) ()

g_At—FXt—Tt(At—'—Xt—i—Stw)
P, I

LA—
et —

The first order conditions are, for A;, S¥, K?, (%, respectively:

1
—Rat + )\?F (1=7)hery =1 = 0 (2.30)
t
1
R — XN—[rhers +1] = 0 (2.31)
I
— (L + ¢pneRe) Brf + XNhyy = 0 (2.32)
—(1+ Y Ry) Wi + /\i’hlb,t = 0 (2.3

Substituting for A\’ in (2.32) and (2.33) from (2.31), we obtain:

Rtth t
1 k’ — )
O ey
and W, R
1 R =t — 7t
( + wl’t t> Pt 1 + Tthe”‘,t

These are the first order conditions associated with the bank’s choice of capital and labor.
Each says that the bank attempts to equate the marginal product - in terms of extra loans
- of an additional factor of production, with the associated marginal cost. The marginal
product in producing loans must take into account two things: an increase in S" requires
an equal increase in deposits and an increase in deposits raises required reserves. The first
raises loans by the marginal product of the factor in h, while the reserve implication works
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in the other direction. To see that the capital-labor ratio in the banking and intermediate
good sectors coincide, take the ratio of the above two equations:

k atalat (e,q) " pea(=vhl ) O
(1+ Vralle) i _ hgco o tA Ty \Coyt (1-vF)k,
W, = _
(L4 e Re) F by 4 (1 — ) &abat (ep,) ™ (%) .,

- o )

From (2.4),
2l 1o
Aiaear)  ca(B) o
(14 ¢+ Ry) % B (1-a)e (%)70‘ 2 N (1 —a)z VK,
o 2 VM,

(1 =)z vhz 1k
«Q ,LLz,tVllt
(1—a)z vhk

Equating the previous two expressions, and cancelling:

k l
Vi Vy

1-vf) (@-v)

Note that the object on the left and right are each monotone increasing functions of v{ and

vF, respectively. As a result, they can only be equal for v = v/F.

Taking the ratio of (2.31) to (2.30), we obtain:

(1 — Tt) heﬁt —1
Tihery 4+ 1

Rat -

R,. (2.34)

This can be thought of as the first order condition associated with the bank’s choice of A;.
The object multiplying R, is the increase in S* the bank can offer for one unit increase in A.
The term on the right indicates the net interest earnings from those loans. The term on the
left indicates the cost. Recall that R; represents net interest on loans, because the actual
interest is R; + Ry, so that R; represents the spread between the interest rate charged by
banks on their loans and the cost to them of the underlying funds. Since loans are made in

the form of deposits, and deposits earn R,; in interest, the net cost of a loan to a borrower
is Rt.
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We now proceed to linearize. For this, we need expressions for the derivatives of A with
respect to capital, labor and excess reserves. One expression that appears in all of these is
the ratio of real excess reserves to value-added, which we denote by e, ; :

ev,t

A+ Xe—T (At + Xt +S;‘U)
Py

o
Zt—11.b pyl-a
(k) ()
A+ X —1e (A +Xe+5))
2t Py

«
1 7.b A
(7))
MP— M+ X —7e (MP— M+ X +SP)
2t Py

(7)™

21 Py zt Py
Mtb 1-— my + Ty — T (1 — My + T + wuwtﬁlt + wk’t‘f]\/ﬁT’

k_1
t Mzt kt

)

e (7))
l—my+a,—7 (1—mt+xt+%lt+w’;—tgftkt>
() ()"

(L—m)my (1 —my+a,) — 7 <¢l,twtlt + tﬁ%ﬂfh)
(=) (= b))

b
my

To linearize this, it is useful to first linearize the numerator, n;, and denominator, d;, sepa-

rately. Thus,

1

ng = (1 — Tt) mi’ (1 —my + xt) — T (wz,twtlt + " wk,trfkt)
2.t

1 k o 1 11—«
dt = (1 — )k‘t ((1 — Vt)lt) .
Mz,t
Then,
niy, = —tm’(1—m+z)7+ (1 —7)m"(1—m+z)m

1
— (1 = 7)ymPmny + (1 — ) mPad, — 7 (wlwz + —wkrkk> 7
[z

—Twl [W,t + w + lt:| - T,u_@bkzrkk [_Mz,t + Yy + Tf + kt} )
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or,

R A b N A
Ny = NzTp + NpppMy + Ny My + Np Ty
F1, V1 + Npkre + Nk

~k ~ 7 ~
F1 Py + MW + by + g fl g
where

—tmt(1—m+zx)—7 (wlwl + twkrk@

nT = ?
n

n::(1_ﬂnfu—npww—T(Mwb+%ww%),

(1—7)m’(1—=m+2)/n

Nyb
Ny, = —(1 —T) mbm/n
Ng = (1 — 7') mbl’/n
Ny, = nw:nl:—Twlwl/n
1
Lok

Turning to the denominator of e, ,

i 1 ” e P

T S AT

or, R R A
dy = dy,fuog + diky + dye0f + dyd} + dil,,
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where

e
« 11—
—a i(l —vM)E) (1 =)
duz B 1 @ et -
(z 1 yk)k) (1 - v))l)
dk = «
k
14
dyk = al Lk
dl = 1—«
l
1%
d,,l = _(l_a)l—yl

Also, since the capital labor ratios in the banking sector and the rest of the economy are the

same, (V¥ = ') we know that

or =l (2.35)
Then, with e, ; = n;/d;, A
€vt = Ty — dy,
or,
(k) Eps = Ty + Nyt + 1ty + Mgy + gy

"‘nwk"&k,t + (g — di) by + nprE 4+ nyy

(= d) s+ (n, = dy,) fie — duiDf = dui,
where (2.35) is to be recalled. It is also useful to have an expression for 2,10/ K7 :

Ik wl) _ pea(l =1l
YOKY (L=vPk

linearizing this:
. ry . Rk .
= fly — —= + 1+ L — k.
A 1—vk

The partial derivative of h with respect to capital is:

11—«
—e, (a0 (1 =)
hgoy = ozftabxf (ew)l ¢ (W) .
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Linearizing this:

7 ¢ . a N “ vy A
By =1 —log(e,) & &+ a0+ (1= &) éps + (1 — ) |finy — TZZ +lt+1_—;k — ky
The derivative of h with respect to excess reserves is:
he’“,t = (1 — é}/) abajf (€v7t)7£t .
We now linearize this. First, note:
F&) = (1-&)a"z) (ens) ™
df (&) = —aa® (epy)  + (1 — &) a’ad exp[—&; log (€pt)]dé:s
= [—abxb (€)= (1 — &) abz’log (e,) (ev)fﬂ d&;
1
= —f [1—_5 + log (ev>] 3
; df (&) 1
ey = — —_— 1 v
f(&) ; T *lo(e)| &
Using this, we obtain:
. 1 C
herp = — T_¢ +log (€,) | £& + &) — 6oyt
The derivative of h with respect to labor is:
_ -\
By — (1 — byb (e, )18 Pz ( t)tt ‘
1t ( ) &a’ry (€y,r) 1- I/f)kt <t
Linearizing h,p, = hp /%
. . . . . I/lﬁl R I/kﬂk .
hop, =[1—log(ey)&] & + %IZ +(1-8eép—a |:,uz,t - Tlt/l + 1+ 1_—;k — k|,
or,
. . ! . Vrpk .
Pio = hy oy + flzg — 1=, + 1+ T ky (2.36)

Always, recall (2.35).
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We can use the previous intermediate results to obtain linearizations of the first order
conditions for capital and labor, which we repeat here for convenience. The first order
condition for capital is:

Rthkb,t

1 R)rf = ———
(L4 e o) 73 1+ rihers

which in linearized form is:

— —

(1 + ¢k7th> + 'ff = Rt + iLl{:b,t - (1 + Tther,t)

or,
ka |:r42}k,t + Rt] & N n Ther |:7A_t + iLeT,t]
rh— h — 2
1+ ka + 7y Rt + kbt 1+ Ther ( 37)
Substituting,
(O [@Z)kt + f{t} o R c R
e +7 = R+ [1—log(ey) & &+ a3, +(1—E&)éyy
. VDl - vrDk ~
—I—(l—Oé) |:,uz7t—m+lt+ 1—yk —kt:|
ther (= | g +log (e.)| €€ + 8 — €eue)
B 1+ Ther '
Collecting terms:
(#%) 0 = kpRy+ kel — 7 + ko + kebyy + kyfiny (2.38)

+k,i ﬁf + kyx ﬁf + /CllAt + kkl;’t + ko7 + kwkq/;ht
where

Ther l—ig + log (ev)] £

1+ ¢yR 1+ Ther
1 The’“g
— =1 1-—-
kx 1+Ther’ ke 5_’_ 1—|—’7’h€r’ 'I{;M ( Oé)
l Vk:
k, = —(1—04)1 l,l{fl,k (1—&) _Vk’kl:(l_a)’ kk__(l_a)
Ther ka



The first order condition for labor is:

0 — Rthz,lb,t

Y B ST -
T+ myher s (L+ e Fy) wy

Linearizing this:

—

(1 + wl’th> + ,Lz\}t = Rt + iLZ,lb,t - (1 + Tthe"'7t)

or,
wlR (J}l,t + ét) n N Ther (/f_t + ﬁer,t)
b= R b —
I+ Ok + 1wy t 1 Ny 1+ 7ho

Substituting from (2.36),

iR [@/;kt + Rt} Ther |:7A_t + iLeT,t]

+7A’f — Rt + ilk‘b,t -

77ZJZR (Q;&Lt + Rt) ) R ]tl Th/er (7:,5 + }Aler7t>
1+ YR T = A e G
N I/lﬁé A ykﬁf A

Note that the first line of this looks like (2.37) with 1/; replacing 1/}, and 1 replacing 7F. We
can exploit this fact when collecting terms in the previous expression. In particular,

(#6) 0 = IpRy + & — by + 1% + Loy + Ljlay
H D A L DF 4 Ll + Lok + L7+ Ly, Y,

where
l; = k;for all 7, except
_ R YR
Il = [1=————=1|, lu=—
1+ YR 1+ YR

!
v

ZM — kﬂ_]" lyl:kyl+m, l[:k'l—l,

e
l,/k - kyk—m, lk:kk+1
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The production function for deposits is:

MP — M, + X, + S
B

@} () €f =

Scaling this:

b b —& € M} — My + X, + (wl,ttht + wk,tPtTfKt)
a’z)(ey) > — =
2t 2Py
- miz P, — (Mt/Mtb) M} + (Xt/Mtb) M)+ (¢l,tmlt + Ve Pyrfz (ze-1/ 2) kt)
- ZtPt
mi’ (1 —my + x¢) + Ypwely + ?/ch,trfkt//izt
My + Mo,
where
my = ml(1—my+ ;)

moy = wl,twtlt + ¢k,trfkt/ﬂzt~

Linearing these pieces:

mlt = m?+(1—mt+xt)
= mt _—
l-m+=x
R Ywl <A N
Moy = + W + 1 )
2t Dol + ek, Vit t T bt
wkrkk/ﬂz

T et (Ve 7 R )

It is convenient to derive an expression for the linearization of €] /z;.

B e M} - M+X,— 7 (M - M+ X, +5})

Pz B Zt 2Py
(1 - Tt)mg (1 —mg + ift) — T (Q/Jl,twtlt + ¢k,tTfkt/Mzt)
= (1 - Tt)mlt — TyMay

Linearizing this:

o (1—7)my —TT | - u 1, + 112
S (l—1m)my—Tmy |1 -7 1 (1—7)ymi—1my "' 2t



We can use these results in linearly expanding the scaled production function, which we

repeat here for convenience:

Expanding this:

Substituting out:

abx? (ev,t)i& e, = my + ma.
N ~ 2 N my A ma A
37— Eeyy —log (evy) E& + €L, = mmlt + mmzt-
(1 —71)my —TT e Mo [, + 1712
M| — 7y 41
(I—=7)my —71mgy |1 —7 1 (1 —=7)my — 7my ! 2

'ﬂt) - gév,t - IOg (ev,t> gét +

my ma

mlt +

mi + Mo mi + Mo

Collecting terms:

20— €éy; —log (eyr) €& —

my

mot.

7 (my 4+ mo) a

(1 —T)m1

N lml + mo

Substituting:

(%)

7Y — €6y, —log (eyr) €€ —

(1 — T)m1

(1—7’)m1—7'm21 m1t+

(1 —7)my — mmy K

Ty

ma
mq + Mo

T (mq 4+ my) -

my
ma + mo

ms

(1 —=7)my — mmy

+ { +
my + Mo
PYrwl

X[

Yrwl + YyrFk/

T :|

(1—7)m1—7m2

(Qﬁht + UA)t + lAt) +

(1 —7)my — Tmgy !

o

—mmt—i—xit
l-m+z

¢krkk/uz

Yrwl + YprFk/ .,

We now linearize the equation linking R, and R;

Rat -

(]_ — Tt) he’r‘7t — ]_

Ry.

Tthe’",t + 1

—

—

(1 — T)m1 — ngl Mot

<¢k,t + ff + ]%t - ﬂzt)]

Ry = (1 =7) hery — 1) + Ry — (7ihery + 1)
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But,

— he’“ }AleT,t - TheT (f_t + Eeﬂt)
(=7 hery = 1) = (1—7) her — 1
- Ther (@ + i}er,t>
(Tiher +1) = The +1

then, using the previous expressions, as well as the expression for h.-, obtained above,

h'er ileﬂt - TheT <7A_t + }Aleﬂt) Ther <7A_t + ]tLeT,t)

SOREES 1—1)he —1 AR = m——
hr —Thr Thr ~ Th,r Th " A~
— e e e h e e A R
[(1—7)@—1 7h67+1} [(1—T)hr—1+mer+11”+ t

her _TheT Ther R A R
- |:<1_7—)h1"—1 7h7+1}{ < +10g(€v)>§§t+xi’—§ev7t]

_ Ther n LR
1—7) e — 1 Ther+1 T+

This completes the linearization of the four banking equations. The variables associated
with these are é,4, oF, 0l, R;.
The clearing condition in the market for working capital loans is:

e = P Wil + ¢k7t1DtTfKt (2.39)

Here, S} represents the supply of loans, and the terms on the right of the equality in (2.39)
represent total demand.

We close our discussion of the banking sector with an illustration to clarify the nature
of the money multiplier in the model. Consider the following table with gross assets and
liabilities for the banking sector as a whole:

Assets  Liabilities
X=50 D=1000
A=200 T=100
S¥=750

B=100
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The assets and liabilities in this balance sheet are ‘gross’ in that they do not net out interbank
claims. Thus, D includes demand deposits liabilities by some banks to others, corresponding
to bank working capital loans. The corresponding assets are included on the asset side of the
balance sheet in S. Suppose the reserve requirement, 7, is 0.20. The balance sheet shows that
total reserves are 250, of which 200 are required and 50 are excess. So, the excess reserve
ratio in this example, i.e., the ratio of excess reserves to deposits, is 5 percent. To see how
the money multiplier works, suppose X were 60 instead of 50,while A and the excess reserve
ratio do not change. Then the balance sheet would look like this:

Assets  Liabilities
X=60 D=1040
A=200 T=100
S¥=780

B=100

Now, total reserves are 260, of which 7D = 208 are required and the rest, 52, are excess. So,
in this example, the money multiplier is 1/(.2 4+ .05) = 4. In our model, D, A, T, S and the
excess reserve ratio are all endogenous variables.

We adjust the bank’s production function so that it is expressed in terms of people, rather
than the homogeneous labor produced by the contractor. First, write this in terms of the
aggregate factor inputs and shares used in the banking sector:

D o aN& (ET\'TH
F: = abxi’ ((Kf) (ztlf) ) (Fi)
a —an& BT\
=t (=) )" (2 (L= ) 1)) (F>

We express this in terms of unweighted hours of households using a result from section 2.9

N 1—a\ &
D o Wy \ ™, AN
F=aat | (=) K) (Ztﬁ—”f)(wi) lt) (%)

In section 2.9, we show that W} /W, can - to a first approximation - be treated as a constant,
equal to unity.

2.6. Households

There is a continuum of households, indexed by j € (0,1). Households consume, save and
supply a differentiated labor input. They set their wages using the variant on the Calvo
(1983) technology described by Erceg, Henderson and Levin (2000).
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The sequence of decisions by the household during a period is as follows. First, it makes
its consumption decision after the non-monetary shocks are realized. Second, it purchases
securities whose payoffs are contingent upon whether it can reoptimize its wage decision.
Third, it sets its wage rate after finding out whether it can reoptimize or not. Fourth, the
current period monetary action is realized. Fifth, after the monetary action, and before the
goods market, the household decides how much of its financial assets to hold in the form of
currency and demand deposits. At this point, the time deposits purchased by the household
in the previous period are fixed and beyond its control. Sixth, the household goes to the
goods market, where labor services are supplied and goods are purchased. Seventh, after
the goods market, the household settles claims arising from its goods market experience and
makes its current period time deposit decision.

Since the uncertainty faced by the household over whether it can reoptimize its wage is
idiosyncratic in nature, households work different amounts and earn different wage rates. So,
in principle they are also heterogeneous with respect to consumption and asset holdings. A
straightforward extension of arguments in Erceg, Henderson and Levin (2000) and Woodford
(1996), establish that the existence of state contingent securities ensures that in equilibrium
households are homogeneous with respect to consumption and asset holdings. Reflecting this
result, our notation assumes that households are homogeneous with respect to consumption
and asset holdings, and heterogeneous with respect to the wage rate that they earn and
hours worked. The preferences of the j** household are given by:

|:<Pt+lct+l > Ot <Pt+lhct+l ) 1_9”1] e

> My Dy,

Ey Z 87 9 u(Cri = 0Cri1-1) = Gtz (hjest) — Vews 1o :
1=0 e (2.40)

where E! is the expectation operator, conditional on aggregate and household j idiosyncratic
information up to, and including, time ¢t —1; C} denotes time ¢ consumption; and hj; denotes
time t hours worked. In order to help assure that our model has a balanced growth path,
we specify that u is the natural logarithm. When b > 0, (2.40) allows for habit formation in
consumption preferences. Various authors, such as Fuhrer (2000), and McCallum and Nelson
(1998), have argued that this is important for understanding the monetary transmission
mechanism. In addition, habit formation is useful for understanding other aspects of the
economy, including the size of the premium on equity. Finally, the term in square brackets
captures the notion that currency and demand deposits contribute to utility by providing
transactions services. Those services are an increasing function of the level of consumption.

The specification in (2.40) is our ‘benchmark’ specification of preferences. We also con-
sider a second specification. In one, the ACEL specification, we make the marginal utility of
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money independent of consumption. To do this, and preserve balanced growth, we replace
CtJrl in (240) by Ztal -

1—0
[(Pt+lzt+l > 6t+l <Pt+ft+l ) 1_0t+l] !

) [e%¢} - M4y Dt+l
EPY 87 S u(Cra = bCyi1) = Geyrz(hjars) — i T
% (21)

The basic text below describes analysis of the benchmark specification. As appropriate, we
indicate how things change for the ACEL specification.

We now discuss the household’s period ¢ uses and sources of funds. Just before the goods
market in period ¢, after the realization of all shocks, the household has MP units of high
powered money which it splits into currency, M;, and deposits with the bank:

MY — (M, + A;) > 0. (2.42)

The household deposits A; with the bank, in exchange for a demand deposit. Demand
deposits pay the relatively low interest rate, R,;, but offer transactions services.

The central bank credits the household’s bank deposit with X; units of high powered
money, which automatically augments the household’s demand deposits. So, household
demand deposits are DI

D? - At + Xt‘

As noted in the previous section, the household only receives interest on the non-wage
component of its demand deposits, since the interest on the wage component is earned by
intermediate good firms.

The household also can acquire a time deposit. This can be acquired at the end of the
period ¢ goods market and pays a rate of return, 1+ Rf, ;, at the end of the period £+1 goods
market. The rate of return, Ry ,, is known at the time that the time deposit is purchased.
It is not contingent on the realization of any of the period ¢ + 1 shocks.

The household also uses its funds to pay for consumption goods, P,C; and to acquire high
powered money, ();11, for use in the following period. Additional sources of funds include
profits from producers of capital, IT¥, from banks, I1?, from intermediate good firms, J 1L dj,
and A;;, the net payoff on the state contingent securities that the household purchases
to insulate itself from uncertainty associated with being able to reoptimize its wage rate.
Households also receive lump-sum transfers, 1 — ©, corresponding to the net worth of the
1 —~ entrepreneurs which die in the current period. Finally, the households pay a lump-sum
tax to finance the transfer payments made to the v entrepreneurs that survive and to the
1 — « newly born entrepeneurs. These observations are summarized in the following asset
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accumulation equation:

14+ (1=7°) Ra] (M} — My + X,) — T,
—(1+7)PCi+ (1—0) (1 —v) Vi — W+ Lump,

1+ (=70 R Tioy 4+ (1 — 7)) Wihyy + My 4TI 4 TIF + /H{df + Ay — M, > 0.

The household’s problem is to maximize (2.40) subject to the timing constraints mentioned
above, the various non-negativity constraints, and (2.43).

We consider the Lagrangian representation of the household problem, in which A\, > 0
is the multiplier on (2.43). The consumption and the wage decisions are taken before the
realization of the financial market shocks. The other decisions, M, ,, M; and T} are taken
after the realization of all shocks during the period. The period ¢ multipliers are functions of
all the date ¢ shocks. We now consider the first order conditions associated with C;, M} ;,
M; and T;. The Lagrangian representation of the problem, ignoring constant terms in the

asset evolution equation, is:
L\ . 1-9,1 1%
BCy (M) (Mf—Mt-FXt)

1—o0,

Eé Zﬁt{u(Ct - th—l) - Ctz(hj,t) — Ut
t=0

+)\t[|:1 + (1 — TtD) Rat] (Mtb - Mt) - Tt - (1 + th) PtCt

+ 14 (1= 7") Ri] Ty + (1= 7)) Wyehye + My — My}

We now consider the various first order conditions associated with this maximization prob-
lem.

2.6.1. The 7, First Order Condition
The first order condition with respect to 7} is:
E{=X+ BNy [T+ (1 —=71y) Ri ] |11} =0
To scale this, multiply by zP; :
s

Moz 41Tt 41

Mevr [L+ (1= 77 ) Bl |Q¢;} 0.

Linearize the expression in braces:
6 —

A1+ (1=7") R [S\z,tJrl — fizgp1 — R + 1+ (L =74,) Rf+1H

_)\z 5\z,t +

z
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Note,

— —RerT#l, + Re (1—77) Ry
[1 + (1 - Tzl—l) R§+1} = {i (1— fT) Re ) Hl’
so that
. B s . . —RerT#l 4+ Re (1 —77) R
—)\Z)\Z7t+ﬂ)\z [1 + (1 — TT) R } Asirl — flagyr — Tpp1 + {:1_ 1- 7%T) Re ) L

Imposing the steady state conditions:

3 o N . RerT R Re(1—77 A
(**) E {_)\z,t + )\z,t+1 — Mzl — g1 — 1+ (1 — TT) ReTz‘il + T (g — TT))Re Rt+1|Q¢} =0.

2.6.2. The K, First Order Condition

Although the capital decision is made by the entrepreneur in the benchmark model, we also
explore a more standard formulation in which that decision is made by the household. In
this formulation, we drop the variables, @, and N;, and the three equations pertaining to the
CSV contract. This leaves us short one equation. Replace this by the following household
euler equation:

E{=XN+ BAs1 [1+ R, 0} =0.
To scale this, we multiply by z; P, :

2 P,
E {_)\Zt + B#)\ZTH’]- |:1 + Rf—i—l} ‘Qt} = O,
Zt+1Pt+1
or,
E {—Azt + b Ast1 [14 Ry |Qt} =0.
Tt41 Mzt +1

We now linearize the expression in braces:

s
T

k

Adat T

Az [1 + Rk} [ }?ffﬂ + 5\z,t+1 — M1 — ﬂz,t+1] 5

or, after division by A, setting 3 [1 + Rk} = mu,, and reinserting the expectation operator:
k

~ R R N R R
(xx) B {_)\zt + [me+1 + A1 — M1 — Mz,t+l] |Qt}
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2.6.3. The M, First Order Condition

The first order condition with respect to M, is:

1—0o4
PO (RO )T O
M, M — M, + X, M, M!— M, + X, '

-\ (1 - TtD) Ryt =0

Ut

We can compute a money demand elasticity from this expression. This is the elasticity of
demand for M, with respect to R,;. We obtain this by totally differentiating (2.43) with
respect to M; and R,;. Rewrite (2.43) a little first:

0, (1—0y)

PC (1—0q) M—et(l—Uq) Mb - M X —(1-0.)(1—0q) e
v (P,CY) ¢ ( ¢ ¢+ t) [Mt Mtb_Mt+Xt]

= )\t (1 — TtD) Rat-
Now, differentiate:

)\t (1 - TtD) Rat

—0; (1 — +(1—-0)(1—
=01 =0,) M, (1= 8 {1 =00) (Mp — M, + X,)
M (1 —7P) R, 0 1-106
at ( (tl)Ot) : _ﬁt? B b ( ! 7 | YdM;
i T MP M+ X, t (Mt — M; + Xt)

= M (1-7")dRy

or

0 1-6
)\t (1 - TtD) Rat{(l - UQ) [_ﬁtt + MY — Mtt—i—Xt‘|
t

1 0, (1—6y,)
+ — —— = Yd M,
Jew_tt - Mf(—lz\/ztlxt [ Mg (Mp — M, + Xt)2
= AN(1-7")dRy
so that the elasticity is:

Ry dM; 1/M,
M, dRy 0, 1-6, 1 0, = .

(1~ ) |~ + i) + T | TN T (i)
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Simplifying:

Ro dM; =
2 2(1—
My dRay (1—0y) |:_‘9t + M, Mg,li/zlxt} T 0tMt+1i\I§€ll\/fiJ)rXt [_et B %]
B 1
_ 0; —my 1£1n_bt9jr)xt
ST PR Y T

Multiply (2.43) by 2P, :

1-0o
1\” 1 0, 1—0, 1\>
— - e 2.44
v [Ct (mt) (1—mt+xt> ] [mt 1—mt+xt] (mi’) (2.44)
At (1=7°) Ryt =0

In the ACEL specification, simply replace ¢; by unity in the previous expression. Now, we
linearize this expression. Consider the first piece:

1—0o
1)’ 1 e 1—40 1\*>
) (— Z -7 (= 2.45
v c(m) (1—m+x) ] [m 1—m+x](mb) (2.45)
- I_Uq —_— /\_
ot 1\” 1 o Het 1—0, It 1\>
0 c | — _ _—— —
! "\ m, 1—my + me 1 —my+ a2y mp

The first hat in this expression is:

(1-0,) [et — Gy — (1= 0)(1 —my + 21) — log (m) 00, + log (1 — m + z) 04,

= (1-0,) {at — Grin, — (1 — 9)% — log (m) 06, + log (1 — m + ) eét]
- t t
The second hat in the expression is:
gt /1\— gt % (ét - mt) + 1,92133 + (17177:i1)2 [—mmt + .Ti't]
T CRp=
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The third hat is:

Substituting these three pieces into (2.45):

1—0oy .
oLy 1 = & 1—9]12q
m l—-m+zx m  1l—m+4az \mb
" . . —mi + 23
X{Ut+<1 —Oq> [Ct —th— (1 —H)W (246)
—log (m) 06, 4+ log (1 — m + x) 66,
L (8= 1) + T+ s [ + i)
+ 0 _1-0_ —(2-0y) iy}
m 1-m+x
Linearizing the second part of (2.44):
A (1-7P)R, [Azt+(1 _ )+Rat} (2.47)
D L
== )\Z(l—’i— )Ra|:)\zt+1_7_D +Rat:|
Substituting (2.46) and (2.47) into the linearized version of (2.44):
N . . —mmy; + 23 A .
O+ (1= a,) [ct — Oy — (1 — e)ﬁ — log (m) 66, + log (1 — m + ) eet}
% <9t - mt) + 1—6;701t+z + (1717;2)2 [=miig + 2] 9 b
+ 0 _1-0 —(2—0y) My
m 1-m+4x
TD
- )\z ,t + + Ra t:| - 0
1—7P
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Collecting terms:
- 0 410
N ~ m (1—m+z)?
(**)Ut+(1_0q)ct+ —(1—O'q) (9—(1—9)m>— %_ljn_lim ]mt
1-0
|0 =0)A =0z T |
L=m +z % - 1—1’;12'1‘ t
1+ -
+ {—(1 —0o,) (log (m) —log (1 —m+xz)) + T _ml 0,
S b 3 " b, 7
—(2—=0y) M — | Aot + D +Rae| = 0
For the ACEL specification, simply set ¢; = 0.
2.6.4. The M}, First Order Condition
The first order condition with respect to M, is:
1 Ot+1 1 (1—0¢41) a 1
E{Buvrer (1 01) | P (_> < )
{ t+1 ( t+1) 1+l Mt+1 Mtb+l - Mt+1 + Xt-‘rl Mtb+1 - Mt+1 + Xt+1
+/6>\t+1 [1 + (1 — 7'5_1) Ra,t+1:| — /\AQ?} =0

The first two terms on the left of the equality capture the discounted value of an extra unit of
currency in base in the next period. The last term captures the cost, which is the multiplier

on the current period budget constraint. We now scale this expression. Multiply by P,z;:
1 )(1—9t+1) 1=oq

1 Ot11

Plovea (=) [Ctﬂ (mt+1) (1 — Myy1 + T
1 2—0yq 1 1

: ( ? ) Tip1bzgr1 L — M1 + Teqn
— Q=0

My
1
+ﬁ )\z,t+1 [1 + (1 - 7',521) Ra,tJrl}

T41 2 t+1
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For the ACEL specification, simply replace ¢;41 by unity. We now linearize the above
expression. Isolating the object in braces, and rearranging a little:

1 Os11 1=oq 1 (1=0r41)(1—0g)+1 1 2—0q 1
Buoper (1= Oiar) | e ( ) ( > ( ) (0,48
e 1) |Cer M1 T—myp1 + w0 mi LRV )

1
F————Xops1 [14+ (1= 771) Rausa] — Aes
Tt+1 Mz 41

Linearizing the first element in the sum:

l1-0o
1 0 q 1 (1-0)(1—0q)+1 1 2—0y 1
ma-ol ()] (=) () 20

A 00 A
X {01 — 1%% + (1 —0g)éea
1 9t+1 170-11 1 /\(1_9t+1)(1_0q)+1 ,
+ + — (2= 0) Ml — Fer — fi ,
(mt+1> (1 — My + It+1) ( q) t41 t+1 Mz,t+1}

Now, consider the fourth term in square brackets. This involves dm;;; and df; . Let

0 1-0y4
1 t+1
f(gt—&-l»mt—f—l) = [( ) ] .
M1

Then, R
fz ﬁ _ J1(0,m)00, 1 + f2(0, m)mimy
f (0, m) '
Now,
)" s Jiog ()]
B M1 _dexp[=01(1 — 0y)log (M
f1(07m) - d9t+1 - d9t+1

= —(1—0y)log (mis1)exp [—0i11(1 — 0,) log (my11)]
= —(1—0,)log(m) f(0,m).
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Also,

1—0o4

s~ AEL 2y

dmyiq m m

= —0(1—o0,) <%)0(10q) (%) = —0(1 —0,) f(0,m) (%)

po 4 (1= 0y)log (m) f(0,m)00, 11 + 0(1 — a) f(0,m) (&) main s
f f(6,m)

= —(1—0y)log (m) 00,1 —O(1 — 0,)1ness

Then,

Substituting this into (2.49):

1-0
1 0 a 1 (1-0)(1—0q)+1 1 2—0yq 1
ma-ol ()] (=) ) e

. 00 . A )
[0 — 7 i+; + (1 = 0¢) i1 — (1 — o) log () 00,11 — 0(1 — 0¢)1i0441
L N O-t)O-e)+ b
— (2 — 7 — g1 — [y )
* (1 — M1 + l’t+1> ( %) s = Rt = flai
Now consider the term with a hat over it. Let
1 (1=0t41)(1—0q)+1
fmesr, Tp1, Op1) = :
’ ’ L—mpp1 + 2o
Then, )
f dfy  film,z, 0)mi 4 fa(m, x,0)22 0 + fa(m, 2,0)00,,4
) = — = )
/ /
Now
1 (1-0)(1—aq) 1 2
fl(m, Z, 9) = [(]_ — 6) (1 — O'q) -+ 1] (m) (m) mmygyq

— [(1=0)(1—0,)+1]f x (ﬁ) S
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Also,

falm 2,0) = —Kr—mu—ca+u(——i——)uHmdﬂ<——l——)3mﬂ

1-m+=x l-m+=x

= —[(1-0)(1—0y) +1] f x (ﬁ) TTp41-

Finally,

J ( 1 )(19t+1)(10q)+1

1-msp1+Tepa

b1
dexp [~ (1 = 0r41) (1 = g) + 1) log (1 — mup1 + T441)]
b1
= (I1—o0y)log(l—m+z)f

fs(m,x,0) =

Substituting these into the expression for f; :

fi=—11-0)(1—0,) +1] ( > (@31 — M) + (1 — 0g) log (1 —m + 2) 00,1

l-m+x

Substituting this into (2.50):

1-0o
1 0 q 1 (1-0)(1—0q)+1 1 2—0yq 1
ma-ol ()] (=) () e

. 00 . - X
*{0r1 — f; + (1= 0))ee1 — (1 — ) log (m) 00141 — 0(1 — o)1y
1 A A
~[0=0) 1 =) + 1] (T ) e — ]

+(1 =0 )log (1 —m+x) 00,41 — (2— )10y — Fri1 — flzsra}-

64



Now consider the second and third elements in (2.48):

s
e
s
T,
s
T,

1
+
g

A [14+ (1—7") R,

A [14+ (1=77) R,

A [T+ (1=7") R,

_ﬁ-t-ﬁ-l - [Lz,t-‘rl + 5\z,t—&-l + []- + (1 - Ttl—)f—l) Ra,t-‘rl]] - )\zj\z,t
[ (1= 7°) RyRayi1 — TP Ra7E,
1+ (1-7D)R,

— M1 — fag+1 + Azpr1 +

— M1 — flzgp1 + )\z7t+1:|

A [ (1= 72) RuRagin = P Rail, | = A2

Using this and (2.51), we have our linearized version of (2.48):

l1-0o
1 0 q 1 (1-0)(1—0q)+1 1 2—0yq 1
1— il - - il
o mb(m)] (1_m+x) (mJ -

00:1

Al =775

—ﬂﬂ—ﬁﬂl—%%+ﬂ<

+(1—0y)log (1 —m+x) 00,11 — (2

B

B

z

+

+

+ (1= 0))é1 — (1 —0g)log (m) 00,1 — O(1 — o)1t

1

Trﬁ:;>hﬁﬂ—”mmﬂ

- Uq) mf‘,}+1 — eyl — ﬂz,t+1}

A, [1 + (1 - TD) Ra} [_ﬁ't—&—l — flz 41 + ;\z,t+1:|

A (1= 72) Rl = 77 Rafi] = 220
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Multiply by 7, and collect terms in 7,11 + fis 441 :

1\? 1=aq 1 (1-0)(1=0q)+1 / 1 \ 204
wa-ol @) (=) )

) 00 . - .
(b — 7 fé + (1= 0y)ls1 — (1 — ag)log (m) 00,41 — O(1 — 04 )it
1 R R
0 =0) (=0 + 1) () s =

(1= o) log (1= m+2) 0hes — (2 — o) 1t}
B [1+ (1= 77) Ro] Augs + B0z [(1= 77) Raftagin = 7P Rof2,] = 720
—{BX. [14+ (1 —7") R,

1\? 1=ay 1 (1=0)(1=0q)+1 /1 \ 20
+5v(1—0) |c (E) (—> < ) (e + flagtr)

l-m+=x mb
The object in braces can be simplified using the steady state result:

1 0 1 (1-0) 1 2—0q 1
pu(1-6) [C<E> (1—m+x> (W) l—-m+u

X [14+ (1=7")Ra) —mph. =0

() Bu(1-0) [(%)T (- )‘”)ﬂv«»ﬂ (L )2%

1—0oq

S0,

. 00 . - .
X{r1 — 1 fr; + (1= 0g)1 — (1 —0g)log (m) 00r11 — 0(1 — 04) 111
1 ) )
~(0=0) =) +1) (T ) s = i

+(1—0g)log(l —m+ux) 6)ét—l—l - (2-0y) mlt)+1
+6/\Z [1 + (]. - TD) Ra] /A\Z7t+1
"’B)\Z |:(1 - TD) RaRa,tJrl — TDRa’f'tgl] — 7r,uz)\z |:5\t -+ 7ATt+1 + /jbz,t+1:| .

For the ACEL specification, replaced ¢ by unity and set ¢; = 0.
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2.6.5. The C; First Order Condition

We now consider C;. It is useful to define u.; as the derivative of the present discounted
value of utility with respect to C} :

E {UC’t - U/(Ct - bOt—l) + bﬁu'(Ct_H — th)|fo} =0.

It is useful to obtain a linearization of the expression in braces, after multiplication by z;.
First, scale:

. 2 b3 Zt41 1
ct
Cy — bCy Cip1 — bC; Hzt+1
1 1 1
_ z
= Ucy C 3 _Cia +05 Ciy1 Cy T
zt Zt—1fbz,t Zt41 Zt bz t+1 ’
i 1
= u - —E g
Cflzp — bCi_1 Ct+1Hzt4+1 — bet
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One way to obtain the linearization, works like this:

Mzt 1
f c = f, — &t + bﬁ
(ct) ey — b Cop1fhzi+1 = DGy

! - 1 2 2 2 1 ? N
filei)eee = ————— | pu+b8 CCt
Cfbzp — bCr1 Cop1fbz 1 — by

[ 2 1 2
= (=) 20?8 (——r]) |
cp, — be cp, — be

_ 1 e gl
— (cuz—bc> (12 +b°B] céy

_ (%)2 [12 + 28] e x &

c(p, —0b
Mzt 1
c = u,, —————— + 0B
f< Hl) ot Cefzy — berq Coq1fbzi41 — by
R 1 S
f/<Ct+1)CCt+1 = —b8 (m) HzCCry
Mzt 1
C-1) = u., —————+0bf
f< ’ 1) ot Cillzt — bei—1 Ci+1Mz,t+1 — bey
1 2
/ A~ o ~
fle1)eter = (—C = b)> f12CCr—1
Mzt 1
f(pep) = uly ——————+0b0
(hz2) ! Ciflzy — bei—q Cip1fzp41 — by
1 IR
/ ~ _ _ z 2 ~
f (luzﬂf)luzluzﬂf - [ c(,uz — b) + (C (Mz IR b)) Cluz] Mozt
Mzt 1
= u.,, —————+0p
Jlbzera) * Ceflzy — beyq Ct1fzp41 — bCt
R 1 2
f,(ﬂz,tﬂ),uz,uz,tﬂ = 0B (m) Clbz oz 141
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The coefficients in the canonical form are:

o1(14,18) = (ﬁ)Q[;@Hﬂﬁ] ¢, &

pz—b
1 ? )
ap(14,18) = —bs (m) [oC 5 Coaq
1 2
as(14,18) = — (m) bu.c: ¢

2
50(14746) = bﬁ <ﬁ) Cﬂz DMzt

z

| LN
a0 = [ C(uz—b)+(0(uz—b)> MZ] e

Another way to obtain the linearization is:

Tor 1 1
uz,&it o /’LZ ﬂz,t _|_ bﬁ
’ iz — be cipizy — bey o ity — becyipiz i1 — b
But,
et —

R — AZ — |Cthyt — bC _
Cefbzy — by fie = leattz -

. cpz (G 4 fizy) — beci—y

= Mzt —
c(p:—b)
. o (Ge+ fizg) — bCiq
- ,uz,t -
pe —b
1 _ (Crg1 + flzgs1) — bé
Ci+1Mzt+1 — bey fy —b
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Then,

2z Uz N o (G 4 fizy) — by 1 foz (Cegr 4 flzpq1) — bCy
UUey — —7 5 J Hat — - bﬁ
Toc(p, —b) [, —b cp, — be [y —b
~ Hz Hz Mz ~ 1 ,uzﬂz t+1
— zaz L= b )
Hotlet lc<:uz_b) i c(p. —b) ,uz_b] flet ﬁcﬂz_bc pe — b
[z fhe 1 b 1 R
+ +0p3 ¢
lc<ﬂz_b)ﬂz_b cp. —bep, —b|
b 1 Mz Hz b .
— Cip1 — Co_
ez —bep,—b T c(ua—b)p.—b
_ uzﬁz—{ Lz _ UEC }ﬂt—bﬁLﬂtl
B G e
L ) T / TR
Alp =0 E b A b
Finally, reintroduce the expectation operator:
2
N Mz H>C N HC N
xx) B{uu, — — 2t — bf———— i,
(xx) E{uztg, lc(ﬂz_b> CQ(MZ—b)2]M’t 662(/&—5)2”’1%1
2 2
+6v* bB. . byt X
2“2 2CCt — — . 7CCH+1 — 75 - 2CCa |} = 0.
¢ (p: — b) ¢ (pn. —b) (. —b)

The first order condition associated with Cj is:

1—0
AN P e )
Et Uc,t_UtCt ! (Mtt) (Mtb—]\;t—l—Xt) ] B (1+Tt)Pt)\t = 0.
Multiply by z; :
Gt 170,5 170"1
—0o ZtPt/Mtb Zt_Pt/Mtb
Ey § terze — ! —(14+7) Ny p =0,
t \ Uctzt — UGy ( Mt/Mtb 1— Mt/Mtb I Xt/Mtb ( + Tt) it

or,

: |11\ 1 e .
E Uep — Vily Eﬂ’ E m — (1 + Ty ) >\z,t|Qt = 0,
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where
M, X, - Mtb

== Tt = 773, My = )
Myt M YT 4P,

For the ACEL specification, the second term inside the braces is replaced by zero.
Now we linearize the object in braces:

uz/llz —_ UC_Uq i l ’ ; o
cret mb \m 1l—-m+x

% {00 — 0yt + (1= ) (=i = Oy — (1= 0) (1=, )

(1-o0,) llog (%) — log (ﬁ)} 00,}

— (147N, [(1/+\rf) + Xm]

z
my uc,t = Ut

l1—0oq

But,
e —mmy; + Ty -m n x .
—m T — = m _—
t ! l-m+=x l-m+=x t 1—m—|—xt
P TeRC
14+77) = t
(+7) =
S0,
1—0oq

0 1-6
1 1\ 1 ¢
E Zh% —0gq . _ -
(x) Buci, —ve [mb <m> (1 —m—i—x) ]

A N N A —m x N
X[Ut — 04Ct + (1 — O'q) (—m? — Htmt — (1 — Ht) ( + t))

1—m—l—a:mt 1—m—l—x$

+(1—-0,) llog (%) —log (ﬁ)} 00;)

—(I4+7) A, ll i ch'f + 5\24 192} =0

For the ACEL specification the second term in the first line of (**) is replaced by zero.

2.6.6. The Wage Decision

The wage rate set by the household that gets to reoptimize today is W;. The household takes
into account that if it does not get to reoptimize next period, it’s wage rate then is

Wiy = T fz 41 Wi,
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where
_ A+l
Hzt+1 = .
2t

In period t + 2 it is B
Wiyo = 7Tt7Tt+1Mz,t+1Hz,t+2Wt,
and -
Wi = X oo o X Tyl g1 X oo Xy W

Technically, it is useful to note the slight difference in timing between inflation and the
technology shock. The former reflects that indexing is lagged. The latter reflects that
indexing to the technology shock is contemporaneous.

The demand curve that the individual household faces is:

Aw Aw
3 T—Xw 5 T—Xw
By — Wi - Witz 41 X+ -+ X ,uz,t+lX I
t+j = 4 tj = tj t+j>

W44 Zt+th

where W, denotes the nominal wage set by households that reoptimize in period ¢, and W,
denotes the nominal wage rate associated with aggregate, homogeneous labor, X; (don’t
confuse this with the different object, X, ; = m/m;). Also,

T X Mg X oo o X M1 Tt

th — — .
’ g1 X oo X Ty T+l

The homogeneous labor is related to household labor by:

1 Aw
zzvﬂmﬁ@],1gM<m.
0

The 5% household that reoptimizes its wage, W, does so to optimize (neglecting irrelevant
terms in the household objective):

[e.e]

Ey Z (5§w)l_t {=Grz(h i) + A (1 — T;+Z)M/j,t+lhj,t+l},
1=0
where
htor
B) =
z(h) 1/1L1 tor

The presence of &, by the discount factor reflects that the household is only concerned with
the future states of the world in which it cannot reoptimize its wage.
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Substituting out for h;,;; using the demand curve:
A

b W . X oo X [y 1=Aw
( thzt+1 oz 41 Xt,l) lt+l>

It
E, Z (B&w)™ { =Gz Wizt 5

=0
2w

W 2 Xovo o Xyt I=Aw
+(1 =7 ) AW Pt Hat Xy livi}
Wy 12011

Now, make use of the fact, A, 1 = My Pz

Aw

° W » X oo X [, =2
( thzt+1 Moz t+1 an) lt+l)

I—t
Ey Z (B€w)"™ { =Gz Wiz 5

=0
Aw

I ~ ~ 1-w
(1= 7 ) At Witz X -+ X ot Wi 441 X - X Fotil 5 I
t,l t,l t-‘rl})
P W1 2115

Zt41

or, after rearranging:

o s Ty
- Witz o1 X oo X g4 b
By (B&w) ™ {~Cz : X -
zz—(;< R ( Wizt ’ )
% R v A e
(1 B TtlJrl))\Z,H‘l I/Vt,uzﬂf—i—l X X Moz t+1 A 1 1-Aw Xt,l T—\w
* o Xt livi},
e+ Pt Zt+l Wi
or, (¢Z,t+l = Zt+l¢t+l) :
Aw
S Wikto i1 X« o0 X g4 o
E Y (B&) T {=Gua(| = X, o)
zz_(; ! Wiz by
i e A
-l—(l — 7! )>\ -+ Wittzp1 X - - - X Pa il o Xt <Xt’l ) o lt+l}
But, note that:
Ri+1 = MHzg+12t
Zt42 = a2z 412t
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etc., so that

Hzg+1 X =0 X g4l _ Hzp+1 X oo Xz gy _ l
Zt+1 Hzg4+1 X =0 n X 412t 2
Then,
o W, 2% W, L+ 24— X
E W) {— — X l =71 DAt | — X L
t;(ﬁf ) { CH_ZZ((wH—th 2 t,l) 1) (=T ) As 2 oy
Differentiate with respect to W, :
A
= ! / W, e Aw 5,1 X =
E w) 1— —X X, . A —_— [
t;(ﬁé ) { CtHZ( wt+thPt t,l t+l)1 W t <wt+l2tpt) 41
A Aw
1 L D 1\ X, \ T
L—r A | —— | W [ — X - l
(1 = 1) Az <1 — /\w> ¢ (tht> t (th) 41}
: = |
Multiply by W, ** (1 = A,)/ Ay :
= )\&U Aw
- Wt 1w th T
E W) = (| ———=X l _— X,
tlZO: (B&w) {=Ceni?'( (thrthPt t,l) t+1) (thZtPt t+1

1\ - / 1\ X\ T
H(1 =7 ) Az ()\_) Wi (E) Xty (w:z) liqi} = 0.

Aw
Multiply by P :

Y

~ g
e} Wt 1w ( th )1)\1”
E. wl —Gud (| ———=X, l ’ [
t;(ﬁg )‘{ §t+l (<wt+thPt t,l) t+l) Wizt t+1
~ 1 Aw
1 W 1 1-Aw X T—w
+(1 - 7—tl+l>)\z,t+l)\_?: (Z_t> Xy (K:lz) L} = 0.

Now get this in terms of stationary variables using w, = W, Wi, wy =W/ (2 F) :

Aw Aw
> 0 W, T=Jw X e
Etz(ﬁﬁw)l{—Csz’((LXt,z) lt+l)( i ) li1

P W12 Py W12
1 >\1y
1 ?I]tWt 1 1=2w Xt l 1-Aw
1— 75 )M — - X ] I = 0,
+(1 = 7)) Asit W) <Zt> ¢l <wt+l i}
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and

Aw Aw

- Be,)" 1o [ Wezwy A Xig \ T
E w) 1— 2 X, [ : l
Do) (e (Grtx) ™ e ()T b
A
1 _ A 1 th 1—w
1= 7L ) A — EETEERD.¢ ’ l = 0.
(1 = 7 ) Az N Wi 2 Wy 24 t <tht+l> t+1}
or,
[ee) X AIAU - A&U 1
12w WeW 1=Aw
E W) b Lo{ =G ([ X ! 1—7L )\, — 0w, X} = 0.
t;(ﬁf ) (thrth) t+l{ <t+lz< Wirt t,l t+l)+( Tt+l) 7t+l)\wwtwt t,l}
or,

Ay
= Xeg N1 l I, 24
E 5gwl< : ) let(1— 7 )M —{ 0w X g — ACrnt = 0.
t; ( ) W12t t+ ( t+l) t+ )\w{ t Wt g t+ (1 — 7_tl+l))\z7t+l}

Finally, multiply both sides of this expression by

A

(w2 ) T
so that
3 v R 1 y
Ei ZZOZ (B&) (%ﬁtl) L (1 — TZH))\z,tHE{wtthm — MGt iz Tg:l)&,m 0,
and N l
E; Z (5€w)l hyei{ (1- T;:Ll))\z,tﬂ B Xt — iz} = 0,
1=0 w

using the demand curve. Rewriting this

> ~ 1—7h )\,
E Y (&) hisn {wtwt( t;l) X+ Ggafr (hyai) | =0,
1=0 w
where
fr (hjiwt) = =z = —Lhity,
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or,

Ay
> _ 1—7! Ay Wi W I-w
E, (k v [wtwt( ret) s Xeg+ G fr ((wt tXt,l) lt+z>] =0.

-0 )‘w t+l1

(Here, the functions f and z refer to the same thing. This is inconvenient for reading, but
should not cause confusion.) Writing this out, term by term:

s Ae(1 Dy
0 = hy {wtwt% + G 1 ( F ] )}
A

B 1—7L )\, W W 12w
+BEwhj i1 [wttht,1< 1) At + Gr1fz ((wt tXt 1) lt+1)]

Mo "

) Aopia(l =7t Wew Ty
- (5&1;)2 Pjiyo [wttht,Q e +2) + G2 f1 ((wt tXt,2> lt+2>]

A t+2

+...

In steady state, w = 1,7, = 7, wq’bz + fr = 0. The derivative of this expression with respect
to Cray, evaluated in steady state, is:

1(B¢w) fr = =L (B&,) w™2

Derivatives with respect to the other variables can be found in newfile2.tex. Using the latter
and the result just obtained, we find:

_ R 0
0 = 1_155 L [wu)\—TM —+ fLLl i /\ L:| ('lz}t —Hi)t) LfLL LZ 551” wt+j
w w =
(1 — Tl))\z )\w ] — i~
—L {w— +f L (BEw) Trie;
. LT 2. t4+j
BEw (1—7HA, Aw R
+L¢@4w I *ﬁ% M@“
> . N & !
+L2fLLZ(5§w)J Lytj+ T) . Z BEw)’ [ 2t T %Ttl—&-]
Jj=0 7=0

—Lw(l — 7 Z ﬁfw Ct—i—]?

J=0
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where there has been a little switch in notation, replacing X; by L; and X by L. This
expression corresponds to (wagelin) with 4., replaced by 1., and with the understanding
that w; is now the real wage scaled by z;. After dividing by L, this expression is written:

1 1-— Tl )\Z w = N 11— Tl )\z )\w — A
0 = 1= Bz, [ ( )\w) +fLL1_)\wl} [Wy + Wy — [w%—l-fml_)\wl} ;(ﬁ&u)lwt—&-l
1-— Tl )\Z - IS Tl w o
+w% (B&w)’ l)\z,m’ 1A t+]:| frig— DY (B&w) i
w =0 wo=0
> A B (1—7HA, Aw . (1—-7H\ & | -
+/frl ; (Bw) liyj + - 3%, w . + fLL1 — )\wl T — wT ; (BEw) Ces
Denoting [w(l_/\ii))‘z + fLLlfgjw l] = [—fL + fLLlfgjw l] =0y ,w(l_/\ii)/\z = — f1, we obtain:
1 0o o] T 7_l
0 = 1= 5&1; wt + wt ; ﬁfw T — f1 ]Zo (ﬁfw)j |:/\Z,t+j - 1—Tf;l+j:|
—fLLl w)\w ; BEw) Wi + frrl jz% BEw) vy
ﬁgw ~ A (1 - T )\z -
+1 — ﬁng'Lﬂ't —W—— jz:; ﬁf@ Ct+)

7



This can be written:

00 00 T l
: _155 L@+ ] = 60 (B) R+ f1 Y (B [Az,w - %Téﬂ}
w =1 =0
+frel ac i (5fw)l Wy — frol i (5€w)j Zt+‘ — &(hﬁt
1— )\w —o =0 ! 1- 6§w
— M &
"‘w(l)\# Z (ﬁgw) Ct+j
w =0
00 00 l
= 0L Z(ﬁ&u)lﬁ}%l + fL Z (ﬁgw) [ zt+j #TtLJ}
1=0 j=0
+fLLl w)\ Z 5§w (1
W =0
—fLLlZ (B&w) lt—f—y —i—w(l e Z Bw)' Ct+y [UL + 1 fggg
j=0 7=0 w
00 X !
= Z(ﬁﬁw)l[%ﬁm + /L {)‘Z,tﬂ‘ - 1i—Tﬁtl+j]
1=0
Ay . - 1—7HA, -
+fLlewt+l — foolley; + w%@ﬂ]
oL .
T1-pe

Consider the following example:

T+ 2 = Z(ﬁ&u)l%ﬂ-

=0

Also,

o

BEw (41 + 2041) = Z(ﬁfm)l%ﬂ

=1

Differencing these expressions:

e+ 2 — B (Teg1 + 2e41) = Ui
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Applying this to the previous expression:

1 5'[, N 1 UL A
T pg, oot 1—ﬁ€wm_ﬁ&”{1—ﬁ€w sl + el + TG }
. 3 b w . . 1—7HN, »
= o+ [1 l)\z,t — %7’4 +fLLll — /\wwt — frolly -HU%Q
or
1 = oL 7
1—6@, Tl ) T e
= 6€w1—5€ [wt+1+wt+1]+5€w 55 i1 +OLT
L Aw . A 1—7HN, -
+/L |:)\z,t - ﬁﬁll + fLLl1 e Jrolly + w%@
or
L[ + ]
1_65111 o wt
1 o .
= 55@1 — 55@ [wt+1 + W] + 55@1 — gwatJrl
oy | 1= — | f e fd - fon D=2y — fonLE, +wlsE
or 1_5&” Tt LYzt LL 1_)\w Lol w)\ t
or
L Gl + ]
o)
1—6§w L t t
1 o R
= 5§w1 — ﬁfw [wt—l—l + W] + ﬁfwl — g€w7t+1
L Ao . 1—7H\, »
L féﬁgwﬂt+fL [ ot ﬁﬁl] +fLLl1 — )\wwt _fLLllt"‘w%gt
or
LG+ ] = B (s + ] + B
o = w w5
1_/3511] L t t 1_/6511) t+1 t+1 1_/3€w t+1
. B . Béw . B . Q (Y
—ULth—Fl 1_6&”5&1} t+1 — mﬁ&uﬂ—t—kl]"‘fL [Az,t—m%
Mo I
+fLLl1 — )\ww — foolly + w%@
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or

o

1 N . ~ . R
T—3, " [y + W] = Bw———— 11— 55@ G (W1 + Wepa] + B&u%ﬁt—&—l
!
~ w A~ A ~ w ~ N /\ ~
+0L1 fgﬁgw [B&w it — ] — oL fgﬁgwﬁgwﬂ't+l + fr l)\z,t T i ] + fLLll W Wy
. 1— 7N,
B w%g
or
1 0 .
1 ﬁfw [wt +dy] = Bfwl — 5fw [wt+1 + We] + 6&”1 — 5&1} (1 = B&w) Tt
!
. w . . . Aw .
+0L% [BEwTie1 — ) + fr |:)\z,t - %Tf} + fLLl1 — )\wwt
. 1—7HA, -
—frolly + w%@
or
L[y + i)
T,
= B§ ! [wt+1 + Wip1] + BEwOL T4 + UL Bl [BEw Ty — T
b 1- /ng v - 55111 v
!
N )\w A 7 2
+/L |:/\z,t - —thl} + fLLl1 — e frolle — frG
Define
o — froL
R
Note, that 6, = —fr + fLLl l=fr [ ’\jw foil 1} = fr [1:\;”%01 — 1} , so dividing the

expression above by fr,
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! l Au —1] [y + i) (2.52)

1= B& [1— N

w /\w = N
1 f%i [1 Y oL — 1] (W41 + Wyia]

Aw R - o
+ [1 — )\wO'L - 1] Béw Ty + l)\z,t - mﬂf]
Ao . N

+op———w — ol

5 w )\w ~ A~ 2
7 —555 1\ or —1 [7Tt - Bfwﬁtﬂ] — G

We now turn to the aggregate wage equation.

W, = l(l —&w) (I;Vt> = + &w (thﬂz,tth)ﬁ] o

Dividing this by z;P;, we get:

1 ql-Xy
wy = [(1 —&w) (7171t’LUt)ﬁ + &w (ﬂ-;__lwtl) i w] :

t

(It is easy to see from this that the steady state value of w; is unity.) In newfile2, it shown
that linearizing this leads to:

W= (1= &) (uvt + fat) ¥ € (W1 — (e — 7))

or
(1= &) (10 + 1) the = 1y — & (i1 — (R = F11))
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Subsituting this into (2.52), and multiply by 1 — A, :

1

(1 - ﬁéw) (1 - gw)
Béw

= Awor — (1= X)) [Wr11 — & (W — (Feg1 — 7))

(1= B&w) (1 = &)

N l
+mm—u—MMﬁmﬂﬂbﬂwPMﬁ£7ﬂ
Fop Aty — (1 = Ay) ULZt

B - |
T Do = (1= M) [ = Bun] = (1= M)

Letting b, = [Awor — (1 — Ayp)] /[(1 = &) (1 — BEyw)], we obtain

bo[y — & (W1 — (R — Ty-1))]
= ﬁfwbw[wt-&-l - gw (wt - (ﬁ-t-&-l - ﬁ-t))]

R l
Fho(1— €0) (1 — BEw) Beuirior + (1 — Au) {M _ 17_%4

oLty — (1 — Ay) orly
_ngbw(l - gw) [ﬁt - 5£w7%t+1] - (1 - )‘w) ét

So, the linearized expression for the real wage is what it was before, with a (minor)
adjustment to reflect the presence of a preference shock:

P\wUL - (1 - )\w)] [ﬁlt —&u (thfl - <7ATt - 7Ath1))]

~

l
N ~ N _ A ~ ~ > T ~ 2
(**) Et {ngwt_l + MWy + NoWii1 + T3 Ti—1 + N3¢ + NaT¢41 + 775[,5 + Ul |:)\z,t — —1 — 7_1 Ttl:| + 7]7Ct} =0

where
bwgw o
—bw (1 + 5&%}) + O'L)\w T
ﬁfwbw T2
buSw UE
n= —&wbu (1 + 6) = 73
bwﬁgw 4
—0y, (1 — )\w) Ui
11— )\w e
- (1 - )\w) Uk
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The above expression is the linearized Euler equation for the wage rate, scaled by technology.
One thing to notice here is the presence of [;. This corresponds to homogeneous labor, not
the sum of households’ differentiated labor, L;. Usually, we will work in settings where it is
safe to ignore the distinction. However, we may also consider settings where the distinction
matters a lot.

2.7. Monetary and Fiscal Policy

We plan to investigate various alternative monetary policies. In particular we plan to inves-
tigate varients of the Taylor rule, including several which make use of monetary aggregates,
as in Christiano and Rostagno (2001).

For now, we consider a representation of monetary policy in which base growth feeds
back on the shocks. The law of motion for the base is:

Mtb+1 = Mtb(l + @),

where z; is the net growth rate of the monetary base. (Above, we have also used the notation,
X;, where z; = X;/M}.) We have adopted the scaling, m? = M} /(P;z;). So, the law of motion
of m! is:

b b
MtJrl Ptzt Mt
= (1 + Z't),
P1§+lzt+1 Pt+12t+1 P,z
or,
1
Mipy = ————my(1 + ).
Tt41 Mzt 41
Then,
~ b X

~ b N N N
() i yy = 104 + T oot Tl = Hatl

Monetary policy is characterized by a feedback from Z; to an innovation in monetary
policy and to the innovation in all the other shocks in the economy. Let the p— dimensional
vector summarizing these innovations be denoted ¢, and suppose that the first element in ¢,
is the innovation to monetary policy. Then, monetary policy has the following representation:

p
(%) &y = int,
i=1
where x;; is the component of money growth reflecting the it" element in @¢. Also,

Ty = piTig1 + 00Qir + 0 Piv 1, (2.53)
for i =1,...,p, with 6% = 1.
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2.8. Goods Market Clearing

The demand for goods arises from several sources: the fraction, 1 —+, of dying entrepreneurs
who consume a fraction, ©;, of their net worth

o1 -V,
2 )
purchases by entrepreneurs associated with utilization costs of capital,
a(u) Ky,
purchases by households of consumption goods
Ct,
purchases by capital goods producers of investment goods,

[t7

monitoring costs of banks,

,u/ wdF(w) (1 + Rk) Qi s 1K
0
The household budget constraint is:
Qi1 = (I1+Ru)(A+Xy) T, —PC,+(1-0)(1—7)V, =W,
+(1+ R)T—1 + Wjithje + M + Hf + Hf + /H{df + A

Profits of the capital producers and the banks are:
H? = Qf(’,t [ff + F(It, It—l)] — QK/¢I — -PtIt

I} = (A +X;)+ 1+ R+ Ru)S)’ — (14 Ra) Dy — [(1 + ¢ Ry) Prrf K]
) wdF(w) (1 + RY) Qrry 1 Ky
Qf(',tht — Ny

+ |1+ R+ B,

i [ wdP@) (14 RE) Qg 1B = (14 ) Ti
0
+1; — By
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S0,

Hf + H? = (At + Xt) -+ RtStw — (1 + Rat) (At + Xt) — [(1 + djk,th) Pf/Tfo]

where we have used

Dy = A+ Xy + S, Ti1 = By, Ty = Byy1, By = Qi{zt—lf_(t — Ny

2.9. Resource Constraint

We now develop the aggregate resource constraint for this economy. For this, we make use of
the tricks of Tak Yun. Thus, define Y* at the unweighted sum of output of the intermediate
good producers:

1 1
vo= [yinir = [ Fles (a0
0 0
and, assuming production is positive everywhere,

F(e, 2, K(f),U(f)) = e “K(f)"I(f)" " — z¢.

Here, by I(f), we mean homogeneous labor hired by the f intermediate good firm, f €
(0,1). Recall that all firms confront the same wage rate and rental rate on capital. As a
result, they all have the same capital-labor ratio, K (f)/l(f). Moreover, this ratio coincides
with the ratio of the aggregate inputs:

K ! '
- Kf:/o K(f)df, zfz/o I(f)df,

where K/ and I/ are aggregate capital and labor used in the goods producing sector, respec-
tively. Then,

yro= /0 (2K (f)M(f) 7 — z0] df



so that

where

Then,

Then, putting these things together,

A

y = (%) T [ () () 2]

or,
2 _ _e(l-,
M/ deF(W) (]. + R?) QK’,tfth + G(U)Kt + % + Gt + Ot + It
0 t
A
P* A=t — @ -«
= (F) [zl E(Vtth> (thlt)l — Ztgb] ,

where

K ="K, 1F =1,

The left side of the goods market clearing condition displays the uses of goods: payment for
monitoring costs, utilization costs of capital, last meals of entrepreneurs slated for death,
consumption and investment. The right side displays the source of goods. Here, G; denotes
government consumption:

Gy = 2.
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Note that [ is the sum of all employment of the labor ‘produced’ by the representative la-
bor contractor. It is not necessarily the simple sum over all the labor supplied by households.
We now relate [ to the sum of differentiated labor supplied by households. Recall,

Aw

1
I = U (hj)ﬁdj] L 1< )\, < oo
0
Let the sum of the differentiated labor supplied by households be denoted by [* :

1
L:/ hidj
0

Substituting out using the labor demand curve:

1 W T—Aw
L = L '
[

A A

= W™ (W) T

lwﬁ_%
- 1(w)"

where

Finally,

Aq
W* Aw—1
l= L
Using an argument like the one used for prices, we find:

;L/ wdF(w) (14 R") Qgry 1 K + a(u)K + O(1 — y)vez + Gy + Cy + I (2.54)
0

e o D -«
< G0 et i) [ L] -0}

where




Both p; and w} represent ‘efficiency gaps’. It turns out that when non-optimized prices
and wages are indexed, either to steady state inflation, or to actual lagged inflation, these
efficiency gaps are roughly constant. This was shown by Tak Yun, and is demonstrated in
the first subsection below.

The pricing equation is:

1—X
L\ 177
Pt* = (1 - fp) (Pt) ! + gp (Wtflpt*—l) T
Dividing by F; :
=Y
* L Mo, \T |
pr=|(1—=&) @) +& W_ptfl . (2.55)
t
Linearizing:
Af
1-— )\f %{%ﬁ*l} /\f - 2y - )\f Te—1 1=Ay
k A%k — >k f f 1 _ 17>\f *
DDy Y (p*) [(1—&) -, ) ppy + fpl 3\ m P
1 * ~ T—1 & ~ Tt—1 4 s
X(;tpt_ﬂfﬂtfl - W_gpt—lﬂ—’]rt + p P hi-1)]

Evaluating in steady state when - from (C.2) and (2.55) respectively - we see p = p* =1

P = (1= &by + & (o1 — e +B)_y) - (2.56)

We find that in principle p; could move around with other variables. If a shock were to
move p;, it would have to do so via its impact on one of the other variables on the right
of (2.56). However, in practice those other variables must comove in such a way that their
impact on p; cancels out, so that p; is only a function of p; ;. Thus, movements in other
variables cannot get into py, at least to a first approximation.

To establish these observations requires linearizing p, in the expression for the aggregate
price level:

N\ T BT Ea
P=|0-6) ()77 46 (ram)™ |

Divide on both sides by P, :
N
vy T \ 1N
1=[@—muw 76 (2 ] -
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Linearizing this:

1 9
1 el 1 M1 \ 127 1 i1 .
0=(1- fp)—l Y (D) DDy + fpl_—)\f ( ! 1) [—mrt_l — ;lert ,

or, in steady state: R
0=(1—=&)p; + & [f1 — 7
Substituting this back into (2.56), we obtain:

ﬁtk = _fp [ﬁt—l - 7ATt] + fp (7ATt—1 — T +ZA):_1) )
which implies
Pr = &pPia-
this establishes the result sought. Namely, p; can be treated as being a function only of p;_;.
Since the linear relationship is damped, it is fair to suppose that p; = 1 always, and that
p; = 0.
We now turn to evaluating the evolution of wj:

1)y

S\ TR R
Wt* = [(1 - 5111) (VVt> A + gw (’uZtﬂ-t—lwtfl) lAw]

Divide both sides by W:

1y
_ 2w 2w A
W W\ Wi Wi\ T
— 1 — Quw pep— w z 17y
W ( g)(Wt) +& Mmlmm_l
or,
v
L Dw 2 Pqywy Wi\ T !
* — 1 - 1—w —
v [( £0) (50755 + 6, (e ST |
where =
s W oW W
t VVtJ t Wtj ¢ Zt-Pt'
Then,
L u Ty—1 Wi—1 e
* — 1 —&w 1—Aw w *_
i - e ()]



k oAk *) T\
wwy = — (wy ) A L% X
w
(1= &uw)— AT +& Mo (T,
- t w
1-— )\ 1— )\ e Wy
Lwer A Tp—1 We—1 A
X (— Wi TR — —5 wy_ T
Ty Wy Ty Wy
-1 1 T—1 W—1
—wt 1wwt 1— 5 wt lwwt+
T Wy Ty Wy

Evaluating this in steady state:

__Aw = A ~ ~ ~ Ak
= (1 — fw) (UJ::) I=2w )y + gw(ﬂ't,I — T+ W1 — Wy + wtfl)

We now obtain w* in steady state from the w} equation above:

1—Aw

Aw

=0+ @)

From this it is obvious that w* = 1. So,

= (1 = Eu)Ws + Eu(Fyy — 1y + W1 — Wy +0F_y),

(2.57)

and in principle w; moves around. However, it turns out that the comovements between w;
and m;_1, m; induced by the aggregate wage equation are such that, to a first approximation,
shocks which make the latter variables move around, have no impact on wy. This is why in
the end we can just set w; to its steady state value. This is why this variable does not, to a
first approximation, enter as a kind of ‘Solow residual’ in the aggregate resource constraint.

To figure out w;, we need an expression for w;. For this, we work with the expression for

the aggregate wage:

1-A
~ ; ; w
Wi = [(1 - fw)VVtkM +&w (Mz,tﬂthVt,l) 1)\w:| ]

Divide both sides by z P, :
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or,

1 1-Aw
wy = [(1 —&w) (ll~)tU):f)ﬁ + &w (W;lwt—1) IAw] .

Totally differentiating this:

1

=2 ~ 1 - N - i~
wiby, = (1— o) (w) T3 [(1— &) A e (wtwwt+wwtwt>

11—y

1

14

1 M1 1=2w 1 R M1 R M1 .

+&w Wi—1 — W1 T — —5 W17 + w1 )]
1—X, \ m T I T

or, taking into account w = 1,
i = (1= &) (100 + 1) + & (Foa = 7+ 1)
From the earlier expression, (2.57),
(1 — &)y = W} — Ep(Fyy — Ty Ay 1 — Wy + W},
Combining the previous two expressions:
Wy = (1 = &)Wy + W) — (g — T + Wiy — Wy + W) + & (Tem1 — T + Wi—q)

or,
Wy = &y,
According to this, if w} starts in steady state, it will stay there, even if there are shocks. So,

we can just assume w; = 0 for all 7.
To summarize what we have so far, write (2.54) neglecting terms of p; and wy :

u/ wdF(w) (14 Ry) Qgry 1 Kita(u) Ke+Gi+Cit I < {ztl—% (vEKT)® (Vth)La B z,:(b} |
0

Scaling this by z;:

K C, 1
di +alu)—+ g+ —+=+0(1 -7 < ¢ (ut

2t Zt 2t

VfKt

Zt

)a (L) " = o,
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where

H f(f)t wdF (w) (1 + Rf) QK”,t—th

d, =
! 2Py
o Jo wdF(w) (14 RY) Poyqi—1 K,
2 Py
w [ wdF(w) (1+ RF) g1 K 1
N Zt Tt
or,
21 K, Cy I z K, —a
dy + a(u) =2 —=L 4 g, + —t +o 0w <a (ut i ) (L) " — o,
2t Rt—1 2t Zt 1
or,
1 - . 1 kT ¢ 1 11—«
dy + aug)—k; + gt + i + i + O(1 — y)vy < & [ ug—vky (VtLt) — 0,
luz,t z,t (258)
where It
];:t — —t
Rt—1

The reason K; has to be scaled by lagged z;_; and not z; is that it is Ktﬂ that is chosen in
period t. If we scaled K; by z, then think of the implication that k., is chosen in period ¢.
Since 241 is not known in period ¢, this would be tantamount to assuming we are choosing
K1 as the outcome of a random mechanism. We also adopt the notation:

Cy . I;
Ct = —, Iy = —.
<t 2t

It is useful to have a linearization of the d; equation. Rewriting this in a slightly more
convenient form:

dt = MG((I)t) (1 + Rf) qtfll_ﬂt

/iz,ﬂTt‘
Then,
. — Rt .,
di = G(@t)‘i‘ R’“R + G- 1+k’t flzp — T
G'(w0) ~ ko ) = )
— G((Q))wwt + 1 T Rka + gi—1 + kt — /112715 — T
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Linearize the scaled resource constraint:

. 1 - o 1 - . A
dd; + a (Ut) kky — a(uy)—5=kepizfzy + gge + ccy + 12y

1
(ut),u t

2, z,t
N vE R vk R vk _~ 1 -
+@<1 — ’Y)UUt = ( ) VtLt [ ! ktuut — UtTtktﬂzﬁbz?t + Uy ! kkt + Uy ]{Ztl/k
2t 2t Z,t Mzt
E\©
+Et 1 — < t) VtLt)_a |:V£LLt + I/lLﬁg:| + (ut Vt kt) (VtLt) EEt
Mz,t

—

(6% Af,t
+ (—ka;) (v L) “(pr)rre T
Mz
Afit
fur) = (i)
_ Aft )
= €xp l/\f,t 1 log (pt):|
! )\t )\f N
A = log (p} — A
f( f,t) g(pt) [)\f_l ()\f—l)2] fit

since p; = 1 in steady state.
Evaluating in steady state, when v, = 1 and a(1) =0 and a’(1) = a’ :

- 1. . S, .
ddy + a' —kiy + g + ¢y + iy + O(1 — v)viy
z

vk

= (0% (M_k) (VZL)l_a [/&/t - ,[/Jz7t —I— ]%t ‘I— ﬁf]
k

+(1—a) <:—

z

k

IZ) (VZL)l—a |:[A/t —+ I?tl:| + (:—E') (ylL) -« ét

z

Output is the sum of consumption and investment. Thus,
Gt+a+i+0(1—y)v =1y

so that:

-\ —a 1 -
Yt = €4 (Ut Vtkkft> (I/éLt)l — ¢ — a(ut) ]Ct - dt,

,uz,t 2.t
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and, in steady state:

. (I@ (VD)™ —o~d

z

The variable, 1, is our measure of final output of goods, scaled by z;. This does not corre-
spond exactly to gnp as it is measured in the data, because that includes services from the
banking sector. We should be able to figure out a right measure of final banking services
to add to y;, to get a full measure of final goods and services production. Presumably, the
services from the demand deposits held by firms should not be included in final output. They
should be thought of as intermediate goods, already included in g;. But, the services of the
demand deposits held by households seem not to be included in y;. How to measure those?
One possibility would be to measure them as (R; — Rat) D/ P;.

Continuing with the linearization of the resource constraint

. 1 _
ddt —+ a/—kﬂt + ggt + Cét + Zit + @(1 — ’}/)Uf)t (259)

i

= [y+o+d [a(&t—ﬂzyt+2t+ﬁf)+(1—a) (f/t+ﬁtl>+€t]a

or
~ " " " 1 " " " " e " ~ . "
dydt+uyut+gygt+cyct+mZt—{—@(l—y)vyvt =« (ut — o+ kg + Vf)+(1—a) (Lt + l/f) +é4,
where
c g J d
C —= _—, = _—, = ——-
’ yro+d P T yro+d VT yro+d
v a//%zl;:

Yy yto+d Y ytro+d

The next step is to develop an expression for 7, in terms of physical capital. The capital
accumulation technology that we assume is:

I_(t+l — (1 - 5)Rt —|— F<]t7 ]t,]_).
Divide both sides by z; :
1o F(l, 1)

ky + ——.

k1= (1-96
o ( ) /le,t Zt

The adjustment cost function is:

F(I,I4) =[1-=5(/1-1)]1,
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where I_; denotes last period’s level of investment. We suppose that S =5 =0 and S” <0
in non-stochastic steady state. The growth rate of investment is p, > 1 in non-stochastic

steady state:
I 1 Xz

Ifl 11 X 21 ?

Evaluating the capital accumulation technology in steady state:

- 1
k= (1—08)—Fk+1i,
Hz

izk{l_l—ﬂ:kﬂz—_l”_
[t i

Writing out the adjustment costs in terms of the scaled variables:

so that:

F(Ita ]—tfl)

Zt

= [1 — S(W—Zt)] ip = [ (it ie—1, fhoy) = frs

1g—1

say. Linearizing f:

A z ) z ZQ z ? FRATEEON
fli= {_S,&it + (1 — S(W—t))} 1 — S’.t—uﬂzt + 5 téb it .
1t—1 11 1t (]

Evaluating this in steady state:

fft = iy
The capital accumulation technology is:
_ 1 - R '
Fror = (1—0)—Fk, + [1 - S(W—’t)] ie.
Mzt 14—1

Linearizing this, and evaluating the result in steady state:
_ 1 = 1 T A N
kktJrl = (1 — 5)M_kkt — (1 — 5),u_k,uz,t + 2,

so that
1—

b

o9
/N
bl
|
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N
-
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_I_
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>

(**) Et+l =
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Substituting this into (2.59):

~ R N R -1, N
dyds + uyty + gy g + cyC + kyzzt + O(1 — v)v, 0y
= a(@t—ﬂz,t+/2:t+ﬁf> + (1 —a) (ﬁﬁﬁf) + &,

where

L
Yooyt o+d

It is convenient to substitute out for d; from (2.59):

GI(@) o~ Rk /\k ~ = N ~

(ee) dy lG(w) et e T G R e = T
N R L7 L .
+uyty + gygs + cyCr + /{:yzzt + O(1 — v)u,y

= a(at—ﬂz,ﬁ%ﬁﬁf)ﬂl—a) (ﬁt+z>§>+ét,

3. Solving the Model

To solve the model, we to do three things: determine the steady state, collect the linearized
equations that characterize the equilibrium, and combine the latter into matrix format.

3.1. Steady State

We now develop equations for the steady state of our benchmark model. For purposes of
these calculations, the exogenously set variables are:

Tl> Tca 67 F((D)a Wy Ty fz, )‘f> )\un «, ¢k7 wla 57 v,

k T D e l k k
7-7777-’7—77_70-L7<—70-q767vvw>V7V>ma779>r

The variables to be solved for are
e k- . z b r b,.b
q, T, R ) RCU hem R7 R y W, k; n, 7, w, la C, Ug, M, )‘Zv wln €y €y, AT, 57 thJ Yy, g

The equations available for solving for these unknowns are summarized below. The first
three variables are trivial functions of the structural parameters, and from here on we treat
them as known. There remain 22 unknowns. Below, we have 22 equations that can be used
to solve for them.
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The algorithm proceeds as follows. Solve for R, using (3.16); h.r using (3.12).

We now compute R to enforce (3.8). This equation is a nonlinear function of R. For a
given R, evaluate (3.8) as follows. Solve for R¥ using (3.4); solve for & using (3.5); solve for
k and n using (3.6) and (3.7); solve for ¢ using (3.3); solve for w using (3.1); solve for [ using
(3.2); solve for ¢ using (3.18); solve (3.20) and (3.21) for g and y; solve for u? using (3.16);
solve for m® and ), using (3.15) and (3.15); solve (3.17) for 11; solve for €’ using (3.14);
solve £ from (3.13); solve e, from (3.11); solve a’z® from (3.10); hy» from (3.9). Vary R until
(3.8) is satisfied. In these calculations, all variables must be positive, and:

0<m<l+4z 0<E<L, A >0, k>n>0.

We are interested in solving the steady state when the ‘exogenous variables’” are the eco-
nomically exogenous ones, and the ‘endogenous variables’ are the economically endogenous
ones. In particular, consider the situation in which the exogenous variables are:

Tl? TC? 67 F((D)> Wy Ty fy, )\f> )‘un a, ¢k7 ¢la 57 v, abxb> €7

k T D e l
7—7777-77-77—7O-L7<ao-q70avvwvy7ng7¢ln

and the variables to be solved for are:
R®, R,, her, ™, R*, @, k ' l 2 omb, R, N\, € h K
q, T, ) ay flery T, y W, y Ty 1, W, by G Uy, T, ) zy €5, Cu, Kb Y, g, V., m

We solve for the above 25 variables as follows. The first three are solved in the same way as
before. The remainder are solved by solving three equations, (3.8), (3.10) and (3.12), in the
three unknowns, ¥, /¥ and R. Ideally, we start in a neighborhood of the solution obtained
in the previous calculations. Fix a set of values for r*, v* and R. The basic sequence of
calculations is the same as above. Solve for RF using (3.4), and then & using (3.5), and
then for k, n, and i using (3.6), (3.7) and (3.3) in that order. Then, we obtain w from (3.1)
and [ from (3.2). The resource constraint, (3.18) can be used to obtain ¢, and (3.20), (3.21)
can be used to compute y, g. Then, obtain A, and «? from (3.16) and (3.17). Solve (3.15),
(3.15) and (3.16) for R,, m, and m®. This can be made into a one-dimension search in m.
In particular, for a given m, solve for R, from (3.16) and for m® from (3.15). Vary m until
(3.15) is satisfied. Compute her, hyo, €, €l, using (3.9), (3.11), (3.13), and (3.14). We can
now evaluate (3.8), (3.10) and (3.12). Vary r*, v* and R until these equations are satisfied.

We are also interested in a version of our model in which the entrepreneurial sector has
been removed. In practical terms, this means dropping the entrepreneur sector equations
(equations (3.5), (3.6) and (3.7) below) and replacing them by:

RF = Re.
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Our strategy for solving the steady state adapts the first strategy described above. In
particular, for purposes of the calculations, the exogenous variables are

! c
T, T, 67 My Ty [z, )‘f7 )\wa Q, wkv wb 57 v, la
k T D e l k k
T, T, T , T , 0L, §> Oq, 67 v, w, Vv, v, migT
The variables to be solved for are
Re k R h R Rk k. i z b A T b,.b h
q, T, , T a9 ery 9 ) , 1, W, G UC, m-, 3] 77Z}L7 62, €y, AT, 57 Kby Y, g

The variables, @w and n, have been removed and [ has been shifted to the list of exogenous
variables. Among the variables to be solved, ¢, m, R, R,, r* and R* are now trivial. There
remain 17 variables to be solved for. For this, there are 17 equations. The algorithm proceeds
as follows. We view equation (3.8) as a nonlinear equation in R. We now discuss how to
evaluate this equation. Fix a value for R. Solve (3.1)-(3.3) for I/k, w and i/k. Solve (3.18)
with g = 0 for ¢/k. Solve for cu? using (3.16). Multiplying each of (3.15) and (3.15) by c,
those equations become two equations in unknowns, ¢/m® and c),. These can be found by
doing a one-dimensional search in ¢/m®. Solve (3.11) for e, and (3.12) for h.r. Solve (3.13)
for €. Solve (3.10) for z°. Solve for hy» using (3.9). Evaluate (3.8). Vary R until (3.8) is
satisfied.

We are also concerned with a version of the model in which we drop both the entrepre-
neurial and banking sectors (see section 3.3 below). The exogenous variables are like the
ones for the version of the model without the entrepreneurs, except that now we move m
from the list of exogenous variables to the list of variables to be solved for (the variable,
[, stays on the list of exogenous variables). As before, solving for ¢, w, R¢, r* and R* is
trivial. The remaining variables are found by solving a single non-linear equation, (3.15), in
m € [0,1 + z].1¥ To evaluate (3.15), fix m. Solve for R, using (3.16). Zero profits and zero
costs in the financial intermediary then implies R = R,. Solve for k, w, 7, ¢ and u? as in the
version of the problem with no entrepreneurs. Solve for m? using the steady state version of
the loan market clearing condition:

r*

z

E=mt(1—m+ax).

wlwl +

Solve for A, using (3.15). Now evaluate (3.15).

Whether we adopt our benchmark preferences, (2.40), or the ACEL preferences does not
substantially change the algorithm for finding the steady state. The relevant changes are
indicated below.

13 Actually, to ensure R, > 0, m < (1 + ).
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3.1.1. Firm Sector

From the firm sector, and the assumption that there are no price distortions in a steady

state, we have

Also, evaluating (2.3) in steady state:

-« «
Combining (2.3) and (2.4):

wltoR 1—ak

3.1.2. Capital Producers

From the capital producers,

Aot @rFre — Aoy +

)\z,t+1Qt+1F2,t+1 =0
/JJz,tJrl

or, since F1; =1 and Fy; =0,
qg=1.

_ 1 - i .
Frir = (1= 0) m+[L—S<W“ﬁ]%
Mzt -1

so that in steady state, when S = 0,

Also,

' 1—96
lo1- .
k s
3.1.3. Entrepreneurs
From the entrepreneurs:
k __ 1
r=a
Also,
u=1
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The after tax rate of return on capital, in steady state, is:

RE=[1-7")y"+1-08)]r+7-1 (3.4)
Conditional on a value for R¥, R¢, the steady state value for @ may be found using the
following equation:

k k
1@ T+ T [T T@ —ke@) -1 =0 (35)

where the hazard rate, h, is defined as follows:

F'(w)
h(w) = = Fw)

This equation has two additional parameters, the two parameters of the lognormal distribu-
tion, F. These two parameters, however, are pinned down by the assumption, Fw = 1, and
the fact that we specify F'(w) exogenously. With these conditions, the above equation forms
a basis for computing @. Note here that when p = 0,(3.5) reduces to R* = R°. Then, com-
bining (3.4) with the first order condition for time deposits, we end up with the conclusion
that r* is determined as it is in the neoclassical growth model.

Conditional on F'(w) and @, we may solve for k using (2.21):

k 1
- = — —. (3.6)
n - EE (@) - pG@))
The law of motion for net worth implies the following relation in steady state:
s k _ pe _ — k 1. e
o [R R MG(:LE(l nlt R )] k+w | (37)
L=y (55) -
3.1.4. Banks
The first order condition associated with the bank’s capital decision is:
Rhgo
1+ R rh = —L 3.8
(L) r 1+ Ther (3.8)

The first order condition for labor is redundant given (3.1), (3.2), and (3.8), and so we do
not list it here. In the preceding equations,

-«
hier = afalz® (e,)' ¢ (%) , (3.9)
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her = (1 — &) aba® (e,) ¢, (3.10)
and
A-—7)m*(1—-m+2x)—71 (wlwl + iwkrk@
(O =vhk) (1 =vh))'—
Another efficiency condition for the banks is (2.34). Rewriting that expression, we obtain:

1+ R% = her [(1 —7) R% - T] (3.12)

(3.11)

€y —

Substituting out for a’z? (e,) ¢ from (3.10) into the scaled production function, we obtain:

heT‘ b k k
e, =m’" (1 —m+2x)+Ywl + Ppr*—, 3.13
(1 _ g) ( ) ¢l k I ( )
wh