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1. Introduction

We describe a dynamic, general equlibrium model with banking and financial frictions. We
combine features from three papers. First, we incorporate the features of the real economy
analyzed in Christiano, Eichenbaum and Evans (2001). We do this because of their finding
that the features that they emphasize are helpful for matching empirical evidence on the
monetary transmission mechanism. Second, we incorporate the neoclassical model of banking
studied in Chari, Christiano and Eichenbaum (1995). We do this because we are interested
in a model which allows us to study the demand for different monetary aggregates, such
as demand deposits, time deposits, reserves and excess reserves. Third, we incorporate
a version of the costly state verification (CSV) setup described in Bernanke, Gertler and
Gilchrist (1999).1 We do this because we wish to explore the role of asset prices in the
propagation of shocks. Asset prices play a role in the propagation of shocks through their
impact on net worth. Net worth matters in the determination of aggregate economic activity
because it determines the amount of lending that banks do.
The model has a range of shocks. There are disturbances to the banking services and

production technologies. There are also various types of velocity shocks to the transactions
technology. These include shocks to household preferences for holding demand deposits ver-
sus currency. In addition, we have various shocks to money demand by firms. The presence
of these shocks and the various banking frictions make the model suitable for evaluating
the operating characteristics of alternative monetary policies presently under discussion. We
think the analysis will be especially interesting because, although the various model features
have been discussed before, now is the first time that they are being incorporated into a
single framework. The analysis will be made particularly relevant for the Euro area because
we plan to estimate model parameters using Euro-wide data.
Our model is sufficiently developed that it will allow us to go beyond the usual analysis

of monetary policy rules. It provides a framework for studying major problems in the control
of money that are reputed to have occurred in the past. A particularly famous example is
the Friedman and Schwartz hypothesis about the severity of the US Great Depression in the
1930s. They argued much of the responsibility for this lays with the US Federal Reserve,
which made a policy mistake when it targeted the monetary base rather thanM1 in the face
of a shift away from demand deposits and towards currency. Our model is sufficiently rich
that it can be used to credibly address this hypothesis. We think that this episode, though
it occurred long ago, continues to hold important lessons for monetary policy makers today.
On the empirical dimension, this project will confront some unique challenges and op-

1This work builds on Townsend (1979), Gale and Hellwig (1985), Williamson (1987). Other
recent contributions to this literature include Fisher (1996) and Carlstrom and Fuerst (1997,
2000).
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portunities. First, we do this project in the middle of a historic change in monetary policy.
We cannot treat the past 25 years’ of data as being drawn from a single regime. This fact
must be accommodated in the econometric strategy that we use to estimate and test the
model. One challenge is that in specifying the model we must take a stand on the nature
of the sources of long-term growth. For example, we must decide whether the exogenous
shocks are trend stationary or have a unit root. The literature reports that it is difficult
to distinguish between these two specifications, even in data sets with a span as long at 50
years. Second, the model we plan to work on incorporates a working capital channel into the
monetary transmission mechanism. That is, in addition to the usual demand channels, the
model specifies that interest rate changes operate on the economy via a supply-side mecha-
nism arising from firms’ needs for working capital. Evidence from US data suggests that the
amount of borrowing to finance short-term variable costs is quite high. To parameterize our
model, we will have to gather the same evidence for the Euro area. This type of evidence and
this channel for monetary policy has, up until recently, received relatively little attention.
The following section describes a benchmark model economy, which we will use at the

start of our analysis. After that there is a very brief indication of the econometric analysis
we plan to do. Once we have an empirically defensible model in hand, we plan to apply it
to analyze monetary policy questions.
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2. The Model Economy

In this section we describe our model economy and display the problems solved by intermedi-
ate and final good firms, entrepreneurs, producers of physical capital, banks and households.
Final output is produced using the usual Dixit-Stiglitz aggregator of intermediate inputs. In-
termediate inputs are produced by monopolists who set prices using a variant of the approach
described in Calvo (1983). These firms use the services of capital and labor. We assume that
a fraction of these variable costs (‘working capital’) must be financed in advance by banks.
Capital services are supplied by entrepreneurs who own the physical capital and determine
its rate of utilization. They finance their acquisition of physical capital partially using their
own net worth and partially using the variant on the costly state verification (CSV) technol-
ogy described in Bernanke, Gertler and Gilchrist (1999) (BGG). As is standard in the CSV
literature with net worth, we need to make assumptions to guarantee that entrepreneurs do
not accumulate enough net worth to make the CSV technology unnecessary. We accomplish
this by assuming that a part of net worth is exogenously destroyed in each period. Physical
capital is produced by firms which combine old capital and investment goods to produce
new, installed, capital.
The model has banks which are the entities that make working capital loans to inter-

mediate good firms and which provide the standard CSV debt contracts to entrepeneurs to
help them finance their acquisition of new capital.
The timing of decisions during a period is important in the model. At the beginning of

the period, the shocks to the various technologies in the model are realized. Then, wage,
price, consumption, investment and capital utilization decisions are made. After this various
financial market shocks are realized and the monetary action occurs. Finally, goods and
asset markets meet and clear. See Figure 1 for reference.
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Figure 1: Timing in Model

2.1. Information

We divide up the shocks in the model into financial market shocks - money demand (by
banks, households and firms) and monetary policy shocks - and non-financial market shocks
(technology, government spending, preference for leisure, elasticities of demand for differen-
tiated products and labor, etc.). The time t information set which includes period t − s,
s > 0, and period t observations on the non-financial shocks is denoted Ωt. The information
set which includes Ωt plus the current period financial market shocks is denoted Ωµ

t . Also,

E [Xt|Ωt] = EtXt

E [Xt|Ωµ
t ] = Eµ

t Xt.

2.2. Firm Sector

We describe three approaches to Calvo pricing here. They are differentiated according to
how people set their prices when they don’t have an opportunity to reoptimize. In the first
case, we suppose they can’t change their price at all. When steady state inflation is different
from zero, this leads to a very different system of equations than the norm. After this, we
review the standard Calvo equations.
We may in the future also want to consider the possibility that there is a costly state-

verification setup for financing firm inputs. This has been explored in Carlstrom and Fuerst
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(2000, Federal Reserve Bank of Cleveland Working Paper 0011). A potential advantage of
this approach is that it may rationalize an ‘efficiency wedge’ in the resource constraint. This
is suggested by the Carlstrom-Fuerst result in equation (13) of page 13. There are a couple
of drawbacks to this approach, however. First, their impulse response functions suggest that
the CSV setup may not have a big quantitative effect. For example, the efficiency wedge
effects suggested by the results in figure 1 seem small. At the same time, it may be that
for the size shocks we are interested in considering, perhaps the effects are quantitatively
large. Second, by adopting a CSV approach we suspect we have to abandon Calvo pricing.
Under the CSV approach, firms are told how much they can borrow and so there is no more
discretion on how much to produce. But then, if firms set prices they will generically be
off their demand curve. This may introduce complicated non-linearities, depending on how
we handled disequilibrium phenomena. Third, by abandoning the Calvo model we lose a
potential efficiency wedge. This wedge does not show up with first order approximations
(although, for an exception, see the first subsection below), but it may be quantitatively
large if we consider second order approximations and shocks that are big enough. Fourth,
by abandoning the Calvo setup, we also lose heterogeneity among firms, and then we lose
the demand elasticity parameter, λf . Shocks in this parameter represent direct shocks to the
price level (see below), and shocks like this will be useful for our analysis.
We adopt a standard Dixit-Stiglitz formulation. A homogeneous final good is produced

by a representative, competitive firm using a linear homogeneous production technology that
uses a continuum of differentiated intermediate goods as inputs. Each intermediate good is
produced by a monopolist who sets prices using two variants of the approach described in
Calvo (1983). The two variants are distinguished according to the stand they take how firms
set prices when they cannot reoptimize. In the version where they simply follow the previous
period’s aggregate inflation rate, the reduced form for inflation is:

(∗∗) π̂t = 1

1 + β
π̂t−1 +

β

1 + β
Etπ̂t+1 +

(1− βξp)(1− ξp)

(1 + β) ξp

h
Et (ŝt) + λ̂f,t

i
. (2.1)

Here, a hat over a variable indicates percent deviation from steady state. Also, st denotes
real marginal cost of production for intermediate good firms and πt = Pt/Pt−1 is the inflation
rate in the price, Pt, of the final good. In addition, ξp is the fraction of firms that cannot
reoptimize their price in a given period. Also, β ∈ (0, 1) is the household’s discount rate.
Finally, Et indicates expectation, conditional on the date t nonfinancial market shocks only
(not on the financial market shocks). This timing reflects our assumption that period t
intermediate good prices are set at after the realization of the financial market shocks, but
before the realization of the financial market shocks (i.e., the money demand and money
supply shocks).

Note that a shock, λ̂f,t, has been added to λf . That it ends up this way, symmetric with
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ŝt, is simple to explain. There are three ways for λ̂f,t to show up in (2.1). To see this,
consider first the version of (C.1) that applies to the present setup. There, λf shows up
in two ways. One is symmetric with st. The other is as a power. The power term can in
fact be ignored because, in the version of (C.1) that is of interest here, the object in square

brackets is zero in steady state. So, of the two channels for λ̂f,t to show up in (2.1), only

the one where it is symmetric with ŝt is operative. The third channel for λ̂f,t to show up
in (2.1) operates in principle via (C.2), which provides a mapping from inflation to p̃t. Note
that λf shows up as a power there. Perturbations in λf have no impact there, because, in
the version of (C.2) relevant to the current situation, the derivative of (C.2) with respect to
λf involves a log, and that log is evaluated at unity in steady state. That is, it is evaluated
at the steady state value of p̃t and πt−1/πt, both of which are unity in steady state.
The alternative formulation of Calvo pricing assumes that firms who cannot reoptimize

their price follow the steady state inflation rate. This leads to the following reduced form:

(∗∗) π̂t = βEtπ̂t+1 +
(1− βξp)(1− ξp)

ξp

h
Et (ŝt) + λ̂f,t

i
. (2.2)

The argument for why it is that shocks to λf show up in the way indicated in (2.2) is the
same as the argument justifying (2.1).
We assume that intermediate good firms are commited to supply whatever demand occurs

at the price that they set. Once prices have been set, and after the realization of current
period uncertainty, they decide how to produce the required level of output at minimum
cost. The production function of the jth intermediate good firm is:

Yjt =

½
�tK

α
jt (ztljt)

1−α − Φzt if �tK
α
jt (ztljt)

1−α > Φzt
0, otherwise

, 0 < α < 1,

where Φ is a fixed cost and Kjt and ljt denote the services of capital and labor. The variable,
zt, is a shock to technology, which has a covariance stationary growth rate. The variable,
�t, is a stationary shock to technology. The time series representations for zt and �t are
discussed below. Firms are competive in factor markets, where they confront a rental rate,
Prkt , on capital services and a wage rate, Wt, on labor services. Each of these is expressed in
units of money. Also, each firm must finance a fraction, ψk,t, of its capital services expenses
in advance. Similarly, it must finance a fraction, ψl,t, of its labor services in advance. The
interest rate it faces is Rt. Working capital includes the wage bill, Wtljt, and the rent on
capital services, Ptr

k
tKt. As a result, the marginal cost - after dividing by Pt - of producing

one unit of Yjt is:

st =

µ
1

1− α

¶1−αµ
1

α

¶α
¡
rkt [1 + ψk,tRt]

¢α
(wt [1 + ψl,tRt])

1−α

�t
, (2.3)
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where

wt =
Wt

ztPt
.

Linearizing this about steady state:

(∗∗) ŝt = α
h
r̂kt +

\(1 + ψk,tRt)
i
+ (1− α)

h
ŵt + \(1 + ψl,tRt)

i
− �̂t

= α

r̂kt + ψkR
³
ψ̂k,t + R̂t

´
1 + ψkR

+ (1− α)

ŵt +
ψlR

³
ψ̂l,t + R̂t

´
1 + ψlR

− �̂t

= αr̂kt + α
ψkR

1 + ψkR

³
ψ̂k,t + R̂t

´
+ (1− α) ŵt + (1− α)

ψlR

1 + ψlR

³
ψ̂l,t + R̂t

´
− �̂t

= αr̂kt + α
ψkR

1 + ψkR
ψ̂k,t + (1− α) ŵt + (1− α)

ψlR

1 + ψlR
ψ̂l,t

+

·
αψkR

1 + ψkR
+
(1− α)ψlR

1 + ψlR

¸
R̂t − �̂t

Marginal cost must also satisfy another condition:

st =
rkt [1 + ψk,tRt]

α�t
³
ztljt
Kjt

´1−α = rkt [1 + ψk,tRt]

α�t
³
ztνllt
νkKt

´1−α = rkt [1 + ψk,tRt]

α�t
³
µz,tlt
kt

´1−α , (2.4)

where νl and νk are, respectively, the share of aggregate labor in the intermediate good sector
and the share of aggregate capital in the intermediate good sector. We have imposed here
that νl = νk since the production function in the firm sector is the same as the (value-added)
production function in the banking sector. Also, lt and Kt are the unweighted integrals of
employment and capital services hired by individual intermediate good producers. Then,

(∗∗) ŝt = r̂kt +
\[1 + ψk,tRt]− �̂t − (1− α)

³
µ̂z,t + l̂t − k̂t

´
= r̂kt +

ψkR
³
ψ̂k,t + R̂t

´
1 + ψkR

− �̂t − (1− α)
³
µ̂z,t + l̂t − k̂t

´
Final output is produced according to the following production function, by the repre-

sentative final good firm:

Yt =

·Z 1

0

Yjt
1
λf dj

¸λf
.
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Total labor and capital services used by the intermediate good firms is:

Kf
t =

Z 1

0

Kjtdj, lt =

Z 1

0

ljtdj.

2.3. Capital Producers

There is a large, fixed, number of identical capital producers, who take prices as given. They
are owned by households and any profits or losses are transmitted in a lump-sum fashion
to households. The capital producer must commit to a level of investment, It, before the
period t realization of the monetary policy shock and after the period t realization of the
other shocks. Investment goods are actually purchased in the goods market which meets
after the monetary policy shock. The price of investment goods in that market is Pt, and
this is a function of the realization of the monetary policy shock. The capital producer also
purchases old capital in the amount, x, at the time the goods market meets. Old capital and
investment goods are combined to produce new capital, x0, using the following technology:

x0 = x+ F (It, It−1),

where the presence of lagged investment reflects that there are costs to changing the flow
of investment. We denote the price of new capital by QK̄0,t, and this is a function of the
realized value of the monetary policy shock. Since the marginal rate of transformation from
old capital into new capital is unity, the price of old capital is also QK̄0,t. The firm’s time t
profits, after the realization of the monetary policy shock are:

Πk
t = QK̄0,t [x+ F (It, It−1)]−QK̄0,tx− PtIt.

This expression for profits is a function of the realization of the period t monetary policy
shock, because QK̄0,t, x, and Pt are. Since the choice of It influences profits in period t+ 1,
the firm must incorporate that into the objective as well. But, that term involves It+1 and
xt+1. So, state contingent choices for those variables must be made for the firm to be able
to select It and xt. Evidently, the problem choosing xt and It expands into the problem of
solving an infinite horizon optimization problem:

max
{It+j ,xt+j}

E

( ∞X
j=0

βjλt+j
¡
QK̄0,t+j [xt+j + F (It+j, It+j−1)]−QK̄0,t+jxt+j − Pt+jIt+j

¢ |Ωt

)
,

where it is understood that It+j is a function of all shocks up to period t+ j except the t+ j
financial market shocks and xt+j is a function of all the shocks up to period t+ j. Also, Ωt
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includes all shocks up to period t, except the period t financial market shocks. These are
composed of shocks to monetary policy and to money demand.
From this problem it is evident that any value of xt+j whatsoever is profit maximizing.

Thus, setting xt+j = (1 − δ)K̄t+j is consistent with both profit maximization by firms and
with market clearing.
The first order necessary condition for maximization of It is:

E [λtPtqtF1,t − λtPt + βλt+1Pt+1qt+1F2,t+1|Ωt] = 0,

where qt is Tobin’s q :

qt =
QK̄,t

Pt
.

Multiply by zt :

E

·
λztqtF1,t − λz,t +

β

µz,t+1
λz,t+1qt+1F2,t+1|Ωt

¸
= 0. (2.5)

We have that:2

F (It, It−1) = [1− S(It/It−1)] It

As a result:
F1(It, It−1) = −S0(It/It−1)It/It−1 + 1− S(It/It−1),

or, after scaling variables3,

F1(It, It−1) = −S0(itµz,t
it−1

)
itµz,t
it−1

+ 1− S(
itµz,t
it−1

) = f1t ,

say. Totally differentiating:

f1f̂1t = −S00(
itµz,t
it−1

)
itµz,t
it−1

·
iµz,t
it−1

ı̂t +
itµz
it−1

µ̂z,t − itµz,t
i2t−1

îıt−1

¸
.

2The following function, S, satisfies S = S0 = 0 in steady state, and S00 in steady state is a
given parameter:

S(x) = exp [a(x− x∗)] + exp [−a(x− x∗)]− 2,
with a =

p
S00/2, and where x∗ is the steady state value of x.

3Using the adjustment cost function of the previous footnote,

S(
I

I−1
) = exp

·
a(

I

I−1
− µz)

¸
+ exp

·
−a( I

I−1
− µz)

¸
− 2,

we have, using F (I, I−1) = [1− S(I/I−1)]I,
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Here, we have anticipated that when the derivatives are evaluated in steady state, the other
terms in the total derivative disappear because S = S0 = 0. Evaluating in steady state:

f1f̂1t = −S00µ2z [̂ıt + µ̂z,t − ı̂t−1] , f1 = 1.

Now consider the other derivative:

F2(It+1, It) = S0(
it+1µz,t+1

it
)

µ
it+1µz,t+1

it

¶2
= f2t+1,

say. Totally differentiating:

f2f̂2t+1 = S00(
it+1µz,t+1

it
)

µ
it+1µz,t+1

it

¶2 ·
iµz,t+1
it

ı̂t+1 +
it+1µz
it

µ̂z,t+1 − it+1µz,t+1
i2t

îıt

¸
.

As before, there is no need to include the rest in this derivative, because it disappears when
we evaluate it in steady state due to our specification, S0 = 0. Evaluating in steady state:
(corrected)

f2f̂2t+1 = S00µ3z [̂ıt+1 + µ̂z,t+1 − ı̂t] .

With these results in hand, we proceed now to totally differentiate the object in braces
in (2.5). Rewriting it first:

λztqtf
1
t − λzt +

β

µz,t+1
λzt+1qt+1f

2
t+1

Totally differentiating:

λzqf
1
h
λ̂zt + q̂t + f̂1t

i
− λzλ̂zt +

β

µz
λzq

h
f2λ̂zt+1 + f2q̂t+1 + f2f̂2t+1 − f2µ̂z,t+1

i
or, taking into account f̂2 = 0 and the results derived for f̂1t , f

2f̂2t+1 :

λz
h
λ̂zt + q̂t − S00µ2z (̂ıt + µ̂z,t − ı̂t−1)

i
− λzλ̂zt +

β

µz
λzqS

00µ3z [̂ıt+1 + µ̂z,t+1 − ı̂t]

Now, divide by λz

λ̂zt + q̂t − S00µ2z (̂ıt + µ̂z,t − ı̂t−1)− λ̂zt +
β

µz
qS00µ3z [̂ıt+1 + µ̂z,t+1 − ı̂t] ,

or,

(∗∗) E ©q̂t − S00µ2z(1 + β)̂ıt − S00µ2zµ̂z,t + S00µ2z ı̂t−1 + βS00µ2z ı̂t+1 + βS00µ2zµ̂z,t+1|Ωt

ª
= 0
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The coefficients in the canonical form are:

α1(4, 9) = 1

α1(4, 4) = −S00µ2z(1 + β)

α2(4, 4) = S00µ2z
α0(4, 4) = βS00µ2z
β0(4, 46) = βS00µ2z
β1(4, 46) = −S00µ2z

We need an equation linking investment and the capital stock:

K̄t+1 = (1− δ)K̄t +

·
1− S

µ
It
It−1

¶¸
It,

or, after taking into account K̄t+1 = ztk̄t+1 and the scaling of It :

ztk̄t+1 = (1− δ)zt−1k̄t +
·
1− S

µ
itµz,t
it−1

¶¸
itzt.

Divide both sides by zt :

k̄t+1 = (1− δ)
1

µz,t
k̄t +

·
1− S

µ
itµz,t
it−1

¶¸
it.

Now, expand this:

k̄b̄kt+1 = (1− δ)
1

µz
k̄
³b̄kt − µ̂z,t

´
− S0µz [̂ıt + µ̂z,t − ı̂t−1] + [1− S] îıt

= (1− δ)
1

µz
k̄
³b̄kt − µ̂z,t

´
+ îıt,

since S0 = S = 0. Dividing by k̄ :

b̄kt+1 = 1− δ

µz

³b̄kt − µ̂z,t
´
+

i

k̄
ı̂t.

2.4. Entrepreneurs

There is a large population of entrepreneurs. Consider the jth entrepreneur (see Figure 2).
During the period t goods market, the jth entrepreneur accumulates net worth, N j

t+1. This
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abstract purchasing power, which is denominated in units of money, is determined as follows.
The sources of funds are the rent earned as a consequence of supplying capital services to the
period t capital rental market, the sales proceeds from selling the undepreciated component of
the physical stock of capital to capital goods producers. The uses of funds include repayment
on debt incurred on loans in period t− 1 and expenses for capital utilization. Net worth is
composed of these sources minus these uses of funds.
At this point, 1 − γ entrepreneurs die and γ survive to live another day. The newly

produced stock of physical capital is purchased by the γ entrepreneurs who survive and 1−γ
newly-born entrepreneurs. The surviving entrepreneurs finance their purchases with their
net worth and loans from the bank. The newly-born entrepreneurs finance their purchases
with a transfer payment received from the government and a loan from the bank. We actually
allow γ to be a random variable, but we delete the time subscript here to keep from cluttering
the notation too much.
The jth entrepreneur who purchases capital, K̄j

t+1, from the capital goods producers at
the price, QK̄0,t in period t experiences an idiosyncratic shock to the size of his purchase.

Just after the purchase, the size of capital changes from K̄j
t+1 to ωK̄j

t+1. Here, ω is a
unit mean, non-negative random variable distributed independently across entrepreneurs.
After observing the realization of the non-financial market shocks, but before observing the
financial market shock, the jth entrepreneur decides on the level of capital utilitzation in
period t + 1, and then rents capital services. At the end of the period t + 1 goods market,
the entrepreneur sells its undepreciated capital. At this point, the entrepeneur’s net worth,
N j

t+2, is the rent earned in period t + 1, minus the utilization costs on capital, minus debt

repayment, plus the proceeds of the sale of the undepreciated capital, (1 − δ)ωK̄j
t+1. As

indicated above, the entrepreneur then proceeds to die with probability 1−γ, and to survive
to live another day with the complementary probability, γ.
The 1 − γ entrepreneurs who are born and the γ who survive receive a subsidy, W e

t .
There is a technical reason for this. The standard debt contract in the entrepreneurial loan
market has the property that entrepreneurs with no net worth receive no loans. If new-
born entrepreneurs received no transfers, they would have no net worth and would therefore
not be able to purchase any capital. In effect, without the transfer they could not enter the
population of entrepeneurs. Regarding the surviving entrepreneurs, in each period a fraction
loses everything, and they would have no net worth in the absence of a transfer. Absent a
transfer, these entrepreneurs would in effect leave the population of entrepreneurs. Absent
transfers, the population of entrepreneurs would be empty. The transfers are designed to
avoid this. They are financed by a lump sum tax on households.
Entrepeneurial death in the model is a device to ensure that net worth does not grow

to the point where the CSV setup becomes redundant. Presumably, this corresponds to the
real-world observation that enormous concentrations of wealth, for various reasons, do not
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survive for long.
We need to allocate the net worth of the entrepreneurs who die. We assume that a

fraction, Θ, of a dead entrepreneur’s net worth is used to finance the purchase of Ce
t of

final output. The complementary fraction is redistributed as a lump-sum transfer to the
household. In practice, Θ will be small or zero.

FIGURE 2: A Day in the Life of an Entrepreneur 
 

* End of period  t: Using net worth, 
Nt+1, and loans, entrepreneur 
purchases new, end-of-period stock 
of capital from capital goods 
producers. Entrepreneur observes 
idiosyncratic disturbance to its 
newly purchased capital.  

After realization of period  
t+1 technology shocks, but 
before financial market 
shocks and monetary action, 
entrepreneur decides on 
capital utilization rate. 

Entrepreneur supplies 
capital services to 
capital services rental 
market 

Entrepreneur 
sells 
undepreciated 
capital to capital 
producers 

Entrepreneur pays 
off debt to bank, 
determines current 
net  worth. 

If entrepreneur 
survives another 
period, goes back to *. 

Period t+1 Period t 

2.4.1. The Production Technology of the Entrepreneur

We now go into the details of the entrepreneur’s situation. The jth entrepreneur produces
capital services, Kj

t+1, from physical capital using using the following technology:

Kj
t+1 = ujt+1ωK̄

j
t+1,

where ujt+1 denotes the capital utilization rate chosen by the j
th entrepreneur. Here, ω is

drawn from a distribution with mean unity and distribution function, F :

Pr [ω ≤ x] = F (x).

Each entrepreneur draws independently from this distribution immediately after K̄j
t+1 has

been purchased. Capital services are supplied to the capital services market in period t+ 1,
where they earn the rental rate, rkt+1.
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The capital utilization rate chosen by the jth entrepreneur, ujt+1, must be chosen before
period t + 1 financial market shocks, and after the other period t + 1 shocks. Higher rates
of utilization are associated with higher costs as follows:

Pt+1a(u
j
t+1)ωK̄

j
t+1, a

0, a00 > 0.

As in BGG, we suppose that the entrepreneur is risk neutral. As a result, the jth entrepreneur
chooses ujt+1 to solve:

max
ujt+1

E
©£
ujt+1r

k
t+1 − a(ujt+1)

¤
ωK̄j

t+1Pt+1|Ωt+1

ª
.

The first order necessary condition for optimization is:

Et

£
rkt − a0(ut)

¤
= 0.

This reflects that K̄j
t+1 Pt+1 are contained in Ωt+1. That Pt+1 is in Ωt+1 is due to our as-

sumption that prices are set before the realization of the financial market shocks. Totally
differentiating the expression inside the conditional expectation:

rkr̂kt − a00uût,

and evaluating this in steady state when rk = a0

r̂kt −
a00

a0
ût.

Putting this back into the expectation operator, and letting σa = a00/a0 :4

(∗∗) Et

£
r̂kt − σaût

¤
= 0.

After the capital has been rented in period t+1, the jth entrepreneur sells the undepreciated
part, (1− δ)ωK̄j

t+1, to the capital goods producer.
Below we introduce taxation on capital income. This does not enter into the above

first order condition because capital income taxation affects rental income and the cost
of utilization symmetrically. In addition, the capital income tax rate that applies to the
utilization rate at time t+ 1 is contained in the information set, Ωt+1.

4An a function that has the properties that we use is:

a(u) =
rk

σa
[exp(σa [u− 1])− 1] .

Note, a(1) = 0, a0(u) = rk exp(σa [u− 1]) = rk when u = 1.Also, a00(u) = σar
k exp(σa [u− 1]) =

σar
k , when u = 1. Then, a00/a0 = σa. Here, r

k is the steady state value of the rental rate of
capital.
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2.4.2. Taxation of Capital Income

We now discuss the taxation of capital income. It is convenient to begin the discussion
by considering, as a benchmark, an approach to the taxation of capital which parallels the
treatment of taxes on interest-bearing securities. This is convenient because it allows us to
compare the differential impact on entrepreneurial capital accumulation and on household
asset accumulation of inflation. To simplify, suppose for the moment that the return on cap-
ital is simply rk, the real price of capital in period t is qt and the price of a consumption good
in period t is Pt.We temporarily abstract from variable capital utilization and idiosyncratic
variation across entrepreneurs. The pretax nominal rate of return on capital from t to t+ 1
is

1 +Rk
t+1 =

rkt+1 + (1− δ)qt+1
qt

Pt+1

Pt
.

Suppose that capital income is taxed in such a way that the after tax return is 1+(1−τ)Rk
t+1 :

1 + (1− τ)Rk
t+1 = 1 +

·
rkt+1 + (1− δ)qt+1

qt

Pt+1

Pt
− 1
¸
(1− τ).

The real after tax return, then, is:

£
1 + (1− τ)Rk

t+1

¤ Pt

Pt+1
=

rkt+1 + (1− δ)qt+1
qt

(1− τ) +
Pt

Pt+1
τ.

So, if the pre-tax real rate of return on capital,
£
rkt+1 + (1− δ)qt+1

¤
/qt, were invariant to

inflation, then the after tax rate of return obviously would not be invariant.
The ‘normal’ way of treating capital income taxes is the following:

1 +Rk
τ,t+1 =

rkt+1 + (1− δ)qt+1
qt

Pt+1

Pt
− τt+1(r

k
t+1Pt+1 − δqtPt)

qtPt
.

Note that we value depreciated capital at its historic cost. Then, the after tax gross real
return is: ¡

1 +Rk
τ,t+1

¢ Pt

Pt+1
=

rkt+1 + (1− δ)qt+1
qt

− τt+1(r
k
t+1Pt+1 − δqtPt)

qtPt

Pt

Pt+1

=
(1− τkt+1)r

k
t+1 + (1− δ)qt+1
qt

+ τt+1δ
Pt

Pt+1

Here too, the after tax rate of return is decreasing in inflation. This is because of the way
depreciation is treated. If instead capital could be depreciated at current market cost, then,
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we would have ¡
1 +Rk

τ,t+1

¢ Pt

Pt+1
=
(1− τkt+1)r

k
t+1 + (1− δ)qt+1
qt

+ τt+1δ
qt+1
qt

,

and the after tax real return would be invariant to the rate of inflation (as long as the
pre-trax return were invariant).
We now turn back to our model, with variable capital utilization and idiosyncratically

different returns for different entrepreneurs. Following is the after tax rate of return on
capital, when the capital tax rate is τkt and all the details of our model are included, for
the entrepreneur with productivity, ω. The expression assumes that depreciation occurs at
historic cost:

1 +Rk,ω
t+1 =

£
ut+1ωr

k
t+1 − a(ut+1)ω

¤
Pt+1 + (1− δ)ωQK̄0,t+1

QK̄0,t

−τ
k
t

£
ut+1ωr

k
t+1 − a(ut+1)ω

¤
Pt+1 − τkt δQK̄0,t

QK̄0,t

=
ut+1ωr

k
t+1 − a(ut+1)ω + (1− δ)ωqt+1 − τkt

£
ut+1ωr

k
t+1 − a(ut+1)ω

¤
qt

Pt+1

Pt
+ τkt δ

=
(1− τkt )

£
ut+1r

k
t+1 − a(ut+1)

¤
+ (1− δ)qt+1

qt

Pt+1

Pt
ω + τkt δ

= (1 + R̃k
t+1)ω + τkt δ.

The latter expression allows the possibility that total tax payments are negative. This
would occur when

ω
£
ut+1r

k
t+1 − a(ut+1)

¤
Pt+1 − δQK̄0,t

QK̄0,t
< 0.

We could restrict tax payments to be non-negative, simply by setting those payments to zero
whenever the above condition holds. This implies a critical value of ω, the one that sets the
above to zero:

ω∗t+1 =
δQK̄0,t£

ut+1rkt+1 − a(ut+1)
¤
Pt+1

.

The appropriate formula for the rate of return now is, for the entrepreneur who receives
productivity ω :

1 +Rk,ω
t+1 = (1 + R̃k

t+1)ω + τkt δ × 1[ω≥ω∗t+1],
where

1[ω≥ω∗t+1] =
½
1 if ω ≥ ω∗t+1
0 if ω < ω∗t+1
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A shortcoming of this specification is that when ω is low, the current owner loses part of the
depreciation allowances. Capital changes hands every period, and so throughout its life it
will periodically end up in the hands of someone with low income. As a result, capital is never
fully depreciated in this way of setting things up. In principle, ‘lost depreciation allowances’
could be carried forward, but this would be very awkward in our environment, with capital
changing hands. The model would have to include a way of carrying forward unclaimed
depreciation allowances. There is another problem with this specification. It appears that
this indicator function causes the cutoff productivity level in the CSV contract (discussed
below) to become a discontinuous function of the state. This is completely inconsistent with
the basic solution strategy we adopt. This makes this option essentially infeasible.
An alternative possibility is to work with the case where it’s the capital that’s available

after ω is realized which can be depreciated, then the gross rate of return on capital is
proportional to ω. In this case, the rate of return for an ω−type entrepreneur in this case is:

1 +Rk,ω
t+1 =

(
(1− τkt )

£
ut+1r

k
t+1 − a(ut+1)

¤
+ (1− δ)qt+1

qt

Pt+1

Pt
+ τkt δ

)
ω

= (1 +Rk
t+1)ω.

Note how the rate of return on K̄ω
t+1 is a product of a rate of return, R

k
t+1, which is the

same across all entrepreneurs and ω. The shortcoming of this specification is that you can’t
depreciate the full amount of the initial capital purchase, when ω is low. An interpretation
of this is that it captures the notion that you lose depreciation allowances when your income
is too low to deduct the full amount. It’s an awkward way to capture this, but it has the
advantage of being tractable.
Linearizing the previous measure of the rate of return on capital, which we rewrite here:

Rk
t+1 =

(1− τkt )
£
ut+1r

k
t+1 − a(ut+1)

¤
+ (1− δ)qt+1

qt
πt+1 + τkt δ − 1

Linearizing:

(∗∗) R̂k
t+1 =

(1− τk)rk + (1− δ)q

Rkq
π
h

\(1− τkt )
£
ut+1rkt+1 − a(ut+1)

¤
+ (1− δ)qt+1 + π̂t+1 − q̂t

i
+

δτkτ̂kt
Rk

=
(1− τk)rk + (1− δ)q

Rkq
π

"¡
1− τk

¢
rkr̂kt+1 − τkrkτ̂kt + (1− δ)qq̂t+1

(1− τk)rk + (1− δ)q
+ π̂t+1 − q̂t

#
+

δτkτ̂kt
Rk

2.4.3. The Financing Arrangement for the Entrepreneur

How is the jth entrepreneur’s level of capital, K̄j
t+1, determined? At the moment the entre-

preneur enters the loan market, it’s state variable is its net worth. It is has nothing else. It
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owns no capital, for example. Apart from net worth, no other aspect of the entrepreneur’s
history is relevant at this point.
There are many entrepreneurs, all with different amounts of net worth. We imagine

that corresponding to each possible value of net worth, there are many entrepreneurs. They
participate in a competitive loan market with banks. That is, there is a competitive loan
market corresponding to each different level of net worth, Nt+1. In the usual CSV way, the
contracts traded in the loan market specify an interest rate and a loan amount. The contracts
are competitively determined. This means that they must satisfy a zero profit condition on
banks and they must be utility maximizing for entrepreneurs. Equilibrium is incompatible
with positive profits because of free entry and incompatible with negative profits because
of free exit. In addition, contracts must be utility maximizing (subject to zero profits) for
entrepreneurs because of competition. Equilibrium is incompatible with contracts that fail
to do so, because in any candidate equilibrium like this, an individual bank could offer a
better contract, one that makes positive profits, and take over the market.
The CSV contracts that we study are known to be optimal when there is no aggregate

uncertainty. However, the way we have set up our environment, there is such uncertainty.
We do this in part because we are interested exploring phenomena like the ‘debt deflation
hypothesis’ discussed by Irving Fisher. We interpret this hypothesis as corresponding to a
situation in which a shock (in this case, to the price level) occurs after entrepreneurs have
borrowed from banks, but before they have paid back what they owe. A problem with
what we do is that the contract we study is not known to be the optimal one. However,
we share BGG’s conjecture that in fact the contract is optimal, at least for sufficiently
risk averse households. This is because the contract has the property that uncertainty
associated with an aggregate shock is absorbed by entrepreneurs, while households receive
a state-noncontingent rate of return on their loans to entrepeneurs (these loans actually are
intermediated by banks). The reason this arrangement may not be optimal is as follows.
We have not ruled out the possibility that there could be a return for households which is
state contingent but compensates them for this, and which permits a CSV loan contract to
entrepreneurs that increases their welfare.
We now discuss the contracts offered in equilibrium to entrepreneurs with level of net

worth, Nt+1. Denote the level of capital purchases by such an entrepreneur by K̄N
t+1. To

finance such a purchase an Nt+1−type entrepreneur must borrow
BN
t+1 = QK̄0,tK̄

N
t+1 −Nt+1. (2.6)

The standard debt contract specifies a loan amount, BN
t+1, and a gross rate of interest, Z

N
t+1,

to be paid if ω is high enough that the entreprenuer can do so. Entrepreneurs who cannot
pay this interest rate, because they have a low value of ω must give everything they have
to the bank. The parameters of the Nt+1−type standard debt contract, BN

t+1 Z
N
t+1, imply a
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cutoff value of ω, ω̄N
t+1, as follows:

5

ω̄N
t+1

¡
1 +Rk

t+1

¢
QK̄0,tK̄

N
t+1 = ZN

t+1B
N
t+1. (2.7)

The amount of the loan, BN
t+1, extended to an Nt+1−type entrepreneur is obviously not

dependent on the realization of the period t + 1 shocks. For reasons explained below, the
interest rate on the loan, ZN

t+1, is dependent on those shocks. Since Rk
t+1 and ZN

t+1 are
dependent on the period t+1 shocks, it follows from the previous expression that ω̄N

t+1 is in
principle also dependent upon those shocks.
For ω < ω̄N

t+1, the entrepreneur pays all its revenues to the bank:¡
1 +Rk

t+1

¢
ωQK̄0,tK̄

N
t+1,

which is less than ZN
t+1B

N
t+1. In this case, the bank must monitor the enterpreneur, at cost

µ
¡
1 +Rk

t+1

¢
ωQK̄0,tK̄

N
t+1.

We now describe how the parameters, BN
t+1 and ZN

t+1, of the standard debt contract that is
offered in equilibrium to entrepreneurs with net worth Nt+1 are chosen.
We suppose that banks have access to funds at the end of the period t goods market

at a nominal rate of interest, Re
t+1. This interest rate is contingent on all shocks realized in

period t, and is not contingent on the realization of the idiosyncratic shocks to individual
Nt+1−type entrepreneurs, and is also not contingent on the t + 1 aggregate shocks. Banks
obtain these funds for lending to entrepreneurs by issuing time deposits at the end of the
goods market in period t, which is when the entrepreneurs need funds for the purchase of
K̄N

t+1. Zero profits for banks implies:

£
1− F

¡
ω̄N
t+1

¢¤
ZN
t+1B

N
t+1 + (1− µ)

Z ω̄Nt+1

0

ωdF (ω)
¡
1 +Rk

t+1

¢
QK̄0,tK̄

N
t+1 =

¡
1 +Re

t+1

¢
BN
t+1,
(2.8)

or,

£
1− F

¡
ω̄N
t+1

¢¤
ω̄N
t+1 + (1− µ)

Z ω̄Nt+1

0

ωdF (ω) =
1 +Re

t+1

1 +Rk
t+1

BN
t+1

QK̄0,tK̄
N
t+1

. (2.9)

5With the alternative treatment of depreciation, this expression becomes:³h
1 + R̃k

t+1

i
ω̄Nt+1 + τkt δ

´
QK̄0,tK̄

N
t+1 = ZN

t+1B
N
t+1.
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BGG argue that, given a mild regularity condition on F, the expression on the left of the
equality has an inverted U shape. There is some unique interior maximum, ω̄∗. It is increasing
for ω̄N

t+1 < ω̄∗ and decreasing for ω̄N
t+1 > ω̄∗. Conditional on a given ratio, BN

t+1/
¡
QK̄0,tK̄

N
t+1

¢
,

the right side fluctuates with Rk
t+1. The setup resembles the usual Laffer-curve setup, with the

right side playing the role of the financing requirement and the left the role of tax revenues
as a function of function of the ‘tax rate’, ω̄N

t+1. So, we see that, generically, there are two
ω̄N
t+1’s that solve the above equation for given BN

t+1/
¡
QK̄0,tK̄

N
t+1

¢
. Between these two, the

smaller one is preferred to entrepreneurs, so this is a candidate CSV. The implication is that
in a CSV, ω̄N

t+1 ≤ ω̄∗. Since, for ω̄N
t+1 < ω̄∗ the left side is increasing in a CSV, we conclude

that any shock that drives up Rk
t+1 will simultaneously drive down ω̄N

t+1.
From (2.8), it is possible to see why ZN

t+1 must be dependent upon the realization of the
period t+ 1 shocks. Substitute out for

¡
1 +Rk

t+1

¢
QK̄0,tK̄

N
t+1 using (2.7), to obtain:"

1− F (ω̄N
t+1) +

1− µ

ω̄N
t+1

Z ω̄Nt+1

0

ωdF (ω)

#
ZN
t+1 =

¡
1 +Re

t+1

¢
,

after dividing both sides by BN
t+1. Recall our specification that R

e
t+1 is not dependent on

the period t + 1 realization of shocks. The last expression then implies that if ZN
t+1 is not

dependent on the period t + 1 shocks, then ω̄N
t+1 must not be either. In this case, it is

impossible for (2.7) to hold for all date t + 1 states of nature. So, ZN
t+1 must be dependent

on the period t+1 shocks.6 Of course, if Re
t+1 were state dependent, then perhaps we could

specify ZN
t+1 to be period t+ 1 state independent.

6This may appear implausible, at first glance. In practice, when banks extend loans the rate
of interest that is to be paid is specified in advance. One interpretation of the fact that ZN

t

is contingent on the realization of the aggregate shock is that banks are unwilling to extend
loans whose duration spans the whole period of the entrepreneur’s project. Instead, they extend
the loan for a part of the period, and that allows them to back out before too many funds
are commited, in case it looks like the project is going bad. This is closely related to the
interpretation offered in Bernanke, Gertler and Gilchrist (1999, footnote 10).
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Substituting out for ZN
t+1B

N
t+1 from (2.7) in the bank’s zero profit condition, we obtain:7¡

1 +Re
t+1

¢
BN
t+1 =

£
1− F (ω̄N

t+1)
¤
ω̄N
t+1

¡
1 +Rk

t+1

¢
QK̄0,tK̄

N
t+1 (2.10)

+

Z ω̄Nt+1

0

(1− µ)
¡
1 +Rk

t+1

¢
ωQK̄0,tK̄

j
t+1dF (ω)

=
£
Γ(ω̄N

t+1)− µG(ω̄N
t+1)

¤ ¡
1 +Rk

t+1

¢
QK̄0,tK̄

N
t+1,

where Γ(ω̄N
t+1)− µG(ω̄N

t+1) is the expected share of profits, net of monitoring costs, accruing
to the bank and

G(ω̄N
t+1) =

Z ω̄Nt+1

0

ωdF (ω).

Γ(ω̄N
t+1) = ω̄N

t+1

£
1− F (ω̄N

t+1)
¤
+G(ω̄N

t+1)

It is useful to work out the derivative of Γ :

Γ0(ω̄N
t+1) = 1− F (ω̄N

t+1)− ω̄N
t+1F

0(ω̄N
t+1) +G0(ω̄N

t+1) (2.11)

= 1− F (ω̄N
t+1) > 0.

Dividing both sides of (2.10) by QK̄0,tK̄
N
t+1

¡
1 +Rk

t+1

¢
:

1 +Re
t+1

1 +Rk
t+1

µ
1− Nt+1

QK̄0,tK̄
N
t+1

¶
=
£
Γ(ω̄N

t+1)− µG(ω̄N
t+1)

¤
7Under the alternative treatment of depreciation,¡

1 +Re
t+1

¢
BN
t+1 =

£
1− F (ω̄Nt+1)

¤ h
(1 + R̃k

t+1)ω̄t+1 + τkt δ
i
QK̄0,tK̄

N
t+1

+

Z ω̄Nt+1

0

(1− µ)
h
(1 + R̃k

t+1)ω + τkt δ
i
QK̄0,tK̄

j
t+1dF (ω)

=
£
1− F (ω̄Nt+1)

¤ h
(1 + R̃k

t+1)ω̄t+1 + τkt δ
i
QK̄0,tK̄

N
t+1

+G(ω̄Nt+1) (1− µ) (1 + R̃k
t+1)QK̄0,tK̄

j
t+1 + F (ω̄Nt+1) (1− µ) τkt δQK̄0,tK̄

j
t+1

=
£¡
1− F (ω̄Nt+1)

¢
ω̄t+1 +G(ω̄Nt+1) (1− µ)

¤
(1 + R̃k

t+1)QK̄0,tK̄
N
t+1 + τkt δQK̄0,tK̄

N
t+1

£
1− F (ω̄Nt+1)µ

¤
=

£
Γ(ω̄Nt+1)− µG(ω̄Nt+1)

¤
(1 + R̃k

t+1)QK̄0,tK̄
N
t+1 + τkt δQK̄0,tK̄

N
t+1

£
1− F (ω̄Nt+1)µ

¤
or, after dividing:¡

1 +Re
t+1

¢
BN
t+1

(1 + R̃k
t+1)QK̄0,tK̄

N
t+1

=
£
Γ(ω̄Nt+1)− µG(ω̄Nt+1)

¤
+

τkt δ
£
1− F (ω̄Nt+1)µ

¤
(1 + R̃k

t+1)
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Multiply this expression by
¡
QK̄0,tK̄

N
t+1/Nt+1

¢
(1 +Rk

t+1)/(1 +Re
t+1), to obtain:

QK̄0,tK̄
N
t+1

Nt+1
− 1 = QK̄0,tK̄

N
t+1

Nt+1

1 +Rk
t+1

1 +Re
t+1

£
Γ(ω̄N

t+1)− µG(ω̄N
t+1)

¤
.

Let

ũt+1 ≡ 1 +Rk
t+1

E
¡
1 +Rk

t+1|Ωµ
t

¢ , st+1 ≡ E
¡
1 +Rk

t+1|Ωµ
t

¢
1 +Re

t+1

.

Then, the non-negativity constraint on bank profits is:

QK̄0,tK̄
N
t+1

Nt+1
− 1 ≤ QK̄0,tK̄

N
t+1

Nt+1
ũt+1st+1

£
Γ(ω̄N

t+1)− µG(ω̄N
t+1)

¤
, (2.12)

From this we can see that ω̄N
t+1 is a function of the capital to net worth ratio and¡

1 +Re
t+1

¢
/
¡
1 +Rk

t+1

¢
only:

ω̄N
t+1 = g

µ
1 +Re

t+1

1 +Rk
t+1

µ
1− Nt+1

QK̄0,tK̄
N
t+1

¶¶
. (2.13)

As noted above, competition implies that the loan contract is the best possible one, from
the point of view of the entrepreneur. That is, it maximizes the entrepreneur’s ‘utility’
subject to the zero profit constraint just stated. The entrepreneur’s expected revenues over
the period in which the standard debt contract applies are:8

E

(Z ∞

ω̄Nt+1

£¡
1 +Rk

t+1

¢
ωQK̄0,tK̄

N
t+1 − ZN

t+1B
N
t+1

¤
dF (ω)|Ωt,Xt

)

= E

(Z ∞

ω̄Nt+1

£
ω − ω̄N

t+1

¤
dF (ω)

¡
1 +Rk

t+1

¢ |Ωt, Xt

)
QK̄0,tK̄

N
t+1.

8We treat this as the entrepreneur’s utility function, even though the entrepreneur will be
around in the future (either he will be around as a condemmed person eating his last meal in
the next period, or he will be around with at least one more period after that). Still, we drop
all reference to the future in our expression of his utility function. A possible rationale for this
is that future utility is a linear function of future net worth. We hope to show this in a future
draft.
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Note that9

1 =

Z ∞

0

ωdF (ω) =

Z ∞

ω̄Nt+1

ωdF (ω) +G(ω̄N
t+1),

so that the objective can be written:

E
©£
1− Γ(ω̄N

t+1)
¤ ¡
1 +Rk

t+1

¢ |Ωµ
t

ª
QK̄0,tK̄

N
t+1,

or, after dividing by (1+Re
t+1)Nt+1 (which is a constant with respect to date t+1 aggregate

uncertainty), and rewriting:

E
©£
1− Γ(ω̄N

t+1)
¤
ũt+1|Ωµ

t

ª
st+1

QK̄0,tK̄
N
t+1

Nt+1
, ũt+1 =

1 +Rk
t+1

E
¡
1 +Rk

t+1|Ωµ
t

¢ , st+1 = E
¡
1 +Rk

t+1|Ωµ
t

¢
1 +Re

t+1

,
(2.14)

where Ωµ
t denotes all period t shocks. From this expression and the fact, Γ0 > 0, it is

evident that the objective is decreasing in ω̄N
t+1 for given QK̄0,tK̄

N
t+1/Nt+1. This property of

the objective was alluded to above.
The debt contract selects QK̄0,tK̄

N
t+1/Nt+1 and ω̄N

t+1 to optimize (2.14) subject to (2.12).
It is convenient to denote:

kNt+1 =
QK̄0,tK̄

N
t+1

Nt+1
.

Writing the CSV problem in Lagrangian form,

max
ω̄N ,kN

E
©£
1− Γ(ω̄N)

¤
ũt+1st+1k

N + λN
£
kN ũt+1st+1

¡
Γ(ω̄N)− µG(ω̄N)

¢− kN + 1
¤ |Ωµ

t

ª
.

The single first order condition for kN is:

E
©£
1− Γ(ω̄N

t+1)
¤
ũt+1st+1 + λNt+1

£
ũt+1st+1

¡
Γ(ω̄N

t+1)− µG(ω̄N
t+1)

¢− 1¤ |Ωµ
t

ª
= 0.

(2.15)

9Under the alternative treatment of depreciation,

E

(Z ∞
ω̄Nt+1

h³
(1 + R̃k

t+1)ω + τkt δ
´
QK̄0,tK̄

N
t+1 −

³h
1 + R̃k

t+1

i
ω̄Nt+1 + τkt δ

´
QK̄0,tK̄

N
t+1

i
dF (ω)|Ωt,Xt

)

= E

(Z ∞
ω̄Nt+1

£
ω − ω̄Nt+1

¤
dF (ω)

³
1 + R̃k

t+1

´
|Ωt,Xt

)
QK̄0,tK̄

N
t+1.
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The first order conditions for ω̄N are, after dividing by ũt+1st+1k
N
t+1:

Γ0(ω̄N
t+1) = λNt+1

£
Γ0(ω̄N

t+1)− µG0(ω̄N
t+1)

¤
. (2.16)

Finally, there is the complementary slackness condition, λN
£
kN ũt+1st+1

¡
Γ(ω̄N)− µG(ω̄N)

¢− kN + 1
¤
=

0. Assuming the constraint is binding, so that λN > 0, this reduces to:

kNt+1ũt+1st+1
¡
Γ(ω̄N

t+1)− µG(ω̄N
t+1)

¢− kNt+1 + 1 = 0. (2.17)

It should be understood that λNt+1 in (2.15) is defined by (2.16). We can think of (2.15)-
(2.17) as defining functions relating kNt+1 and ω̄N

t+1to st+1. Remember, k
N
t+1 is not indexed by

ũt+1, while ω̄
N
t+1 is. So, we think of ω̄

N
t+1 as a family of functions of st+1, each function being

indexed by a different realization of ũt+1. Note that Nt+1 does not appear in the equations
that define kNt+1 and ω̄N

t+1. This establishes that the values of these variables in the CSV
contract is the same for each value of Nt+1. For this reason, we can drop the superscript
notation, N. That is, the functions we are concerned with are kt+1 and ω̄t+1.
We find it convenient to denote the function relating kt+1 to st+1 by:

kt+1 = ψ(st+1). (2.18)

This function (at least, its Taylor expansion around the steady state value of st+1) could be
used to play an important role in the computations. In general, it is difficult to characterize
ψ analytically, from (2.15)-(2.17). One has to solve for this function by jointly solving for
it and the functions relating λt+1 and ω̄t+1 to st+1. For purposes of computation it is not
necessary to characterize ψ analytically. We only need its value and derivative in steady
state, which we denote by ψ and ψ0. We obtain its value by solving (2.15)-(2.17) in steady
state, and we obtain its derivative by differentiation.
We find it convenient to drop time subscripts to keep the notation simple, and because

it should entail no confusion. The equations that concern us are:

E {[1− Γ(ω̄)] ũs+ λ [ũs (Γ(ω̄)− µG(ω̄))− 1]} = 0, (2.19)

Γ0(ω̄) = λ [Γ0(ω̄)− µG0(ω̄)] , (2.20)

kũs (Γ(ω̄)− µG(ω̄))− k + 1 = 0. (2.21)

It is understood that the expectation operator is over different values of ũ, and k is constant
across ũ while λ and ω̄ vary with ũ. Let ω̄s denote the derivative of ω̄ with respect to s and
define ks similarly. So, the values of k and ks are the ψ and ψ0 that we seek.
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To obtain the steady state value of ω̄ substitute out for λ from (2.20) into (2.19) and
evaluate in steady state, with ũ = 1 :

[1− Γ(ω̄)] s+
Γ0(ω̄)

Γ0(ω̄)− µG0(ω̄)
[s (Γ(ω̄)− µG(ω̄))− 1] = 0, (2.22)

[1− Γ(ω̄)] s+
Γ0(ω̄)

Γ0(ω̄)− µG0(ω̄)
[s (Γ(ω̄)− µG(ω̄))− s+ s− 1] = 0,

[1− Γ(ω̄)] s− Γ0(ω̄)
Γ0(ω̄)− µG0(ω̄)

[1− Γ(ω̄)] s+
Γ0(ω̄)

Γ0(ω̄)− µG0(ω̄)
[−sµG(ω̄) + s− 1] = 0,

[1− Γ(ω̄)] s

½
1− Γ0(ω̄)

Γ0(ω̄)− µG0(ω̄)

¾
+

Γ0(ω̄)
Γ0(ω̄)− µG0(ω̄)

[−sµG(ω̄) + s− 1] = 0,

[1− Γ(ω̄)] s
−µG0(ω̄)

Γ0(ω̄)− µG0(ω̄)
=

Γ0(ω̄)
Γ0(ω̄)− µG0(ω̄)

[sµG(ω̄)− s+ 1] ,

−µG0(ω̄) [1− Γ(ω̄)] s = Γ0(ω̄) [sµG(ω̄) + 1− s] ,

µω̄F 0(ω̄) [1− Γ(ω̄)] s+ [1− F (ω̄)] [s (µG(ω̄)− 1) + 1] = 0.
Dividing by 1− F (ω̄) :

µ
ω̄F 0(ω̄)
1− F (ω̄)

[1− Γ(ω̄)] s+ s (µG(ω̄)− 1) + 1 = 0.
½
µ

ω̄F 0(ω̄)
1− F (ω̄)

[1− Γ(ω̄)] + µG(ω̄)− 1
¾
s+ 1 = 0.

Note that if s = 1, then the object on the left is the sum of two positive numbers. This
cannot be zero. So, s = 1 cannot be a steady state equilibrium. BGG argue that a steady
state equilibrium requires s > 1. Presumably, this means that the object in braces in the
preceding expression is negative. That remains to be shown.
Taking into account, Γ0 = 1− F and G0 = ω̄F 0, we obtain from (2.22):

[1− Γ(ω̄)] s+
1− F (ω̄)

1− F (ω̄)− µω̄F 0(ω̄)
[s (Γ(ω̄)− µG(ω̄))− 1] = 0.

We follow BGG in specifying that F corresponds to a log-normal distribution. This has
two parameters. However, the requirement, Eω = 1, pins down one of them. In addition,
F (ω̄) is treated as an observable variable. So, for purposes of computing the steady state,
we think of there being two unknowns: ω̄ and the free parameter of F. These are solved for
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by enforcing the previous equation and the desired value of F (ω̄).10 After this, ψ may be
computed by solving (2.21) setting ũ = 1.
Next, we consider ψ0. Differentiating (2.19)-(2.21), we obtain:

E{[−Γ0(ω̄)ũs+ λũs (Γ0(ω̄)− µG0(ω̄))] ω̄s + [1− Γ(ω̄)] ũ+ λ [ũ (Γ(ω̄)− µG(ω̄))]

+λs [ũs (Γ(ω̄)− µG(ω̄))− 1]} = 0,
{Γ00(ω̄)− λ [Γ00(ω̄)− µG00(ω̄)]} ω̄s − λs [Γ

0(ω̄)− µG0(ω̄)] = 0

(Γ(ω̄)− µG(ω̄)) ks + k (Γ0(ω̄)− µG0(ω̄)) ω̄s = 0

Evaluating these equations in steady state, and making use of (2.16):

[1− Γ(ω̄)] + λ (Γ(ω̄)− µG(ω̄))

+λs [s (Γ(ω̄)− µG(ω̄))− 1] = 0,
{Γ00(ω̄)− λ [Γ00(ω̄)− µG00(ω̄)]} ω̄s − λs [Γ

0(ω̄)− µG0(ω̄)] = 0

(Γ(ω̄)− µG(ω̄)) ks + k (Γ0(ω̄)− µG0(ω̄)) ω̄s = 0

To find the object of interest, ks, we need to solve these three equations for ks, ω̄s and λs.
The first of these three equations can be solved for λs, the second ω̄s. Then, the last equation
can be solved for ks. This requires knowing Γ00(ω̄) and G00(ω̄). From (2.11) we obtain that
Γ00(ω̄) = −F 0(ω̄). Also, since G0(ω̄) = ω̄F 0(ω̄), so that

G00(ω̄) = F 0(ω̄) + ω̄F 00(ω̄).

This requires evaluating F 00(ω̄).11

2.4.4. Aggregating Across Entrepreneurs

We now discuss the evolution of the aggregate net worth of all entrepreneurs. In terms of
the previous notation, if ft+1(N) is the density of entrepreneurs having net worth Nt+1, then
aggregate net worth, N̄t+1, is:

N̄t+1 =

Z ∞

0

Nft+1(N)dN.

10The MATLAB function, logncdf.m, can be used to compute F. The function, lognpdf.m,
can be used to compute F 0. Computing G will require cooking a quadrature integration routine.
11To obtain F 00(ω̄), differentiate the log-normal density function,

F 0(x) =
1

xσ
√
2π
exp

·−(log x− µ)2

2σ2

¸
,

with respect to x, and evaluate the result at x = ω̄.
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Applying this integral to (2.18), we obtain

QK̄0,tK̄t+1 = ψ(
E
£¡
1 +Rk

t+1

¢ |Ωµ
t

¤¡
1 +Re

t+1

¢ )N̄t+1,

where BGG argue ψ(1) = 1, ψ0(.) > 0, and where K̄t+1 is the aggregate, end of period t
stock of physical capital. We now linearize this, following the argument in BGG (page 1361).
First, however, we need to scale the variables:

qtk̄t+1 = ψ(
E
£¡
1 +Rk

t+1

¢ |Ωµ
t

¤¡
1 +Re

t+1

¢ )nt+1,

where

k̄t+1 =
K̄t+1

zt
, nt+1 =

N̄t+1

ztPt
. (2.23)

Linearizing about steady state:

k̄qq̂t + qk̄b̄kt+1 = ψnn̂t+1 + nψ0
µ
1 +Rk

1 +Re

¶
1 +Rk

1 +Re

·
Rk

1 +Rk
R̂k
t+1 −

Re

1 +Re
R̂e
t+1

¸

k̄qq̂t + qk̄b̄kt+1 = k̄q

n
nn̂t+1 + nψ0

µ
1 +Rk

1 +Re

¶
1 +Rk

1 +Re

·
Rk

1 +Rk
R̂k
t+1 −

Re

1 +Re
R̂e
t+1

¸
So, the linearized solution to the contracting problem is:

CSV 1 (∗∗) Rk

1 +Rk
E
h
R̂k
t+1|Ωµ

t

i
− Re

1 +Re
R̂e
t+1 = −vbgg

h
n̂t+1 −

³
q̂t +

b̄kt+1´i
where

vbgg =
ψ

ψ0
1 +Re

1 +Rk
.

This is an equation emphasized in BGG. However, we don’t use it in our solution procedure.
We now discuss the law of motion of aggregate net worth, n̂t+1. Suppose N̄t is given. Let

V N
t denote the average of profits of Nt−type entrepreneurs, net of repayments to banks:

V N
t =

¡
1 +Rk

t

¢
QK̄0,t−1K̄

N
t − Γ(ω̄t)

¡
1 +Rk

t

¢
QK̄0,t−1K̄

N
t .

The aggregate capital stock is:

K̄t =

Z ∞

0

ft(N)K̄
N
t dN
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Given that Rk
t and ω̄t are independent of Nt, we have:

Vt ≡
Z ∞

0

ft(N)V
N
t dN =

¡
1 +Rk

t

¢
QK̄0,t−1K̄t − Γ(ω̄t)

¡
1 +Rk

t

¢
QK̄0,t−1K̄t

Writing this out more fully:

Vt =
¡
1 +Rk

t

¢
QK̄0,t−1K̄t −

½
[1− F (ω̄t)] ω̄t +

Z ω̄t

0

ωdF (ω)

¾¡
1 +Rk

t

¢
QK̄0,t−1K̄t

=
¡
1 +Rk

t

¢
QK̄0,t−1K̄t

−
½
[1− F (ω̄t)] ω̄t + (1− µ)

Z ω̄t

0

ωdF (ω) + µ

Z ω̄t

0

ωdF (ω)

¾¡
1 +Rk

t

¢
QK̄0,t−1K̄t.

Notice that the first two terms in braces correspond to the net revenues of the bank, which
must equal (1 +Re

t ) (QK̄0,t−1K̄t − N̄t). Substituting:

Vt =
¡
1 +Rk

t

¢
QK̄0,t−1K̄t −

(
1 +Re

t +
µ
R ω̄t
0

ωdF (ω)
¡
1 +Rk

t

¢
QK̄0,t−1K̄t

QK̄0,t−1K̄t − N̄t

)
(QK̄0,t−1K̄t − N̄t).

(2.24)

Since entrepreneurs are selected randomly for death, the integral over entrepreneurs’ net
profits is just γVt. So, the law of motion for N̄t is:

N̄t+1 = γ

(¡
1 +Rk

t

¢
QK̄0,t−1K̄t −

"
1 +Re

t +
µ
R ω̄t
0

ωdF (ω)
¡
1 +Rk

t

¢
QK̄0,t−1K̄t

QK̄0,t−1K̄t − N̄t

#
(QK̄0,t−1K̄t − N̄t)

)
+W e

t ,

where W e
t is the transfer payment to entrepreneurs. The (1 − γ) entrepreneurs who are

selected for death, consume:
PtC

e
t = Θ(1− γ)Vt.

Finally, there seem to be at least two objects that could be called the ‘external finance
premium’. One is the ratio involving µ in square brackets above. The other is Zt− (1 +Re

t ) .
Either one is straightforward to compute. The former appears to correspond to the ‘av-
erage’ external finance premium, while the latter is only the external finance premium for
entrepreneurs who are able to repay Zt. In the case of the former, the ‘premium’ paid by
some is actually negative. For those entrepreneurs with ω sufficiently small, they are paying
essentially nothing, and so in particular they pay less than Re

t and so they have an ex post
negative premium. BGG refer to s as the external finance premium.
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We move now to the linear representation of (2.25). Simplifying that expression:

N̄t+1 = γtQK̄0,t−1K̄t

½
Rk
t −Re

t − µ

Z ω̄t

0

ωdF (ω)
¡
1 +Rk

t

¢¾
+W e

t + γt (1 +Re
t ) N̄t,

where a time subscript has been added to γ to capture the possibility that there are random
disturbances to the death rate of entrepreneurs. By putting a coefficient of unity in front of
W e

t , we are implicitly making the assumption that when there is a shock to the death rate
of entrepreneurs, say γt falls, then there is an equal shock in the other direction in the rate
of arrival of new entrepreneurs.
Dividing by ztPt and taking into account (2.23):

nt+1 =
γt

πtµz,t

½
Rk
t −Re

t − µ

Z ω̄t

0

ωdF (ω)
¡
1 +Rk

t

¢¾
k̄tqt−1 + we

t + γt

µ
1 +Re

t

πt

¶
1

µz,t
nt,
(2.25)

where

we
t =

W e
t

ztPt
, πt =

Pt

Pt−1
, qt =

QK̄0,t

Pt
.

In this last expression, we see the fundamental reason for setting γ < 1. The real interest
rate divided by the growth rate is 1/β in steady state, which would imply that nt explodes
when γ = 1. This in turn implies that real net worth grows faster than the economy and,
hence, the capital stock. That means that eventually, net worth exceeds the capital stock
and the CSV arrangement becomes irrelevant. It is to avoid this outcome that γ is assumed
to be small.
We proceed now to linearize the equations. We do not want λ̂t to be among the variables

to be solved for. So, we linearize (2.15) and (2.17), and use (2.16) to substitute out for the
multiplier. Writing out the object in braces in (2.15), and replacing ũt+1st+1 :

[1− Γ(ω̄t+1)]
1 +Rk

t+1

1 +Re
t+1

+ λt+1

·
1 +Rk

t+1

1 +Re
t+1

(Γ(ω̄t+1)− µG(ω̄t+1))− 1
¸

Log-linearly expanding this about steady state:

−Γ0(ω̄)1 +Rk

1 +Re
ω̄b̄ωt+1

+ [1− Γ(ω̄)]
1 +Rk

1 +Re

³h
\1 +Rk

t+1

i
−
h
\1 +Re

t+1

i´
+λλ̂t+1

·
1 +Rk

1 +Re
(Γ(ω̄)− µG(ω̄))− 1

¸
+λ

·
1 +Rk

1 +Re
(Γ(ω̄)− µG(ω̄))− 1

¸ \·
1 +Rk

t+1

1 +Re
t+1

(Γ(ω̄t+1)− µG(ω̄t+1))− 1
¸
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We have:

\1 +Rk
t+1 =

RkR̂k
t+1

1 +Rk
, \1 +Re

t+1 =
ReR̂e

t+1

1 +Re
.

Also,

\·
1 +Rk

t+1

1 +Re
t+1

(Γ(ω̄t+1)− µG(ω̄t+1))− 1
¸

=
d
h
1+Rk

t+1

1+Re
t+1
(Γ(ω̄t+1)− µG(ω̄t+1))− 1

i
1+Rk

1+Re (Γ(ω̄)− µG(ω̄))− 1

=

1+Rk

1+Re (Γ
0(ω̄)− µG0(ω̄)) ω̄b̄ωt+1 +

RkR̂k
t+1

1+Re (Γ(ω̄)− µG(ω̄))− 1+Rk

(1+Re)2
(Γ(ω̄)− µG(ω̄))ReR̂e

t+1

1+Rk

1+Re (Γ(ω̄)− µG(ω̄))− 1

Substituting

−Γ0(ω̄)1 +Rk

1 +Re
ω̄b̄ωt+1

+ [1− Γ(ω̄)]
1 +Rk

1 +Re

Ã
RkR̂k

t+1

1 +Rk
− ReR̂e

t+1

1 +Re

!

+λλ̂t+1

·
1 +Rk

1 +Re
(Γ(ω̄)− µG(ω̄))− 1

¸
+λ[

1 +Rk

1 +Re
(Γ0(ω̄)− µG0(ω̄)) ω̄b̄ωt+1

+
RkR̂k

t+1

1 +Re
(Γ(ω̄)− µG(ω̄))− 1 +Rk

(1 +Re)2
(Γ(ω̄)− µG(ω̄))ReR̂e

t+1]

Collecting terms:·
−Γ0(ω̄)1 +Rk

1 +Re
ω̄ + λ

1 +Rk

1 +Re
(Γ0(ω̄)− µG0(ω̄)) ω̄

¸ b̄ωt+1

+ [1− Γ(ω̄) + λ (Γ(ω̄)− µG(ω̄))]
1 +Rk

1 +Re

Ã
RkR̂k

t+1

1 +Rk
− ReR̂e

t+1

1 +Re

!

+λ

·
1 +Rk

1 +Re
(Γ(ω̄)− µG(ω̄))− 1

¸
λ̂t+1
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Simplify this, using the steady state relation (see (2.15)):

[1− Γ(ω̄)]
1 +Rk

1 +Re
+ λ

·
1 +Rk

1 +Re
(Γ(ω̄)− µG(ω̄))− 1

¸
= 0,

we obtain ·
−Γ0(ω̄)1 +Rk

1 +Re
ω̄ + λ

1 +Rk

1 +Re
(Γ0(ω̄)− µG0(ω̄)) ω̄

¸ b̄ωt+1

+λ

Ã
RkR̂k

t+1

1 +Rk
− ReR̂e

t+1

1 +Re

!

− [1− Γ(ω̄)]
1 +Rk

1 +Re
λ̂t+1.

From (2.16):
Γ0(ω̄) = λ [Γ0(ω̄)− µG0(ω̄)] .

Substituting this into the previous expression, the coefficient on b̄ωt+1 turns out to be zero.
So, we are left with:

E{λ
Ã
RkR̂k

t+1

1 +Rk
− ReR̂e

t+1

1 +Re

!
+ [1− Γ(ω̄)]

1 +Rk

1 +Re
λ̂t+1|Ωµ

t } = 0.

The correct terms is actually:

E{λ
Ã
RkR̂k

t+1

1 +Rk
− ReR̂e

t+1

1 +Re

!
− [1− Γ(ω̄)]

1 +Rk

1 +Re
λ̂t+1|Ωµ

t } = 0.

Γ0(ω̄N
t+1) = λNt+1

£
Γ0(ω̄N

t+1)− µG0(ω̄N
t+1)

¤
Expanding (2.16) and making use of (2.20):

Γ00(ω̄)ω̄b̄ωt+1 = λ̂t+1Γ
0(ω̄) + λ [Γ00(ω̄)− µG00(ω̄)] ω̄b̄ωt+1,

or,

λ̂t+1 =

·
Γ00(ω̄)ω̄
Γ0(ω̄)

− λ [Γ00(ω̄)− µG00(ω̄)] ω̄
Γ0(ω̄)

¸ b̄ωt+1.
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Substituting, we obtain the log-linearized version of (2.15):

(**) E{λ
Ã
RkR̂k

t+1

1 +Rk
− ReR̂e

t+1

1 +Re

!

− [1− Γ(ω̄)]
1 +Rk

1 +Re

·
Γ00(ω̄)ω̄
Γ0(ω̄)

− λ [Γ00(ω̄)− µG00(ω̄)] ω̄
Γ0(ω̄)

¸ b̄ωt+1|Ωµ
t } = 0.

Now we log-linearize (2.17). Writing (2.17) out:

QK̄0,tK̄
N
t+1

Nt+1

1 +Rk
t+1

1 +Re
t+1

¡
Γ(ω̄N

t+1)− µG(ω̄N
t+1)

¢− QK̄0,tK̄
N
t+1

Nt+1
+ 1 = 0.

Take into account
K̄t+1 = ztk̄t+1, N̄t+1 = ztPtnt+1, QK̄0,t = qtPt,

so that
QK̄0,tK̄

N
t+1

Nt+1
=

qtPtztk̄t+1
ztPtnt+1

=
qtk̄t+1
nt+1

,

and

qtk̄t+1
nt+1

1 +Rk
t+1

1 +Re
t+1

¡
Γ(ω̄N

t+1)− µG(ω̄N
t+1)

¢− qtk̄t+1
nt+1

+ 1 = 0. (2.26)

Then, ·
qk̄

n
− 1
¸ \qtk̄t+1

nt+1

1 +Rk
t+1

1 +Re
t+1

¡
Γ(ω̄N

t+1)− µG(ω̄N
t+1)

¢
=

·
qk̄

n
− 1
¸ \·

qtk̄t+1
nt+1

− 1
¸
.

Now,

\qtk̄t+1
nt+1

1 +Rk
t+1

1 +Re
t+1

¡
Γ(ω̄N

t+1)− µG(ω̄N
t+1)

¢
= q̂t +

b̄kt+1 − n̂t+1 +
\1 +Rk

t+1

1 +Re
t+1

+ \¡
Γ(ω̄N

t+1)− µG(ω̄N
t+1)

¢
= q̂t +

b̄kt+1 − n̂t+1 +
RkR̂k

t+1

1 +Rk
− ReR̂e

t+1

1 +Re

+
(Γ0(ω̄)− µG0(ω̄))
(Γ(ω̄)− µG(ω̄))

ω̄b̄ωN

t+1

34



and
\·

qtk̄t+1
nt+1

− 1
¸
=

qk̄
n

h
q̂t +

b̄kt+1 − n̂t+1
i

h
qk̄
n
− 1
i

Putting all this together, the log-linearized expression is:·
qk̄

n
− 1
¸"

q̂t +
b̄kt+1 − n̂t+1 +

RkR̂k
t+1

1 +Rk
− ReR̂e

t+1

1 +Re
+
(Γ0(ω̄)− µG0(ω̄))
(Γ(ω̄)− µG(ω̄))

ω̄b̄ωN

t+1

#

=
qk̄

n

h
q̂t +

b̄kt+1 − n̂t+1
i
,

or, h
qk̄
n
− 1
i h

RkR̂k
t+1

1+Rk − ReR̂e
t+1

1+Re +
(Γ0(ω̄)−µG0(ω̄))
(Γ(ω̄)−µG(ω̄)) ω̄b̄ωN

t+1

i
−
³
q̂t +

b̄kt+1 − n̂t+1
´
= 0.

Note that this must hold in every realized state of nature. Perhaps the best way to implement
this equation is to require that it hold in the first period and in later periods, rather than
just starting in the second period. It is different from the following expression, which is what
showed up in the initial version of the linearized writeup of the (2.26):

(∗∗) R
kR̂k

t+1

1 +Rk
− ReR̂e

t+1

1 +Re
+
(Γ0(ω̄)− µG0(ω̄))
(Γ(ω̄)− µG(ω̄))

ω̄b̄ωN

t+1

−
³
q̂t +

b̄kt+1 − n̂t+1
´
= 0.

Finally, we log-linearize the law of motion of aggregate net worth, (2.25), which we repeat
here for convenience:

nt+1 =
γt

πtµz,t

½
Rk
t −Re

t − µ

Z ω̄t

0

ωdF (ω)
¡
1 +Rk

t

¢¾
k̄tqt−1 + we

t + γt

µ
1 +Re

t

πt

¶
1

µz,t
nt,
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so that:

n̂t+1 =

½
γ

πµz

·
Rk −Re − µ

Z ω̄

0

ωdF (ω)
¡
1 +Rk

¢¸ k̄q
n
+ γ

µ
1 +Re

π

¶
1

µz

¾
γ̂t

−
½

γ

πµz

·
Rk −Re − µ

Z ω̄

0

ωdF (ω)
¡
1 +Rk

¢¸ k̄q
n
+ γ

µ
1 +Re

π

¶
1

µz

¾
µ̂z,t

−
½

γ

πµz

·
Rk −Re − µ

Z ω̄

0

ωdF (ω)
¡
1 +Rk

¢¸ k̄q
n
+ γ

1 +Re

π

1

µz

¾
π̂t

+
γ

πµz

µ
1− µ

Z ω̄

0

ωdF (ω)

¶
k̄q

n
RkR̂k

t +

·
γ
1

π

1

µz
Re − γ

πµz

k̄q

n
Re

¸
R̂e
t

− γ

πµz
µω̄2F 0(ω̄)

¡
1 +Rk

¢ k̄q
n
b̄ωt

+
γ

πµz

½
Rk −Re − µ

Z ω̄

0

ωdF (ω)
¡
1 +Rk

¢¾ k̄q

n

hb̄kt + q̂t−1
i
+

we

n
ŵe
t

+γ

µ
1 +Re

π

¶
1

µz
n̂t,

or:

(∗∗) n̂t+1 = a0R̂
k
t + a1R̂

e
t + a2

b̄kt + a3ŵ
e
t + a4γ̂t + a5π̂t + a6µ̂z,t + a7q̂t−1 + a8 b̄ωt + a9n̂t,
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where

a0 =
γ

πµz

µ
1− µ

Z ω̄

0

ωdF (ω)

¶
k̄q

n
Rk

a1 =

µ
1− k̄q

n

¶
γRe

πµz

a2 =
γ

πµz

½
Rk −Re − µ

Z ω̄

0

ωdF (ω)
¡
1 +Rk

¢¾ k̄q

n

a3 =
we

n

a4 = a2 +
γ (1 +Re)

µzπ
a5 = −a4
a6 = −a4
a7 = a2

a8 = − γ

πµz
µω̄2F 0(ω̄)

¡
1 +Rk

¢ k̄q
n

a9 = γ

µ
1 +Re

π

¶
1

µz

2.5. Banks

We assume that there is a continuum of identical, competitive banks. All bank decisions are
taken after the realization of the current period shocks. Each bank operates a technology
to convert capital, Kb

t , labor, l
b
t , and excess reserves into real deposit services, Dt/Pt. The

production function is:

Dt

Pt
= abxbt

³¡
Kb

t

¢α ¡
ztl

b
t

¢1−α´ξt µEr
t

Pt

¶1−ξt
(2.27)

Here ab is a positive scalar, and 0 < α < 1. Also, xbt is a unit-mean technology shock that
is specific to the banking sector. In addition, ξt ∈ (0, 1) is a shock to the relative value of
excess reserves, Er

t . The stochastic process governing these shocks will be discussed later. We
include excess reserves as an input to the production of demand deposit services as a reduced
form way to capture the precautionary motive of a bank concerned about the possibility of
unexpected withdrawals.
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We now discuss a typical bank’s balance sheet. The bank’s assets consist of cash reserves
and loans. It obtains cash reserves from two sources. Households deposit At dollars and the
monetary authority credits households’ checking accounts with Xt dollars. Consequently,
total time t cash reserves of the banking system equal At +Xt. Bank loans are extended to
firms and other banks to cover their working capital needs, and to entrepreneurs to finance
purchases of capital.
The bank has two types of liabilities: demand deposits,Dt, and time deposits, Tt.Demand

deposits, which pay interest, Rat, are created for two reasons. First, there are the household
deposits, At + Xt mentioned above. We denote this by Dh

t . Second, working capital loans
made by banks to firms and other banks are granted in the form of demand deposits. We
denote firm and bank demand deposits by Df

t . Total deposits, then, are:

Dt = Dh
t +Df

t .

Time deposit liabilities are issued by the bank to finance the standard debt contracts that
they offer to entrepreneurs. Time and demand deposits differ in three respects. First, demand
deposits yield transactions services, while time deposits do not. Second, time deposits have
a longer maturity structure. Third, demand deposits are backed by working capital loans
and reserves, while time deposits are backed by standard debt contracts to entrepreneurs.
We now discuss the demand deposit liabilities. We suppose that the interest on demand

deposits that are created when firms and banks receive working capital loans, are paid to
the recipient of the loans. Firms and banks just sit on these demand deposits. The wage
bill isn’t actually paid until a settlement period that occurs after the goods market.
We denote the interest payment on working capital loans, net of interest on the associated

demand deposits, by Rt. Since each borrower receives interest on the deposit associated with
their loan, the gross interest payment on loans is Rt+Rat. Put differently, the spread between
the interest on working capital loans and the interest on demand deposits is Rt.
The maturity of period t working capital loans and the associated demand deposit liabil-

ities coincide. A period t working capital loan is extended just prior to production in period
t, and then paid off after production. The household deposits funds into the bank just prior
to production in period t and then liquidates the deposit after production.
We now discuss the time deposit liabilities. Unlike in the case of demand deposits, we

assume that the cost of maintaining time deposit liabilities is zero. Competition among
banks in the provision of time deposits and entrepreneurial loans drives the interest rate on
time deposits to the return the bank earns (net of expenses, including monitoring costs) on
the loans, Re

t . The maturity structure of time deposits coincides with that of the standard
debt contract, and differs from that of demand deposits and working capital loans. The
maturity structure of the two types of assets can be seen in Figure 3. Time deposits and
entrepeneurial loans are created at the end of a given period’s goods market. This is the
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time when newly constructed capital is sold by capital producers to entrepreneurs. Time
deposits and entrepreneurial loans pay off at the end of next period’s goods market, when
the entrepreneurs sell their undepreciated capital to capital producers (who use it as a raw
material in the production of next period’s capital). The payoff on the entrepreneurial loan
coincides with the payoff on time deposits. Competition in the provision of time deposits
guarantees that these payoffs coincide.
The maturity difference between demand and time deposits implies that the return on the

latter carries risks not present in the former. In the case of demand deposits, no shocks are
realized between the creation of a deposit and its payoff. In the case of time deposits, there are
shocks whose value is realized between creation and payoff (see Figure 3). So, the household
that acquires a time deposit bears the uncertainty in the payoff of the underlying physical
capital whose accumulation is being financed with the time deposit. The entrepreneur also
bears risk, for the same reason.

 All 
Period  t 
Shocks 
Realized 

All Period  
t +1Shocks 
Realized 

All Period  
t+2 Shocks 
Realized 

Figure 3: Maturity Structure of Time and 
Demand Deposits  

Time Deposits Created at End of Current Period Goods 
Market and Liquidated at End of Next Period Goods Market. 

Demand Deposits 
Created Before Current 
Goods Market, and 
Liquidated After 
Current Goods Market 

t t+2 

We now discuss the assets and liabilities of the bank in greater detail. We describe the
banks’ books at two points in time within the period: just before the goods market, when
the market for working capital loans and demand deposits is open, and just after the goods
market. At the latter point in time, the market for time deposits and entrepreneurial loans
is open. Liabilities and assets just before the goods market are:

Dt + Tt−1 = At +Xt + Sw
t +Bt, (2.28)

where Sw
t denotes working capital loans. The monetary authority imposes a reserve require-

ment that banks must hold at least a fraction τ of their demand deposits in the form of
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currency. Consequently, nominal excess reserves, Er
t , are given by

Er
t = At +Xt − τtDt. (2.29)

The bank’s ‘T’ accounts are as follows:

Assets Liabilities
Reserves
At Dt

Xt

Short-term Working Capital Loans
Sw
t

Long-term, Entrepreneural Loans
Bt Tt−1

After the goods market, demand deposits are liquidated, so that Dt = 0 and At + Xt is
returned to the households, so this no longer appears on the bank’s balance sheet. Similarly,
working capital loans, Sw

t , and ‘old’ entrepreneurial loans, Bt, are liquidated at the end of
the goods market and also do not appear on the bank’s balance sheet. At this point, the
assets on the bank’s balance sheet are the new entrepreneurial loans issued at the end of the
goods market, Bt+1, and the bank liabilities are the new time deposits, Tt.
At the end of the goods market, the bank settles claims for transactions that occured in

the goods market and that arose from it’s activities in the previous period’s entrepreneurial
loan and time deposit market. The bank’s sources of funds at this time are: net interest
from borrowers and At +Xt of high-powered money (i.e., a mix of vault cash and claims on
the central bank).12 Working capital loans coming due at the end of the period pay Rt in
interest and so the associated principal and interest is

(1 +Rt)S
w
t = (1 +Rt)

¡
ψl,tWtlt + ψk,tPtr

k
tKt

¢
.

Loans to entrepreneurs coming due at the end of the period are the ones that were extended
in the previous period, Qk̄0,t−1K̄t − Nt, and they pay the interest rate from the previous
period, after monitoring costs:

(1 +Re
t )
¡
QK̄0,t−1K̄t −Nt

¢
Its uses of funds are (i) interest and principle obligations on demand deposits and time de-
posits, (1 + Rat)Dt and (1 + Re

t )Tt−1, respectively, and (ii) interest and principal expenses

12For now, we suppose that interest is not paid by the central bank on high-powered money.
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on working capital, i.e., capital and labor services. Interest and principal expenses on fac-
tor payments in the banking sector are handled in the same way as in the goods sector.
In particular, banks must finance a fraction, ψk,t, of capital services and a fraction, ψl,t,
of labor services, in advance, so that total factor costs as of the end of the period, are
(1 + ψk,tRt)Ptr

k
tK

b
t . The bank’s net source of funds, Π

b
t , is:

Πb
t = (At +Xt) + (1 +Rt +Rat)S

w
t − (1 +Rat)Dt

− £(1 + ψk,tRt)Ptr
k
tK

b
t

¤− £(1 + ψl,tRt)Wtl
b
t

¤
+

"
1 +Re

t +
µ
R ω̄t
0

ωdF (ω)
¡
1 +Rk

t

¢
QK̄0,t−1K̄t

QK̄0,t−1K̄t −Nt

#
Bt

−µ
Z ω̄t

0

ωdF (ω)
¡
1 +Rk

t

¢
QK̄0,t−1K̄t − (1 +Re

t )Tt−1

+Tt −Bt+1

Because of competition, the bank takes all wages and prices and interest rates as given and
beyond its control.
We now describe the bank’s optimization problem. The bank pays Πb

t to households in
the form of dividends. It’s objective is to maximize the present discounted value of these
dividends. In period 0, it’s objective is:

E0

∞X
t=0

βtλtΠ
b
t ,

where λt is the multiplier on Πb
t in the Lagrangian representation of the household’s opti-

mization problem. It takes as given its time deposit liabilities from the previous period,
T−1, and its entrepreneurial loans issued in the previous period, B0. In addition, the bank
takes all rates of return and λt as given. The bank optimizes its objective by choice of©
Sw
t , Bt+1, Dt, Tt, K

b
t , E

r
t ; t ≥ 0

ª
, subject to (2.27)-(2.29).

In the previous section, we discussed the determination of the variables relating to en-
trepreneurial loans. There is no further need to discuss them here, and so we take those
as given. To discuss the variables of concern here, we adopt a Lagrangian representation
of the bank problem which uses a version of (2.30) that ignores variables pertaining to the
entrepeneur. The Lagrangian representation of the problem that we work with is:

max
At,Swt ,K

b
t ,l

b
t

{RtS
w
t −Rat (At +Xt)−

£
(1 + ψk,tRt)Ptr

k
tK

b
t

¤− £(1 + ψl,tRt)Wtl
b
t

¤}
+λbt

·
h(xbt ,K

b
t , l

b
t ,
At +Xt − τt (At +Xt + Sw

t )

Pt
, ξt, x

b
t , zt)−

At +Xt + Sw
t

Pt

¸
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max
At,Swt ,K

b
t ,l

b
t

{RtS
w
t −Rat (At +Xt)−Rb

tFt −
£
(1 + ψk,tRt)Ptr

k
tK

b
t

¤− £(1 + ψl,tRt)Wtl
b
t

¤}
+λbt

·
h(xbt ,K

b
t , l

b
t ,
At +Xt + Ft − τt (At +Xt + Sw

t )

Pt
, ξt, x

b
t , zt)−

(At +Xt + Sw
t )

Pt

¸
fonc for Ft :

Rb
t = λbthe,t

1

Pt
=

Rther,t
τther,t + 1

where

h(xbt ,K
b
t , l

b
t , e

r
t , ξt, x

b
t , zt) = abxbt

³¡
Kb

t

¢α ¡
ztl

b
t

¢1−α´ξt
(ert )

1−ξt

ert =
Er
t

Pt
=

At +Xt − τt (At +Xt + Sw
t )

Pt

The first order conditions are, for At, S
w
t , K

b
t , l

b
t , respectively:

−Rat + λbt
1

Pt
[(1− τt)her,t − 1] = 0 (2.30)

Rt − λbt
1

Pt
[τther ,t + 1] = 0 (2.31)

− (1 + ψk,tRt)Ptr
k
t + λbthKb,t = 0 (2.32)

− (1 + ψl,tRt)Wt + λbthlb,t = 0 (2.33)

Substituting for λbt in (2.32) and (2.33) from (2.31), we obtain:

(1 + ψk,tRt) r
k
t =

RthKb,t

1 + τther,t
,

and

(1 + ψl,tRt)
Wt

Pt
=

Rthlb,t
1 + τther,t

.

These are the first order conditions associated with the bank’s choice of capital and labor.
Each says that the bank attempts to equate the marginal product - in terms of extra loans
- of an additional factor of production, with the associated marginal cost. The marginal
product in producing loans must take into account two things: an increase in Sw requires
an equal increase in deposits and an increase in deposits raises required reserves. The first
raises loans by the marginal product of the factor in h, while the reserve implication works
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in the other direction. To see that the capital-labor ratio in the banking and intermediate
good sectors coincide, take the ratio of the above two equations:

(1 + ψk,tRt) r
k
t

(1 + ψl,tRt)
Wt

Pt

=
hKb,t

hlb,t
=

αξta
bxbt (ev,t)

1−ξt
³
µz,t(1−νlt)lt
(1−νkt )kt

´1−α
(1− α) ξtabxbt (ev,t)

1−ξt
³
µz,t(1−νlt)lt
(1−νkt )kt

´−α
zt

=
α

(1− α) zt

µ
µz,t(1− νlt)lt
(1− νkt )kt

¶
.

From (2.4),

rkt [1 + ψk,tRt]

(1 + ψl,tRt)
Wt

Pt

=
α�t
³
ztνllt
νkKt

´1−α
(1− α)�t

³
ztνllt
νkKt

´−α
zt

=
α

(1− α)zt

ztν
llt

νkKt

=
α

(1− α)zt

ztν
llt

νkzt−1kt

=
α

(1− α)zt

µz,tν
llt

νkkt
.

Equating the previous two expressions, and cancelling:

νkt
(1− νkt )

=
νlt

(1− νlt)
.

Note that the object on the left and right are each monotone increasing functions of νlt and
νkt , respectively. As a result, they can only be equal for ν

l
t = νkt .

Taking the ratio of (2.31) to (2.30), we obtain:

Rat =
(1− τt)her,t − 1

τther,t + 1
Rt. (2.34)

This can be thought of as the first order condition associated with the bank’s choice of At.
The object multiplying Rt is the increase in S

w the bank can offer for one unit increase in A.
The term on the right indicates the net interest earnings from those loans. The term on the
left indicates the cost. Recall that Rt represents net interest on loans, because the actual
interest is Rt + Rat, so that Rt represents the spread between the interest rate charged by
banks on their loans and the cost to them of the underlying funds. Since loans are made in
the form of deposits, and deposits earn Rat in interest, the net cost of a loan to a borrower
is Rt.
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We now proceed to linearize. For this, we need expressions for the derivatives of h with
respect to capital, labor and excess reserves. One expression that appears in all of these is
the ratio of real excess reserves to value-added, which we denote by ev,t :

ev,t =

At+Xt−τt(At+Xt+Swt )

Pt³
zt

zt−1
zt

kbt

´α ¡
ztlbt
¢1−α

=

At+Xt−τt(At+Xt+Swt )

ztPt³
1

µz,t
kbt

´α ¡
lbt
¢1−α

=

Mb
t−Mt+Xt−τt(Mb

t−Mt+Xt+Swt )
ztPt³

1
µz,t

kbt

´α ¡
lbt
¢1−α

=
M b

t

Ptzt

1−mt + xt − τt
³
1−mt + xt + ψl,twt

ztPt
Mb
t
lt + ψk,t

ztPt
Mb
t
rkt

1
µz,t

kt
´

³
1

µz,t
kbt

´α ¡
lbt
¢1−α

= mb
t

1−mt + xt − τt
³
1−mt + xt +

ψl,twt
mb
t
lt +

ψk,tr
k
t

mb
t

1
µz,t

kt
´

³
1

µz,t
kbt

´α ¡
lbt
¢1−α

=
(1− τt)m

b
t (1−mt + xt)− τt

³
ψl,twtlt +

1
µz,t

ψk,tr
k
t kt

´
³

1
µz,t
(1− νkt )kt

´α ¡
(1− νlt)lt

¢1−α
To linearize this, it is useful to first linearize the numerator, nt, and denominator, dt, sepa-
rately. Thus,

nt = (1− τt)m
b
t (1−mt + xt)− τt

µ
ψl,twtlt +

1

µz,t
ψk,tr

k
t kt

¶
dt =

µ
1

µz,t
(1− νkt )kt

¶α ¡
(1− νlt)lt

¢1−α
.

Then,

nn̂t = −τmb (1−m+ x) τ̂t + (1− τ)mb (1−m+ x) m̂b
t

− (1− τ)mbmm̂t + (1− τ)mbxx̂t − τ

µ
ψlwl +

1

µz
ψkr

kk

¶
τ̂t

−τψlwl
h
ψ̂l,t + ŵt + l̂t

i
− τ

1

µz
ψkr

kk
h
−µ̂z,t + ψ̂k,t + r̂kt + k̂t

i
,
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or,

n̂t = nτ τ̂t + nmbm̂b
t + nmm̂t + nxx̂t

+nψlψ̂l,t + nψkψ̂k,t + nkk̂t

+nrk r̂
k
t + nwŵt + nl l̂t + nµz µ̂z,t

where

nτ =
−τmb (1−m+ x)− τ

³
ψlwl +

1
µz
ψkr

kk
´

n
,

n = (1− τ)mb (1−m+ x)− τ

µ
ψlwl +

1

µz
ψkr

kk

¶
,

nmb = (1− τ)mb (1−m+ x) /n

nm = − (1− τ)mbm/n

nx = (1− τ)mbx/n

nψl = nw = nl = −τψlwl/n

nψk = nrk = nk = −τ 1
µz

ψkr
kk/n

nµz = τ
1

µz
ψkr

kk/n

Turning to the denominator of ev,t,

dd̂t = α

µ
1

µz
(1− νk)k

¶α ¡
(1− νl)l

¢1−α ·−µ̂z,t + −νkν̂kt
1− νk

+ k̂t

¸
+(1− α)

µ
1

µz
(1− νk)k

¶α ¡
(1− νl)l

¢1−α ·−νlν̂lt
1− νl

+ l̂t

¸
,

or,
d̂t = dµz µ̂z,t + dkk̂t + dνk ν̂

k
t + dνlν̂

l
t + dl l̂t,
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where

d =

µ
1

µz
(1− νk)k

¶α ¡
(1− νl)l

¢1−α
dµz =

−α
³
1
µz
(1− νk)k

´α ¡
(1− νl)l

¢1−α³
1
µz
(1− νk)k

´α
((1− νl)l)1−α

= −α

dk = α

dνk = −α νk

1− νk

dl = 1− α

dνl = −(1− α)
νl

1− νl

Also, since the capital labor ratios in the banking sector and the rest of the economy are the
same, (νk = νl) we know that

ν̂kt = ν̂lt. (2.35)

Then, with ev,t = nt/dt,

êv,t = n̂t − d̂t,

or,

(∗∗) êv,t = nτ τ̂t + nmbm̂b
t + nmm̂t + nxx̂t + nψlψ̂l,t

+nψkψ̂k,t + (nk − dk) k̂t + nrk r̂
k
t + nwŵt

+(nl − dl) l̂t + (nµz − dµz) µ̂z,t − dνk ν̂
k
t − dνlν̂

l
t,

where (2.35) is to be recalled. It is also useful to have an expression for ztl
b
t/K

b
t :

lkt =
ztl

b
t

Kb
t

=
µz,t(1− νlt)lt
(1− νkt )kt

,

linearizing this:

l̂kt = µ̂z,t − νlν̂lt
1− νl

+ l̂t +
νkν̂kt
1− νk

− k̂t.

The partial derivative of h with respect to capital is:

hKb,t = αξta
bxbt (ev,t)

1−ξt
µ
µz,t(1− νlt)lt
(1− νkt )kt

¶1−α
.
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Linearizing this:

ĥkb,t = [1− log (ev) ξ] ξ̂t + x̂bt + (1− ξ) êv,t + (1− α)

·
µ̂z,t − νlν̂lt

1− νl
+ l̂t +

νkν̂kt
1− νk

− k̂t

¸
The derivative of h with respect to excess reserves is:

her,t = (1− ξt) a
bxbt (ev,t)

−ξt .

We now linearize this. First, note:

f(ξt) = (1− ξt) a
bxbt (ev,t)

−ξt

df(ξt) = −abxb (ev,t)−ξ + (1− ξ) abxbd exp[−ξt log (ev,t)]dξt
=

h
−abxb (ev)−ξ − (1− ξ) abxb log (ev) (ev)

−ξ
i
dξt

= −f
·
1

1− ξ
+ log (ev)

¸
dξt

f̂(ξt) =
df(ξt)

f
= −

·
1

1− ξ
+ log (ev)

¸
ξξ̂t.

Using this, we obtain:

ĥer ,t = −
·
1

1− ξ
+ log (ev)

¸
ξξ̂t + x̂bt − ξêv,t

The derivative of h with respect to labor is:

hlb,t = (1− α) ξta
bxbt (ev,t)

1−ξt
µ
µz,t(1− νlt)lt
(1− νkt )kt

¶−α
zt.

Linearizing hz,lb,t = hlb,t/zt :

ĥz,lb,t = [1− log (ev) ξ] ξ̂t + x̂bt + (1− ξ) êv,t − α

·
µ̂z,t − νlν̂lt

1− νl
+ l̂t +

νkν̂kt
1− νk

− k̂t

¸
,

or,

ĥkb,t = ĥz,lb,t + µ̂z,t − νlν̂lt
1− νl

+ l̂t +
νkν̂kt
1− νk

− k̂t (2.36)

Always, recall (2.35).
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We can use the previous intermediate results to obtain linearizations of the first order
conditions for capital and labor, which we repeat here for convenience. The first order
condition for capital is:

(1 + ψk,tRt) r
k
t =

Rthkb,t
1 + τther,t

,

which in linearized form is:

\(1 + ψk,tRt) + r̂kt = R̂t + ĥkb,t − \(1 + τther,t)

or,

ψkR
h
ψ̂k,t + R̂t

i
1 + ψkR

+ r̂kt = R̂t + ĥkb,t −
τher

h
τ̂t + ĥer,t

i
1 + τher

. (2.37)

Substituting,

ψkR
h
ψ̂k,t + R̂t

i
1 + ψkR

+ r̂kt = R̂t + [1− log (ev) ξ] ξ̂t + x̂bt + (1− ξ) êv,t

+(1− α)

·
µ̂z,t − νlν̂lt

1− νl
+ l̂t +

νkν̂kt
1− νk

− k̂t

¸

−
τher

³
τ̂t −

h
1
1−ξ + log (ev)

i
ξξ̂t + x̂bt − ξêv,t

´
1 + τher

.

Collecting terms:

(∗∗) 0 = kRR̂t + kξ ξ̂t − r̂kt + kxx̂
b
t + keêv,t + kµµ̂z,t (2.38)

+kνl ν̂
l
t + kνk ν̂

k
t + kl l̂t + kkk̂t + kτ τ̂t + kψkψ̂k,t

where

kR =

·
1− ψkR

1 + ψkR

¸
, kξ = 1− log (ev) ξ +

τher
h

1
1−ξ + log (ev)

i
ξ

1 + τher

kx =
1

1 + τher
, ke = 1− ξ +

τherξ

1 + τher
, kµ = (1− α)

kνl = −(1− α)
νl

1− νl
, kνk = (1− α)

νk

1− νk
, kl = (1− α), kk = −(1− α)

kτ = − τher

1 + τher
, kψk = −

ψkR

1 + ψkR
.
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The first order condition for labor is:

0 =
Rthz,lb,t
1 + τther,t

− (1 + ψl,tRt)wt.

Linearizing this:
\(1 + ψl,tRt) + ŵt = R̂t + ĥz,lb,t − \(1 + τther,t)

or,

ψlR
³
ψ̂l,t + R̂t

´
1 + ψlR

+ ŵt = R̂t + ĥz,lb,t −
τher

³
τ̂t + ĥer,t

´
1 + τher

Substituting from (2.36),

ψkR
h
ψ̂k,t + R̂t

i
1 + ψkR

+ r̂kt = R̂t + ĥkb,t −
τher

h
τ̂t + ĥer,t

i
1 + τher

ψlR
³
ψ̂l,t + R̂t

´
1 + ψlR

+ ŵt = R̂t + ĥkb,t −
τher

³
τ̂t + ĥer,t

´
1 + τher

−
·
µ̂z,t − νlν̂lt

1− νl
+ l̂t +

νkν̂kt
1− νk

− k̂t

¸
Note that the first line of this looks like (2.37) with ψl replacing ψk and ŵt replacing r̂

k
t .We

can exploit this fact when collecting terms in the previous expression. In particular,

(∗∗) 0 = lRR̂t + lξ ξ̂t − ŵt + lxx̂
b
t + leêv,t + lµµ̂z,t

+lνl ν̂
l
t + lνk ν̂

k
t + ll l̂t + lkk̂t + lτ τ̂t + lψlψ̂l,t,

where

li = ki for all i, except

lR =

·
1− ψlR

1 + ψlR

¸
, lψl = − ψlR

1 + ψlR

lµ = kµ − 1, lνl = kνl +
νl

1− νl
, ll = kl − 1,

lνk = kνk − νk

1− νk
, lk = kk + 1.
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The production function for deposits is:

abxbt (ev,t)
−ξt ert =

M b
t −Mt +Xt + Sw

t

Pt

Scaling this:

abxbt (ev,t)
−ξt e

r
t

zt
=

M b
t −Mt +Xt +

¡
ψl,tWtlt + ψk,tPtr

k
tKt

¢
ztPt

=
mb

tztPt −
¡
Mt/M

b
t

¢
M b

t +
¡
Xt/M

b
t

¢
M b

t +
¡
ψl,tWtlt + ψk,tPtr

k
t zt (zt−1/zt) kt

¢
ztPt

= mb
t (1−mt + xt) + ψl,twtlt + ψk,tr

k
t kt/µzt

= m1t +m2t,

where

m1t = mb
t (1−mt + xt)

m2t = ψl,twtlt + ψk,tr
k
t kt/µzt.

Linearing these pieces:

m̂1t = m̂b
t +

\(1−mt + xt)

= m̂b
t +
−mm̂t + xx̂t
1−m+ x

m̂2t =
ψlwl

ψlwl + ψkrkk/µz

³
ψ̂l,t + ŵt + l̂t

´
+

ψkr
kk/µz

ψlwl + ψkrkk/µz

³
ψ̂k,t + r̂kt + k̂t − µ̂zt

´
It is convenient to derive an expression for the linearization of ert/zt.

erz,t =
Er
t

Ptzt
=

ert
zt
=

M b
t −Mt +Xt − τt

¡
M b

t −Mt +Xt + Sw
t

¢
ztPt

= (1− τt)m
b
t (1−mt + xt)− τt

¡
ψl,twtlt + ψk,tr

k
t kt/µzt

¢
= (1− τt)m1t − τtm2t

Linearizing this:

êrz,t =
(1− τ)m1

(1− τ)m1 − τm2

·−τ τ̂t
1− τ

+ m̂1t

¸
− τm2

(1− τ)m1 − τm2
[τ̂t + m̂2t] .
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We can use these results in linearly expanding the scaled production function, which we
repeat here for convenience:

abxbt (ev,t)
−ξt erz,t = m1t +m2t.

Expanding this:

x̂bt − ξêv,t − log (ev,t) ξξ̂t + êrz,t =
m1

m1 +m2
m̂1t +

m2

m1 +m2
m̂2t.

Substituting out:

x̂bt − ξêv,t − log (ev,t) ξξ̂t + (1− τ)m1

(1− τ)m1 − τm2

·−τ τ̂t
1− τ

+ m̂1t

¸
− τm2

(1− τ)m1 − τm2
[τ̂t + m̂2t]

=
m1

m1 +m2
m̂1t +

m2

m1 +m2
m̂2t.

Collecting terms:

x̂bt − ξêv,t − log (ev,t) ξξ̂t − τ (m1 +m2)

(1− τ)m1 − τm2
τ̂t

=

·
m1

m1 +m2
− (1− τ)m1

(1− τ)m1 − τm2

¸
m̂1t +

·
m2

m1 +m2
+

τm2

(1− τ)m1 − τm2

¸
m̂2t.

Substituting:

(∗∗) x̂bt − ξêv,t − log (ev,t) ξξ̂t − τ (m1 +m2)

(1− τ)m1 − τm2
τ̂t

=

·
m1

m1 +m2
− (1− τ)m1

(1− τ)m1 − τm2

¸ ·
m̂b

t +
−mm̂t + xx̂t
1−m+ x

¸
+

·
m2

m1 +m2
+

τm2

(1− τ)m1 − τm2

¸
×[ ψlwl

ψlwl + ψkrkk/µz

³
ψ̂l,t + ŵt + l̂t

´
+

ψkr
kk/µz

ψlwl + ψkrkk/µz

³
ψ̂k,t + r̂kt + k̂t − µ̂zt

´
].

We now linearize the equation linking Rat and Rt

Rat =
(1− τt)her,t − 1

τther,t + 1
Rt.

R̂at = \((1− τt)her,t − 1) + R̂t − \(τther,t + 1)
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But,

\((1− τt)her,t − 1) =
her ĥer ,t − τher

³
τ̂t + ĥer ,t

´
(1− τ)her − 1

\(τther,t + 1) =
τher

³
τ̂t + ĥer,t

´
τher + 1

,

then, using the previous expressions, as well as the expression for ĥer ,t obtained above,

(∗∗) R̂at =
her ĥer,t − τher

³
τ̂t + ĥer,t

´
(1− τ)her − 1 + R̂t −

τher
³
τ̂t + ĥer,t

´
τher + 1

=

·
her − τher

(1− τ)her − 1 −
τher

τher + 1

¸
ĥer,t −

·
τher

(1− τ)her − 1 +
τher

τher + 1

¸
τ̂t + R̂t

=

·
her − τher

(1− τ)her − 1 −
τher

τher + 1

¸ ·
−
µ

1

1− ξ
+ log (ev)

¶
ξξ̂t + x̂bt − ξêv,t

¸
−
·

τher

(1− τ)her − 1 +
τher

τher + 1

¸
τ̂t + R̂t

This completes the linearization of the four banking equations. The variables associated
with these are êv,t, ν̂

k
t , ν̂

l
t, R̂t.

The clearing condition in the market for working capital loans is:

Sw
t = ψl,tWtlt + ψk,tPtr

k
tKt (2.39)

Here, Sw
t represents the supply of loans, and the terms on the right of the equality in (2.39)

represent total demand.
We close our discussion of the banking sector with an illustration to clarify the nature

of the money multiplier in the model. Consider the following table with gross assets and
liabilities for the banking sector as a whole:

Assets Liabilities
X=50 D=1000
A=200 T=100
Sw=750
B=100
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The assets and liabilities in this balance sheet are ‘gross’ in that they do not net out interbank
claims. Thus, D includes demand deposits liabilities by some banks to others, corresponding
to bank working capital loans. The corresponding assets are included on the asset side of the
balance sheet in S. Suppose the reserve requirement, τ, is 0.20. The balance sheet shows that
total reserves are 250, of which 200 are required and 50 are excess. So, the excess reserve
ratio in this example, i.e., the ratio of excess reserves to deposits, is 5 percent. To see how
the money multiplier works, suppose X were 60 instead of 50,while A and the excess reserve
ratio do not change. Then the balance sheet would look like this:

Assets Liabilities
X=60 D=1040
A=200 T=100
Sw=780
B=100

Now, total reserves are 260, of which τD = 208 are required and the rest, 52, are excess. So,
in this example, the money multiplier is 1/(.2 + .05) = 4. In our model, D, A, T , S and the
excess reserve ratio are all endogenous variables.
We adjust the bank’s production function so that it is expressed in terms of people, rather

than the homogeneous labor produced by the contractor. First, write this in terms of the
aggregate factor inputs and shares used in the banking sector:

Dt

Pt
= abxbt

³¡
Kb

t

¢α ¡
ztl

b
t

¢1−α´ξt µEr
t

Pt

¶1−ξt
= abxbt

³¡¡
1− νkt

¢
Kt

¢α ¡
zt
¡
1− νlt

¢
lt
¢1−α´ξt µEr

t

Pt

¶1−ξt
We express this in terms of unweighted hours of households using a result from section 2.9

Dt

Pt
= abxbt

¡¡1− νkt
¢
Kt

¢αÃ
zt
¡
1− νlt

¢µW ∗
t

Wt

¶ λw
λw−1

l∗t

!1−αξt µ
Er
t

Pt

¶1−ξt
In section 2.9, we show thatW ∗

t /Wt can - to a first approximation - be treated as a constant,
equal to unity.

2.6. Households

There is a continuum of households, indexed by j ∈ (0, 1). Households consume, save and
supply a differentiated labor input. They set their wages using the variant on the Calvo
(1983) technology described by Erceg, Henderson and Levin (2000).
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The sequence of decisions by the household during a period is as follows. First, it makes
its consumption decision after the non-monetary shocks are realized. Second, it purchases
securities whose payoffs are contingent upon whether it can reoptimize its wage decision.
Third, it sets its wage rate after finding out whether it can reoptimize or not. Fourth, the
current period monetary action is realized. Fifth, after the monetary action, and before the
goods market, the household decides how much of its financial assets to hold in the form of
currency and demand deposits. At this point, the time deposits purchased by the household
in the previous period are fixed and beyond its control. Sixth, the household goes to the
goods market, where labor services are supplied and goods are purchased. Seventh, after
the goods market, the household settles claims arising from its goods market experience and
makes its current period time deposit decision.
Since the uncertainty faced by the household over whether it can reoptimize its wage is

idiosyncratic in nature, households work different amounts and earn different wage rates. So,
in principle they are also heterogeneous with respect to consumption and asset holdings. A
straightforward extension of arguments in Erceg, Henderson and Levin (2000) and Woodford
(1996), establish that the existence of state contingent securities ensures that in equilibrium
households are homogeneous with respect to consumption and asset holdings. Reflecting this
result, our notation assumes that households are homogeneous with respect to consumption
and asset holdings, and heterogeneous with respect to the wage rate that they earn and
hours worked. The preferences of the jth household are given by:

Ej
t

∞X
l=0

βl−t

u(Ct+l − bCt+l−1)− ζt+lz(hj,t+l)− υt+l

·³
Pt+lCt+l
Mt+l

´θt+l ³Pt+lCt+l
Dh
t+l

´1−θt+l¸1−σq
1− σq

 ,
(2.40)

where Ej
t is the expectation operator, conditional on aggregate and household j idiosyncratic

information up to, and including, time t−1; Ct denotes time t consumption; and hjt denotes
time t hours worked. In order to help assure that our model has a balanced growth path,
we specify that u is the natural logarithm. When b > 0, (2.40) allows for habit formation in
consumption preferences. Various authors, such as Fuhrer (2000), and McCallum and Nelson
(1998), have argued that this is important for understanding the monetary transmission
mechanism. In addition, habit formation is useful for understanding other aspects of the
economy, including the size of the premium on equity. Finally, the term in square brackets
captures the notion that currency and demand deposits contribute to utility by providing
transactions services. Those services are an increasing function of the level of consumption.
The specification in (2.40) is our ‘benchmark’ specification of preferences. We also con-

sider a second specification. In one, the ACEL specification, we make the marginal utility of
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money independent of consumption. To do this, and preserve balanced growth, we replace
Ct+l in (2.40) by zt+l :

Ej
t

∞X
l=0

βl−t

u(Ct+l − bCt+l−1)− ζt+lz(hj,t+l)− υt+l

·³
Pt+lzt+l
Mt+l

´θt+l ³Pt+lzt+l
Dh
t+l

´1−θt+l¸1−σq
1− σq

(2.41)
The basic text below describes analysis of the benchmark specification. As appropriate, we
indicate how things change for the ACEL specification.
We now discuss the household’s period t uses and sources of funds. Just before the goods

market in period t, after the realization of all shocks, the household has M b
t units of high

powered money which it splits into currency, Mt, and deposits with the bank:

M b
t − (Mt +At) ≥ 0. (2.42)

The household deposits At with the bank, in exchange for a demand deposit. Demand
deposits pay the relatively low interest rate, Rat, but offer transactions services.
The central bank credits the household’s bank deposit with Xt units of high powered

money, which automatically augments the household’s demand deposits. So, household
demand deposits are Dh

t :
Dh

t = At +Xt.

As noted in the previous section, the household only receives interest on the non-wage
component of its demand deposits, since the interest on the wage component is earned by
intermediate good firms.
The household also can acquire a time deposit. This can be acquired at the end of the

period t goods market and pays a rate of return, 1+Re
t+1, at the end of the period t+1 goods

market. The rate of return, Re
t+1, is known at the time that the time deposit is purchased.

It is not contingent on the realization of any of the period t+ 1 shocks.
The household also uses its funds to pay for consumption goods, PtCt and to acquire high

powered money, Qt+1, for use in the following period. Additional sources of funds include
profits from producers of capital, Πk

t , from banks, Π
b
t , from intermediate good firms,

R
Πj
tdj,

and Aj,t, the net payoff on the state contingent securities that the household purchases
to insulate itself from uncertainty associated with being able to reoptimize its wage rate.
Households also receive lump-sum transfers, 1 − Θ, corresponding to the net worth of the
1−γ entrepreneurs which die in the current period. Finally, the households pay a lump-sum
tax to finance the transfer payments made to the γ entrepreneurs that survive and to the
1 − γ newly born entrepeneurs. These observations are summarized in the following asset
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accumulation equation:£
1 +

¡
1− τDt

¢
Rat

¤ ¡
M b

t −Mt +Xt

¢− Tt

− (1 + τ ct )PtCt + (1−Θ) (1− γ)Vt −W e
t + Lumpt

+
£
1 +

¡
1− τTt

¢
Re
t

¤
Tt−1 +

¡
1− τ lt

¢
Wj,thj,t +Mt +Πb

t +Πk
t +

Z
Πf
t df +Aj,t −M b

t+1 ≥ 0.

The household’s problem is to maximize (2.40) subject to the timing constraints mentioned
above, the various non-negativity constraints, and (2.43).
We consider the Lagrangian representation of the household problem, in which λt ≥ 0

is the multiplier on (2.43). The consumption and the wage decisions are taken before the
realization of the financial market shocks. The other decisions, M b

t+1, Mt and Tt are taken
after the realization of all shocks during the period. The period t multipliers are functions of
all the date t shocks. We now consider the first order conditions associated with Ct, M

b
t+1,

Mt and Tt. The Lagrangian representation of the problem, ignoring constant terms in the
asset evolution equation, is:

Ej
0

∞X
t=0

βt{u(Ct − bCt−1)− ζtz(hj,t)− υt

·
PtCt

³
1
Mt

´θt ³
1

Mb
t−Mt+Xt

´1−θt¸1−σq
1− σq

+λt[
£
1 +

¡
1− τDt

¢
Rat

¤ ¡
M b

t −Mt

¢− Tt − (1 + τ ct )PtCt

+
£
1 +

¡
1− τTt

¢
Re
t

¤
Tt−1 +

¡
1− τ lt

¢
Wj,thj,t +Mt −M b

t+1]}
We now consider the various first order conditions associated with this maximization prob-
lem.

2.6.1. The Tt First Order Condition

The first order condition with respect to Tt is:

E
©−λt + βλt+1

£
1 +

¡
1− τTt+1

¢
Re
t+1

¤ |Ωµ
t

ª
= 0

To scale this, multiply by ztPt :

E

½
−λz,t + β

µz,t+1πt+1
λz,t+1

£
1 +

¡
1− τTt+1

¢
Re
t+1

¤ |Ωµ
t

¾
= 0.

Linearize the expression in braces:

−λzλ̂z,t + β

µzπ
λz
£
1 +

¡
1− τT

¢
Re
¤ h
λ̂z,t+1 − µ̂z,t+1 − π̂t+1 +

\£
1 +

¡
1− τTt+1

¢
Re
t+1

¤i
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Note,

\£
1 +

¡
1− τTt+1

¢
Re
t+1

¤
=
−ReτT τ̂Tt+1 +Re

¡
1− τT

¢
R̂e
t+1

1 + (1− τT )Re
,

so that

−λzλ̂z,t+ β

µzπ
λz
£
1 +

¡
1− τT

¢
Re
¤ "

λ̂z,t+1 − µ̂z,t+1 − π̂t+1 +
−ReτT τ̂Tt+1 +Re

¡
1− τT

¢
R̂e
t+1

1 + (1− τT )Re

#
.

Imposing the steady state conditions:

(∗∗) E
(
−λ̂z,t + λ̂z,t+1 − µ̂z,t+1 − π̂t+1 − ReτT

1 + (1− τT )Re
τ̂Tt+1 +

Re
¡
1− τT

¢
1 + (1− τT )Re

R̂e
t+1|Ωµ

t

)
= 0.

2.6.2. The K̄t+1 First Order Condition

Although the capital decision is made by the entrepreneur in the benchmark model, we also
explore a more standard formulation in which that decision is made by the household. In
this formulation, we drop the variables, ω̄t and Nt, and the three equations pertaining to the
CSV contract. This leaves us short one equation. Replace this by the following household
euler equation:

E
©−λt + βλt+1

£
1 +Rk

t+1

¤ |Ωt

ª
= 0.

To scale this, we multiply by ztPt :

E

½
−λzt + β

ztPt

zt+1Pt+1
λzt+1

£
1 +Rk

t+1

¤ |Ωt

¾
= 0,

or,

E

½
−λzt + β

πt+1µz,t+1
λzt+1

£
1 +Rk

t+1

¤ |Ωt

¾
= 0.

We now linearize the expression in braces:

−λzλ̂zt + β

πµz
λz
£
1 +Rk

¤ · Rk

1 +Rk
R̂k
t+1 + λ̂z,t+1 − π̂t+1 − µ̂z,t+1

¸
,

or, after division by λz, setting β
£
1 +Rk

¤
= πµz, and reinserting the expectation operator:

(∗∗) E
½
−λ̂zt +

·
Rk

1 +Rk
R̂k
t+1 + λ̂z,t+1 − π̂t+1 − µ̂z,t+1

¸
|Ωt

¾
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2.6.3. The Mt First Order Condition

The first order condition with respect to Mt is:

υt

"µ
PtCt

Mt

¶θt µ PtCt

M b
t −Mt +Xt

¶1−θt#1−σq
[
θt
Mt
− (1− θt)

M b
t −Mt +Xt

] (2.43)

−λt
¡
1− τDt

¢
Rat = 0

We can compute a money demand elasticity from this expression. This is the elasticity of
demand for Mt with respect to Rat. We obtain this by totally differentiating (2.43) with
respect to Mt and Rat. Rewrite (2.43) a little first:

υt (PtCt)
(1−σq)M−θt(1−σq)

t

¡
M b

t −Mt +Xt

¢−(1−θt)(1−σq)
[
θt
Mt
− (1− θt)

M b
t −Mt +Xt

]

= λt
¡
1− τDt

¢
Rat.

Now, differentiate:

{−θt (1− σq)
λt
¡
1− τDt

¢
Rat

Mt
+ (1− θt) (1− σq)

λt
¡
1− τDt

¢
Rat¡

M b
t −Mt +Xt

¢
+
λt
¡
1− τDt

¢
Rat

θt
Mt
− (1−θt)

Mb
t−Mt+Xt

"
− θt
M2

t

− (1− θt)¡
M b

t −Mt +Xt

¢2
#
}dMt

= λt
¡
1− τDt

¢
dRat

or

λt
¡
1− τDt

¢
Rat{(1− σq)

·
− θt
Mt

+
1− θt

M b
t −Mt +Xt

¸
+

1
θt
Mt
− (1−θt)

Mb
t−Mt+Xt

"
− θt
M2

t

− (1− θt)¡
M b

t −Mt +Xt

¢2
#
}dMt

= λt
¡
1− τDt

¢
dRat

so that the elasticity is:

Rat

Mt

dMt

dRat
=

1/Mt

(1− σq)
h
− θt

Mt
+ 1−θt

Mb
t−Mt+Xt

i
+ 1

θt
Mt
− (1−θt)
Mb
t−Mt+Xt

·
− θt

M2
t
− (1−θt)
(Mb

t−Mt+Xt)
2

¸ .
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Simplifying:

Rat

Mt

dMt

dRat
=

1

(1− σq)
h
−θt +Mt

1−θt
Mb
t−Mt+Xt

i
+

M2
t

θt−Mt
(1−θt)

Mb
t−Mt+Xt

·
−θt − M2

t (1−θt)
(Mb

t−Mt+Xt)
2

¸
=

1

(1− σq)
h
−θt +mt

1−θt
1−mt+xt

i
+ 1

θt−mt
(1−θt)

1−mt+xt

h
−θt − m2

t (1−θt)
(1−mt+xt)

2

i
=

θt −mt
(1−θt)
1−mt+xt

− (1− σq)
h
θt −mt

1−θt
1−mt+xt

i2
+
h
−θt − m2

t (1−θt)
(1−mt+xt)

2

i
Multiply (2.43) by ztPt :

υt

"
ct

µ
1

mt

¶θt µ 1

1−mt + xt

¶1−θt#1−σq
[
θt
mt
− 1− θt
1−mt + xt

]

µ
1

mb
t

¶2−σq
(2.44)

−λzt
¡
1− τDt

¢
Rat = 0

In the ACEL specification, simply replace ct by unity in the previous expression. Now, we
linearize this expression. Consider the first piece:

υ

"
c

µ
1

m

¶θ µ
1

1−m+ x

¶1−θ#1−σq
[
θ

m
− 1− θ

1−m+ x
]

µ
1

mb

¶2−σq
(2.45)

×

υ̂t +

\"
ct

µ
1

mt

¶θt µ 1

1−mt + xt

¶1−θt#1−σq
+

\
[
θt
mt
− 1− θt
1−mt + xt

] +
\µ 1

mb
t

¶2−σq
The first hat in this expression is:

(1− σq)
h
ĉt − θm̂t − (1− θ) \(1−mt + xt)− log (m) θθ̂t + log (1−m+ x) θθ̂t

i
= (1− σq)

·
ĉt − θm̂t − (1− θ)

−mm̂t + xx̂t
1−mt + xt

− log (m) θθ̂t + log (1−m+ x) θθ̂t

¸
The second hat in the expression is:

\
[
θt
mt
− 1− θt
1−mt + xt

] =

θ
m

³
θ̂t − m̂t

´
+ θθ̂t

1−m+x +
1−θ

(1−m+x)2 [−mm̂t + xx̂t]

θ
m
− 1−θ

1−m+x
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The third hat is:

\µ 1

mb
t

¶2−σq
=
− (2− σq)

³
1
mb
t

´1−σq ³
1
mb
t

´2
mbm̂b³

1
mb
t

´2−σq
= − (2− σq) m̂

b
t

Substituting these three pieces into (2.45):

υ

"
c

µ
1

m

¶θ µ
1

1−m+ x

¶1−θ#1−σq
[
θ

m
− 1− θ

1−m+ x
]

µ
1

mb

¶2−σq
×{υ̂t + (1− σq) [ĉt − θm̂t − (1− θ)

−mm̂t + xx̂t
1−mt + xt

(2.46)

− log (m) θθ̂t + log (1−m+ x) θθ̂t]

+

θ
m

³
θ̂t − m̂t

´
+ θθ̂t

1−m+x +
1−θ

(1−m+x)2 [−mm̂t + xx̂t]

θ
m
− 1−θ

1−m+x
− (2− σq) m̂

b
t}

Linearizing the second part of (2.44):

λz
¡
1− τD

¢
Ra

h
λ̂z,t + \(1− τDt ) + R̂a,t

i
(2.47)

= λz
¡
1− τD

¢
Ra

·
λ̂z,t +

−τD
1− τD

τ̂Dt + R̂a,t

¸
Substituting (2.46) and (2.47) into the linearized version of (2.44):

υ̂t + (1− σq)

·
ĉt − θm̂t − (1− θ)

−mm̂t + xx̂t
1−m+ x

− log (m) θθ̂t + log (1−m+ x) θθ̂t

¸

+

θ
m

³
θ̂t − m̂t

´
+ θθ̂t

1−m+x +
1−θ

(1−m+x)2 [−mm̂t + xx̂t]

θ
m
− 1−θ

1−m+x
− (2− σq) m̂

b
t

−
·
λ̂z,t +

−τD
1− τD

τ̂Dt + R̂a,t

¸
= 0
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Collecting terms:

(∗∗) υ̂t + (1− σq) ĉt +

"
−(1− σq)

µ
θ − (1− θ)

m

1−m+ x

¶
−

θ
m
+ 1−θ

(1−m+x)2m
θ
m
− 1−θ

1−m+x

#
m̂t

−
"
(1− σq) (1− θ)x

1−m+ x
−

1−θ
(1−m+x)2x
θ
m
− 1−θ

1−m+x

#
x̂t

+

·
−(1− σq) (log (m)− log (1−m+ x)) +

1 + x

θ (1 + x)−m

¸
θθ̂t

− (2− σq) m̂
b
t −

·
λ̂z,t +

−τD
1− τD

τ̂Dt + R̂a,t

¸
= 0

For the ACEL specification, simply set ĉt = 0.

2.6.4. The M b
t+1 First Order Condition

The first order condition with respect to M b
t+1 is:

E{βυt+1 (1− θt+1)

"
Pt+1Ct+1

µ
1

Mt+1

¶θt+1 µ 1

M b
t+1 −Mt+1 +Xt+1

¶(1−θt+1)#1−σq 1

M b
t+1 −Mt+1 +Xt+1

+βλt+1
£
1 +

¡
1− τDt+1

¢
Ra,t+1

¤− λt|Ωµ
t } = 0

The first two terms on the left of the equality capture the discounted value of an extra unit of
currency in base in the next period. The last term captures the cost, which is the multiplier
on the current period budget constraint. We now scale this expression. Multiply by Ptzt:

E{βυt+1 (1− θt+1)

"
ct+1

µ
1

mt+1

¶θt+1 µ 1

1−mt+1 + xt+1

¶(1−θt+1)#1−σq
×
µ

1

mb
t+1

¶2−σq 1

πt+1µz,t+1

1

1−mt+1 + xt+1

+β
1

πt+1µz,t+1
λz,t+1

£
1 +

¡
1− τDt+1

¢
Ra,t+1

¤− λz,t|Ωµ
t } = 0
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For the ACEL specification, simply replace ct+1 by unity. We now linearize the above
expression. Isolating the object in braces, and rearranging a little:

βυt+1 (1− θt+1)

"
ct+1

µ
1

mt+1

¶θt+1
#1−σq µ

1

1−mt+1 + xt+1

¶(1−θt+1)(1−σq)+1µ 1

mb
t+1

¶2−σq 1

πt+1µz,t+1
(2.48)

+β
1

πt+1µz,t+1
λz,t+1

£
1 +

¡
1− τDt+1

¢
Ra,t+1

¤− λz,t

Linearizing the first element in the sum:

βυ (1− θ)

"
c

µ
1

m

¶θ
#1−σq µ

1

1−m+ x

¶(1−θ)(1−σq)+1µ 1

mb

¶2−σq 1

πµz
(2.49)

×{υ̂t+1 − θθ̂t+1
1− θ

+ (1− σq)ĉt+1

+

\"µ
1

mt+1

¶θt+1
#1−σq

+
\µ

1

1−mt+1 + xt+1

¶(1−θt+1)(1−σq)+1
− (2− σq) m̂

b
t+1 − π̂t+1 − µ̂z,t+1}.

Now, consider the fourth term in square brackets. This involves dmt+1 and dθt+1. Let

f(θt+1,mt+1) =

"µ
1

mt+1

¶θt+1
#1−σq

.

Then,

f̂ =
df

f
=

f1(θ,m)θθ̂t+1 + f2(θ,m)mm̂t+1

f(θ,m)
.

Now,

f1(θ,m) =

d

·³
1

mt+1

´θt+1¸1−σq
dθt+1

=
d exp [−θt+1(1− σq) log (mt+1)]

dθt+1
= −(1− σq) log (mt+1) exp [−θt+1(1− σq) log (mt+1)]

= −(1− σq) log (m) f(θ,m).
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Also,

f2(θ,m) =

d

·³
1

mt+1

´θt+1¸1−σq
dmt+1

= −θ(1− σq)

µ
1

m

¶θ(1−σq)−1µ 1
m

¶2
= −θ(1− σq)

µ
1

m

¶θ(1−σq)µ 1
m

¶
= −θ(1− σq)f(θ,m)

µ
1

m

¶
Then,

f̂ =
df

f
= −(1− σq) log (m) f(θ,m)θθ̂t+1 + θ(1− σq)f(θ,m)

¡
1
m

¢
mm̂t+1

f(θ,m)

= −(1− σq) log (m) θθ̂t+1 − θ(1− σq)m̂t+1

Substituting this into (2.49):

βυ (1− θ)

"
c

µ
1

m

¶θ
#1−σq µ

1

1−m+ x

¶(1−θ)(1−σq)+1µ 1

mb

¶2−σq 1

πµz
(2.50)

×[υ̂t+1 − θθ̂t+1
1− θ

+ (1− σq)ĉt+1 − (1− σq) log (m) θθ̂t+1 − θ(1− σq)m̂t+1

+
\µ

1

1−mt+1 + xt+1

¶(1−θt+1)(1−σq)+1
− (2− σq) m̂

b
t+1 − π̂t+1 − µ̂z,t+1].

Now consider the term with a hat over it. Let

f(mt+1, xt+1, θt+1) =

µ
1

1−mt+1 + xt+1

¶(1−θt+1)(1−σq)+1
.

Then,

f̂t =
dft
f
=

f1(m,x, θ)mm̂t+1 + f2(m,x, θ)xx̂t+1 + f3(m,x, θ)θθ̂t+1
f

.

Now

f1(m,x, θ) = [(1− θ) (1− σq) + 1]

µ
1

1−m+ x

¶(1−θ)(1−σq)µ 1

1−m+ x

¶2
mm̂t+1

= [(1− θ) (1− σq) + 1] f ×
µ

1

1−m+ x

¶
mm̂t+1.
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Also,

f2(m,x, θ) = − [(1− θ) (1− σq) + 1]

µ
1

1−m+ x

¶(1−θ)(1−σq)µ 1

1−m+ x

¶2
xx̂t+1

= − [(1− θ) (1− σq) + 1] f ×
µ

1

1−m+ x

¶
xx̂t+1.

Finally,

f3(m,x, θ) =
d
³

1
1−mt+1+xt+1

´(1−θt+1)(1−σq)+1
dθt+1

=
d exp [− ((1− θt+1) (1− σq) + 1) log (1−mt+1 + xt+1)]

dθt+1
= (1− σq) log (1−m+ x) f

Substituting these into the expression for f̂t :

f̂t = − [(1− θ) (1− σq) + 1]

µ
1

1−m+ x

¶
[xx̂t+1 −mm̂t+1] + (1− σq) log (1−m+ x) θθ̂t+1.

Substituting this into (2.50):

βυ (1− θ)

"
c

µ
1

m

¶θ
#1−σq µ

1

1−m+ x

¶(1−θ)(1−σq)+1µ 1

mb

¶2−σq 1

πµz
(2.51)

×{υ̂t+1 − θθ̂t+1
1− θ

+ (1− σq)ĉt+1 − (1− σq) log (m) θθ̂t+1 − θ(1− σq)m̂t+1

− [(1− θ) (1− σq) + 1]

µ
1

1−m+ x

¶
[xx̂t+1 −mm̂t+1]

+ (1− σq) log (1−m+ x) θθ̂t+1 − (2− σq) m̂
b
t+1 − π̂t+1 − µ̂z,t+1}.
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Now consider the second and third elements in (2.48):

β

πµz
λz
£
1 +

¡
1− τD

¢
Ra

¤ h−π̂t+1 − µ̂z,t+1 + λ̂z,t+1 +
\£

1 +
¡
1− τDt+1

¢
Ra,t+1

¤i− λzλ̂z,t

=
β

πµz
λz
£
1 +

¡
1− τD

¢
Ra

¤ "−π̂t+1 − µ̂z,t+1 + λ̂z,t+1 +

¡
1− τD

¢
RaR̂a,t+1 − τDRaτ̂

D
t+1

1 + (1− τD)Ra

#
− λzλ̂

=
β

πµz
λz
£
1 +

¡
1− τD

¢
Ra

¤ h−π̂t+1 − µ̂z,t+1 + λ̂z,t+1

i
+
1

πµz
λz
h¡
1− τD

¢
RaR̂a,t+1 − τDRaτ̂

D
t+1

i
− λzλ̂

Using this and (2.51), we have our linearized version of (2.48):

βυ (1− θ)

"
c

µ
1

m

¶θ
#1−σq µ

1

1−m+ x

¶(1−θ)(1−σq)+1µ 1

mb

¶2−σq 1

πµz

×{υ̂t+1 − θθ̂t+1
1− θ

+ (1− σq)ĉt+1 − (1− σq) log (m) θθ̂t+1 − θ(1− σq)m̂t+1

− [(1− θ) (1− σq) + 1]

µ
1

1−m+ x

¶
[xx̂t+1 −mm̂t+1]

+ (1− σq) log (1−m+ x) θθ̂t+1 − (2− σq) m̂
b
t+1 − π̂t+1 − µ̂z,t+1}

+
β

πµz
λz
£
1 +

¡
1− τD

¢
Ra

¤ h−π̂t+1 − µ̂z,t+1 + λ̂z,t+1
i

+
β

πµz
λz
h¡
1− τD

¢
RaR̂a,t+1 − τDRaτ̂

D
t+1

i
− λzλ̂
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Multiply by πµz and collect terms in π̂t+1 + µ̂z,t+1 :

βυ (1− θ)

"
c

µ
1

m

¶θ
#1−σq µ

1

1−m+ x

¶(1−θ)(1−σq)+1µ 1

mb

¶2−σq
×{υ̂t+1 − θθ̂t+1

1− θ
+ (1− σq)ĉt+1 − (1− σq) log (m) θθ̂t+1 − θ(1− σq)m̂t+1

− [(1− θ) (1− σq) + 1]

µ
1

1−m+ x

¶
[xx̂t+1 −mm̂t+1]

+ (1− σq) log (1−m+ x) θθ̂t+1 − (2− σq) m̂
b
t+1}

+βλz
£
1 +

¡
1− τD

¢
Ra

¤
λ̂z,t+1 + βλz

h¡
1− τD

¢
RaR̂a,t+1 − τDRaτ̂

D
t+1

i
− πµzλzλ̂

−{βλz
£
1 +

¡
1− τD

¢
Ra

¤
+βυ (1− θ)

"
c

µ
1

m

¶θ
#1−σq µ

1

1−m+ x

¶(1−θ)(1−σq)+1µ 1

mb

¶2−σq
} (π̂t+1 + µ̂z,t+1)

The object in braces can be simplified using the steady state result:

βυ (1− θ)

"
c

µ
1

m

¶θ µ
1

1−m+ x

¶(1−θ)#1−σq µ
1

mb

¶2−σq 1

1−m+ x

+λz
£
1 +

¡
1− τD

¢
Ra

¤− πµzλz = 0 ,

so,

(∗∗) βυ (1− θ)

"
c

µ
1

m

¶θ
#1−σq µ

1

1−m+ x

¶(1−θ)(1−σq)+1µ 1

mb

¶2−σq
×{υ̂t+1 − θθ̂t+1

1− θ
+ (1− σq)ĉt+1 − (1− σq) log (m) θθ̂t+1 − θ(1− σq)m̂t+1

− [(1− θ) (1− σq) + 1]

µ
1

1−m+ x

¶
[xx̂t+1 −mm̂t+1]

+ (1− σq) log (1−m+ x) θθ̂t+1 − (2− σq) m̂
b
t+1}

+βλz
£
1 +

¡
1− τD

¢
Ra

¤
λ̂z,t+1

+βλz
h¡
1− τD

¢
RaR̂a,t+1 − τDRaτ̂

D
t+1

i
− πµzλz

h
λ̂t + π̂t+1 + µ̂z,t+1

i
.

For the ACEL specification, replaced c by unity and set ĉt = 0.
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2.6.5. The Ct First Order Condition

We now consider Ct. It is useful to define uc,t as the derivative of the present discounted
value of utility with respect to Ct :

E {uc,t − u0(Ct − bCt−1) + bβu0(Ct+1 − bCt)|Ωµ
t } = 0.

It is useful to obtain a linearization of the expression in braces, after multiplication by zt.
First, scale:

uzc,t −
zt

Ct − bCt−1
+ bβ

zt+1
Ct+1 − bCt

1

µz,t+1

= uzc,t −
1

Ct
zt
− b Ct−1

zt−1µz,t

+ bβ
1

Ct+1
zt+1
− b Ct

ztµz,t+1

1

µz,t+1

= uzc,t −
µz,t

ctµz,t − bct−1
+ bβ

1

ct+1µz,t+1 − bct
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One way to obtain the linearization, works like this:

f(ct) = uzc,t −
µz,t

ctµz,t − bct−1
+ bβ

1

ct+1µz,t+1 − bct

f 0(ct)cĉt =

"µ
1

ctµz,t − bct−1

¶2
µ2zt + b2β

µ
1

ct+1µz,t+1 − bct

¶2#
cĉt

=

"µ
µz

cµz − bc

¶2
µ2z + b2β

µ
1

cµz − bc

¶2#
cĉt

=

µ
1

cµz − bc

¶2 £
µ2z + b2β

¤
cĉt

=

µ
1

c (µz − b)

¶2 £
µ2z + b2β

¤
c× ĉt

f(ct+1) = uzc,t −
µz,t

ctµz,t − bct−1
+ bβ

1

ct+1µz,t+1 − bct

f 0(ct+1)cĉt+1 = −bβ
µ

1

c (µz − b)

¶2
µzcĉt+1

f(ct−1) = uzc,t −
µz,t

ctµz,t − bct−1
+ bβ

1

ct+1µz,t+1 − bct

f 0(ct−1)cĉt−1 =

µ
1

c (µz − b)

¶2
µzcĉt−1

f(µz,t) = uzc,t −
µz,t

ctµz,t − bct−1
+ bβ

1

ct+1µz,t+1 − bct

f 0(µz,t)µzµ̂z,t =

"
− µz
c (µz − b)

+

µ
1

c (µz − b)

¶2
cµ2z

#
µ̂z,t

f(µz,t+1) = uzc,t −
µz,t

ctµz,t − bct−1
+ bβ

1

ct+1µz,t+1 − bct

f 0(µz,t+1)µzµ̂z,t+1 = bβ

µ
1

c (µz − b)

¶2
cµzµ̂z,t+1
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The coefficients in the canonical form are:

α1(14, 18) =

µ
1

c (µz − b)

¶2 £
µ2z + b2β

¤
c, : ĉt

α0(14, 18) = −bβ
µ

1

c (µz − b)

¶2
µzc : ĉt+1

α2(14, 18) = −
µ

1

c (µz − b)

¶2
bµzc : ĉt−1

β0(14, 46) = bβ

µ
1

c (µz − b)

¶2
cµ2z : µz,t+1

β1(14, 46) =

"
− µz
c (µz − b)

+

µ
1

c (µz − b)

¶2
cµz

#
: µz,t

Another way to obtain the linearization is:

uzc û
z
c,t −

µz
cµz − bc

\µz,t
ctµz,t − bct−1

+ bβ
1

cµz − bc

\1
ct+1µz,t+1 − bct

But,

\µz,t
ctµz,t − bct−1

= µ̂z,t − \[ctµz,t − bct−1]

= µ̂z,t − cµz (ĉt + µ̂z,t)− bcĉt−1
c (µz − b)

= µ̂z,t − µz (ĉt + µ̂z,t)− bĉt−1
µz − b

\1
ct+1µz,t+1 − bct

= −µz (ĉt+1 + µ̂z,t+1)− bĉt
µz − b
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Then,

uzc û
z
c,t −

µz
c (µz − b)

½
µ̂z,t − µz (ĉt + µ̂z,t)− bĉt−1

µz − b

¾
− bβ

1

cµz − bc

µz (ĉt+1 + µ̂z,t+1)− bĉt
µz − b

= uzc û
z
c,t −

·
µz

c (µz − b)
+

µz
c (µz − b)

µz
µz − b

¸
µ̂z,t − bβ

1

cµz − bc

µzµ̂z,t+1
µz − b

+

·
µz

c (µz − b)

µz
µz − b

+ bβ
1

cµz − bc

b

µz − b

¸
ĉt

−bβ 1

cµz − bc

µz
µz − b

ĉt+1 − µz
c (µz − b)

b

µz − b
ĉt−1

= uzc û
z
c,t −

·
µz

c (µz − b)
− µ2zc

c2 (µz − b)2

¸
µ̂z,t − bβ

µzc

c2 (µz − b)2
µ̂z,t+1

+
µ2z + βb2

c2 (µz − b)2
cĉt − bβµz

c2 (µz − b)2
cĉt+1 − bµz

c2 (µz − b)2
cĉt−1

Finally, reintroduce the expectation operator:

(∗∗) E{uzc ûzc,t −
·

µz
c (µz − b)

− µ2zc

c2 (µz − b)2

¸
µ̂z,t − bβ

µzc

c2 (µz − b)2
µ̂z,t+1

+
µ2z + βb2

c2 (µz − b)2
cĉt − bβµz

c2 (µz − b)2
cĉt+1 − bµz

c2 (µz − b)2
cĉt−1|Ωµ

t } = 0.

The first order condition associated with Ct is:

Et

uc,t − υtC
−σq
t

"µ
Pt

Mt

¶θt µ Pt

M b
t −Mt +Xt

¶1−θt#1−σq
− (1 + τ ct )Ptλt

 = 0.

Multiply by zt :

Et

uc,tzt − υtc
−σq
t

"µ
ztPt/M

b
t

Mt/M b
t

¶θt µ ztPt/M
b
t

1−Mt/M b
t +Xt/M b

t

¶1−θt#1−σq
− (1 + τ ct )λz,t

 = 0,

or,

E

uzc,t − υtc
−σq
t

"
1

mb
t

µ
1

mt

¶θt µ 1

1−mt + xt

¶1−θt#1−σq
− (1 + τ ct )λz,t|Ωt

 = 0,
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where

mt =
Mt

M b
t

, xt =
Xt

M b
t

, mb
t =

M b
t

ztPt
, uzc,t = uc,tzt

For the ACEL specification, the second term inside the braces is replaced by zero.
Now we linearize the object in braces:

uzc û
z
c,t − υc−σq

"
1

mb

µ
1

m

¶θ µ
1

1−m+ x

¶1−θ#1−σq
×{υ̂t − σqĉt + (1− σq)

³
−m̂b

t − θtm̂t − (1− θ)
³

\1−mt + xt
´´

(1− σq)

·
log

µ
1

m

¶
− log

µ
1

1−m+ x

¶¸
θθ̂t}

− (1 + τ c)λz
h
\(1 + τ ct ) + λ̂z,t

i
But,

\1−mt + xt =
−mm̂t + xx̂t
1−m+ x

=
−m

1−m+ x
m̂t +

x

1−m+ x
x̂t

\(1 + τ ct ) =
τ cτ̂ ct
1 + τ c

so,

(∗∗) E{uzc ûzc,t − υc−σq
"
1

mb

µ
1

m

¶θt µ 1

1−m+ x

¶1−θt#1−σq
×[υ̂t − σqĉt + (1− σq)

µ
−m̂b

t − θtm̂t − (1− θt)

µ −m
1−m+ x

m̂t +
x

1−m+ x
x̂t

¶¶
+(1− σq)

·
log

µ
1

m

¶
− log

µ
1

1−m+ x

¶¸
θθ̂t]

− (1 + τ c)λz

·
τ c

1 + τ c
τ̂ ct + λ̂z,t

¸
|Ωt} = 0

For the ACEL specification the second term in the first line of (**) is replaced by zero.

2.6.6. The Wage Decision

The wage rate set by the household that gets to reoptimize today is W̃t. The household takes
into account that if it does not get to reoptimize next period, it’s wage rate then is

Wt+1 = πtµz,t+1W̃t,
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where
µz,t+1 =

zt+1
zt

.

In period t+ 2 it is
Wt+2 = πtπt+1µz,t+1µz,t+2W̃t,

and
Wt+l = πt × · · · × πt+l−1µz,t+1 × · · · × µz,t+lW̃t.

Technically, it is useful to note the slight difference in timing between inflation and the
technology shock. The former reflects that indexing is lagged. The latter reflects that
indexing to the technology shock is contemporaneous.
The demand curve that the individual household faces is:

ht+j =

Ã
W̃t+j

Wt+j

! λw
1−λw

lt+j =

Ã
W̃tµz,t+1 × · · · × µz,t+l

wt+jzt+jPt
Xt,j

! λw
1−λw

lt+j,

where W̃t denotes the nominal wage set by households that reoptimize in period t, and Wt

denotes the nominal wage rate associated with aggregate, homogeneous labor, Xt (don’t
confuse this with the different object, Xt,j = πt/πt+j). Also,

Xt,l =
πt × πt+1 × · · · × πt+l−1

πt+1 × · · · × πt+l
=

πt
πt+l

.

The homogeneous labor is related to household labor by:

l =

·Z 1

0

(hj)
1
λw dj

¸λw
, 1 ≤ λw <∞.

The jth household that reoptimizes its wage, W̃t, does so to optimize (neglecting irrelevant
terms in the household objective):

Et

∞X
l=0

(βξw)
l−t {−ζt+lz(hj,t+l) + λt+l(1− τ lt+l)Wj,t+lhj,t+l},

where

z(h) = ψL
h1+σLt

1 + σL

The presence of ξw by the discount factor reflects that the household is only concerned with
the future states of the world in which it cannot reoptimize its wage.
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Substituting out for hj,t+1 using the demand curve:

Et

∞X
l=0

(βξw)
l−t {−ζt+lz(

Ã
W̃tµz,t+1 × · · · × µz,t+l

wt+lzt+lPt
Xt,l

! λw
1−λw

lt+l)

+(1− τ lt+l)λt+lWj,t+l

Ã
W̃tµz,t+1 × · · · × µz,t+l

wt+lzt+lPt
Xt,l

! λw
1−λw

lt+l}.

Now, make use of the fact, λz,t+l = λt+lPt+lzt+l

Et

∞X
l=0

(βξw)
l−t {−ζt+lz(

Ã
W̃tµz,t+1 × · · · × µz,t+l

wt+lzt+lPt
Xt,l

! λw
1−λw

lt+l)

+
(1− τ lt+l)λz,t+l

zt+l

W̃tµz,t+1 × · · · × µz,t+l
Pt

Xt,l

Ã
W̃tµz,t+1 × · · · × µz,t+l

wt+lzt+lPt
Xt,l

! λw
1−λw

lt+l},

or, after rearranging:

Et

∞X
l=0

(βξw)
l−t {−ζt+lz(

Ã
W̃tµz,t+1 × · · · × µz,t+l

wt+lzt+lPt
Xt,l

! λw
1−λw

lt+l)

+
(1− τ lt+l)λz,t+l

zt+l

Ã
W̃tµz,t+1 × · · · × µz,t+l

Pt

!1+ λw
1−λw µ 1

zt+l

¶ λw
1−λw

Xt,l

µ
Xt,l

wt+l

¶ λw
1−λw

lt+l},

or, (ψz,t+l = zt+lψt+l) :

Et

∞X
l=0

(βξw)
l−t {−ζt+lz(

Ã
W̃tµz,t+1 × · · · × µz,t+l

wt+lzt+lPt
Xt,l

! λw
1−λw

lt+l)

+(1− τ lt+l)λz,t+l

Ã
W̃tµz,t+1 × · · · × µz,t+l

zt+lPt

!1+ λw
1−λw

Xt,l

µ
Xt,l

wt+l

¶ λw
1−λw

lt+l}.

But, note that:

zt+1 = µz,t+1zt

zt+2 = µz,t+2µz,t+1zt,
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etc., so that
µz,t+1 × · · · × µz,t+l

zt+l
=

µz,t+1 × · · · × µz,t+l
µz,t+1 × · · · × µz,t+lzt

=
1

zt
.

Then,

Et

∞X
l=0

(βξw)
l {−ζt+lz(

Ã
W̃t

wt+lztPt
Xt,l

! λw
1−λw

lt+l)+(1−τ lt+l)λz,t+l
Ã

W̃t

ztPt

!1+ λw
1−λw

Xt,l

µ
Xt,l

wt+l

¶ λw
1−λw

lt+l}.

Differentiate with respect to W̃t :

Et

∞X
l=0

(βξw)
l {−ζt+lz0(

Ã
W̃t

wt+lztPt
Xt,l

! λw
1−λw

Xt+l)
λw

1− λw
W̃

λw
1−λw−1
t

µ
Xt,l

wt+lztPt

¶ λw
1−λw

lt+l

+(1− τ lt+l)λz,t+l

µ
1

1− λw

¶
W̃

λw
1−λw
t

µ
1

ztPt

¶1+ λw
1−λw

Xt,l

µ
Xt,l

wt+l

¶ λw
1−λw

lt+l} = 0

Multiply by W̃
− λw
1−λw+1

t (1− λw)/λw :

Et

∞X
l=0

(βξw)
l {−ζt+lz0(

Ã
W̃t

wt+lztPt
Xt,l

! λw
1−λw

lt+l)

µ
Xt,l

wt+lztPt

¶ λw
1−λw

Xt+l

+(1− τ lt+l)λz,t+l

µ
1

λw

¶
W̃t

µ
1

ztPt

¶1+ λw
1−λw

Xt,l

µ
Xt,l

wt+l

¶ λw
1−λw

lt+l} = 0.

Multiply by P
λw

1−λw
t :

Et

∞X
l=0

(βξw)
l {−ζt+lz0(

Ã
W̃t

wt+lztPt
Xt,l

! λw
1−λw

lt+l)

µ
Xt,l

wt+lzt

¶ λw
1−λw

lt+l

+(1− τ lt+l)λz,t+l
1

λw

W̃t

Pt

µ
1

zt

¶ 1
1−λw

Xt,l

µ
Xt,l

wt+l

¶ λw
1−λw

lt+l} = 0.

Now get this in terms of stationary variables using w̃t = W̃t/Wt, wt =Wt/ (ztPt) :

Et

∞X
l=0

(βξw)
l {−ζt+lz0(

µ
w̃tWt

wt+lztPt
Xt,l

¶ λw
1−λw

lt+l)

µ
Xt,l

wt+lzt

¶ λw
1−λw

lt+l

+(1− τ lt+l)λz,t+l
1

λw

w̃tWt

Pt

µ
1

zt

¶ 1
1−λw

Xt,l

µ
Xt,l

wt+l

¶ λw
1−λw

lt+l} = 0,
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and

Et

∞X
l=0

(βξw)
l {−ζt+lz0(

µ
w̃tztwt

wt+lzt
Xt,l

¶ λw
1−λw

lt+l)

µ
Xt,l

wt+lzt

¶ λw
1−λw

lt+l

+(1− τ lt+l)λz,t+l
1

λw
w̃tztwtz

λw
1−λw−

1
1−λw

t Xt,l

µ
Xt,l

ztwt+l

¶ λw
1−λw

lt+l} = 0.

or,

Et

∞X
l=0

(βξw)
l

µ
Xt,l

wt+lzt

¶ λw
1−λw

lt+l{−ζt+lz0(
µ
w̃twt

wt+l
Xt,l

¶ λw
1−λw

lt+l)+(1−τ lt+l)λz,t+l
1

λw
w̃twtXt,l} = 0.

or,

Et

∞X
l=0

(βξw)
l

µ
Xt,l

wt+lzt

¶ λw
1−λw

lt+l(1− τ lt+l)λz,t+l
1

λw
{w̃twtXt,l − λwζt+l

z0t+l
(1− τ lt+l)λz,t+l

} = 0.

Finally, multiply both sides of this expression by

(w̃twtzt)
λw

1−λw ,

so that

Et

∞X
l=0

(βξw)
l

µ
w̃twtXt,l

wt+l

¶ λw
1−λw

lt+l(1− τ lt+l)λz,t+l
1

λw
{w̃twtXt,l − λwζt+l

z0t+l
(1− τ lt+l)λz,t+l

} = 0,

and

Et

∞X
l=0

(βξw)
l ht+l{(1− τ lt+l)λz,t+l

λw
w̃twtXt,l − ζt+lz

0
t+l} = 0,

using the demand curve. Rewriting this

Et

∞X
l=0

(ξwβ)
l hj,t+l

·
w̃twt

(1− τ lt+l)λz,t+l
λw

Xt,l + ζt+lfL (hj,t+l)

¸
= 0,

where
fL (hj,t+l) = −z0t+l = −ψLh

σL
j,t+l
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or,

Et

∞X
l=0

(ξwβ)
l hj,t+l

"
w̃twt

(1− τ lt+l)λz,t+l
λw

Xt,l + ζt+lfL

Ãµ
w̃twt

wt+l
Xt,l

¶ λw
1−λw

lt+l

!#
= 0.

(Here, the functions f and z refer to the same thing. This is inconvenient for reading, but
should not cause confusion.) Writing this out, term by term:

0 = hj,t

·
w̃twt

λz,t(1− τ lt)

λw
+ ζtfL

µ
w̃

λw
1−λw
t lt

¶¸
+βξwhj,t+1

"
w̃twtXt,1

(1− τ lt+1)λz,t+1
λw

+ ζt+1fL

Ãµ
w̃twt

wt+1
Xt,1

¶ λw
1−λw

lt+1

!#

+(βξw)
2 hj,t+2

"
w̃twtXt,2

λz,t+2(1− τ lt+2)

λw
+ ζt+2fL

Ãµ
w̃twt

wt+2
Xt,2

¶ λw
1−λw

lt+2

!#
+...

In steady state, w̃ = 1, πt = π̄, w ψz
λw
+ fL = 0. The derivative of this expression with respect

to ζt+l, evaluated in steady state, is:

l (βξw)
l fL = −L (βξw)l wλz(1− τ l)

λw
.

Derivatives with respect to the other variables can be found in newfile2.tex. Using the latter
and the result just obtained, we find:

0 =
1

1− βξw
L

·
w
(1− τ l)λz

λw
+ fLL

λw
1− λw

L

¸
(b̃wt + ŵt)− LfLL

λw
1− λw

L
∞X
j=0

(βξw)
j ŵt+j

−L
·
w
(1− τ l)λz

λw
+ fLL

λw
1− λw

L

¸ ∞X
j=1

(βξw)
j π̂t+j

+
βξw

1− βξw
L

·
w
(1− τ l)λz

λw
+ fLL

λw
1− λw

L

¸
π̂t

+L2fLL

∞X
j=0

(βξw)
j L̂t+j +

Lw(1− τ l)λz
λw

∞X
j=0

(βξw)
j

·
λ̂z,t+j − τ l

1− τ l
τ̂ lt+j

¸

−Lw (1− τ l)λz
λw

∞X
j=0

(βξw)
l ζ̂t+j,
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where there has been a little switch in notation, replacing Xt by Lt and X by L. This
expression corresponds to (wagelin) with ûc,t replaced by ψ̂z,t, and with the understanding
that wt is now the real wage scaled by zt. After dividing by L, this expression is written:

0 =
1

1− βξw

·
w
(1− τ l)λz

λw
+ fLL

λw
1− λw

l

¸
[b̃wt + ŵt]−

·
w
(1− τ l)λz

λw
+ fLL

λw
1− λw

l

¸ ∞X
l=1

(βξw)
lπ̂t+l

+w
(1− τ l)λz

λw

∞X
j=0

(βξw)
j

·
λ̂z,t+j − τ l

1− τ l
τ̂ lt+j

¸
− fLL

λw
1− λw

l
∞X
l=0

(βξw)
l ŵt+l

+fLLl
∞X
j=0

(βξw)
j l̂t+j +

βξw
1− βξw

·
w
(1− τ l)λz

λw
+ fLL

λw
1− λw

l

¸
π̂t − w

(1− τ l)λz
λw

∞X
j=0

(βξw)
l ζ̂t+j

Denoting
h
w (1−τ l)λz

λw
+ fLL

λw
1−λw l

i
=
h
−fL + fLL

λw
1−λw l

i
≡ σ̃L ,w

(1−τ l)λz
λw

= −fL we obtain:

0 =
1

1− βξw
σ̃L[b̃wt + ŵt]− σ̃L

∞X
l=1

(βξw)
lπ̂t+l − fL

∞X
j=0

(βξw)
j

·
λ̂z,t+j − τ l

1− τ l
τ̂ lt+j

¸

−fLLl λw
1− λw

∞X
l=0

(βξw)
l ŵt+l + fLLl

∞X
j=0

(βξw)
j l̂t+j

+
βξw

1− βξw
σ̃Lπ̂t − w

(1− τ l)λz
λw

∞X
j=0

(βξw)
l ζ̂t+j.
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This can be written:

1

1− βξw
σ̃L[b̃wt + ŵt] = σ̃L

∞X
l=1

(βξw)
lπ̂t+l + fL

∞X
j=0

(βξw)
j

·
λ̂z,t+j − τ l

1− τ l
τ̂ lt+j

¸

+fLLl
λw

1− λw

∞X
l=0

(βξw)
l ŵt+l − fLLl

∞X
j=0

(βξw)
j l̂t+j − βξw

1− βξw
σ̃Lπ̂t

+w
(1− τ l)λz

λw

∞X
j=0

(βξw)
l ζ̂t+j

= σ̃L

∞X
l=0

(βξw)
lπ̂t+l + fL

∞X
j=0

(βξw)
j

·
λ̂z,t+j − τ l

1− τ l
τ̂ lt+j

¸

+fLLl
λw

1− λw

∞X
l=0

(βξw)
l ŵt+l

−fLLl
∞X
j=0

(βξw)
j l̂t+j + w

(1− τ l)λz
λw

∞X
j=0

(βξw)
l ζ̂t+j −

·
σ̃L +

βξw
1− βξw

σ̃L

¸
π̂t

=
∞X
l=0

(βξw)
l[σ̃Lπ̂t+l + fL

·
λ̂z,t+j − τ l

1− τ l
τ̂ lt+j

¸
+fLLl

λw
1− λw

ŵt+l − fLLll̂t+j + w
(1− τ l)λz

λw
ζ̂t+j]

− σ̃L
1− βξw

π̂t.

Consider the following example:

xt + zt =
∞X
l=0

(βξw)
lyt+l.

Also,

βξw (xt+1 + zt+1) =
∞X
l=1

(βξw)
lyt+l

Differencing these expressions:

xt + zt − βξw (xt+1 + zt+1) = yt.
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Applying this to the previous expression:

1

1− βξw
σ̃L[b̃wt + ŵt] +

σ̃L
1− βξw

π̂t − βξw

½
1

1− βξw
σ̃L[b̃wt+1 + ŵt+1] +

σ̃L
1− βξw

π̂t+1

¾
= σ̃Lπ̂t + fL

·
λ̂z,t − τ l

1− τ l
τ̂ lt

¸
+ fLLl

λw
1− λw

ŵt − fLLll̂t + w
(1− τ l)λz

λw
ζ̂t

or

1

1− βξw
σ̃L[b̃wt + ŵt] +

σ̃L
1− βξw

π̂t

= βξw
1

1− βξw
σ̃L[b̃wt+1 + ŵt+1] + βξw

σ̃L
1− βξw

π̂t+1 + σ̃Lπ̂t

+fL

·
λ̂z,t − τ l

1− τ l
τ̂ lt

¸
+ fLLl

λw
1− λw

ŵt − fLLll̂t + w
(1− τ l)λz

λw
ζ̂t

or

1

1− βξw
σ̃L[b̃wt + ŵt]

= βξw
1

1− βξw
σ̃L[ b̃wt+1 + ŵt+1] + βξw

σ̃L
1− βξw

π̂t+1

+σ̃L

·
1− 1

1− βξw

¸
π̂t + fLψ̂z,t + fLLL

λw
1− λw

ŵt − fLLLL̂t + w
ψz

λw
ζ̂t

or

1

1− βξw
σ̃L[b̃wt + ŵt]

= βξw
1

1− βξw
σ̃L[b̃wt+1 + ŵt+1] + βξw

σ̃L
1− βξw

π̂t+1

−σ̃L βξw
1− βξw

π̂t + fL

·
λ̂z,t − τ l

1− τ l
τ̂ lt

¸
+ fLLl

λw
1− λw

ŵt − fLLll̂t + w
(1− τ l)λz

λw
ζ̂t

or

1

1− βξw
σ̃L[b̃wt + ŵt] = βξw

1

1− βξw
σ̃L[b̃wt+1 + ŵt+1] + βξw

σ̃L
1− βξw

π̂t+1

−σ̃L βξw
1− βξw

π̂t +

·
σ̃L

βξw
1− βξw

βξwπ̂t+1 − σ̃L
βξw

1− βξw
βξwπ̂t+1

¸
+ fL

·
λ̂z,t − τ l

1− τ l
τ̂ lt

¸
+fLLl

λw
1− λw

ŵt − fLLll̂t + w
(1− τ l)λz

λw
ζ̂t
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or

1

1− βξw
σ̃L[b̃wt + ŵt] = βξw

1

1− βξw
σ̃L[b̃wt+1 + ŵt+1] + βξw

σ̃L
1− βξw

π̂t+1

+σ̃L
βξw

1− βξw
[βξwπ̂t+1 − π̂t]− σ̃L

βξw
1− βξw

βξwπ̂t+1 + fL

·
λ̂z,t − τ l

1− τ l
τ̂ lt

¸
+ fLLl

λw
1− λw

ŵt

−fLLll̂t + w
(1− τ l)λz

λw
ζ̂t

or

1

1− βξw
σ̃L[b̃wt + ŵt] = βξw

1

1− βξw
σ̃L[b̃wt+1 + ŵt+1] + βξw

σ̃L
1− βξw

(1− βξw) π̂t+1

+σ̃L
βξw

1− βξw
[βξwπ̂t+1 − π̂t] + fL

·
λ̂z,t − τ l

1− τ l
τ̂ lt

¸
+ fLLl

λw
1− λw

ŵt

−fLLll̂t + w
(1− τ l)λz

λw
ζ̂t

or

1

1− βξw
σ̃L[b̃wt + ŵt]

= βξw
1

1− βξw
σ̃L[b̃wt+1 + ŵt+1] + βξwσ̃Lπ̂t+1 + σ̃L

βξw
1− βξw

[βξwπ̂t+1 − π̂t]

+fL

·
λ̂z,t − τ l

1− τ l
τ̂ lt

¸
+ fLLl

λw
1− λw

ŵt − fLLll̂t − fLζ̂t

Define

σL =
fLLL

fL
.

Note, that σ̃L = −fL + fLL
λw
1−λw l = fL

h
λw
1−λw

fLLl
fL
− 1
i
= fL

h
λw
1−λwσL − 1

i
, so dividing the

expression above by fL
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1

1− βξw

·
λw

1− λw
σL − 1

¸
[b̃wt + ŵt] (2.52)

=
βξw

1− βξw

·
λw

1− λw
σL − 1

¸
[b̃wt+1 + ŵt+1]

+

·
λw

1− λw
σL − 1

¸
βξwπ̂t+1 +

·
λ̂z,t − τ l

1− τ l
τ̂ lt

¸
+σL

λw
1− λw

ŵt − σLl̂t

− βξw
1− βξw

·
λw

1− λw
σL − 1

¸
[π̂t − βξwπ̂t+1]− ζ̂t

We now turn to the aggregate wage equation.

Wt =

·
(1− ξw)

³
W̃t

´ 1
1−λw

+ ξw (πt−1µz,tWt−1)
1

1−λw

¸1−λw
Dividing this by ztPt, we get:

wt =

"
(1− ξw) (w̃twt)

1
1−λw + ξw

µ
πt−1
πt

wt−1

¶ 1
1−λw

#1−λw
.

(It is easy to see from this that the steady state value of w̃t is unity.) In newfile2, it shown
that linearizing this leads to:

ŵt = (1− ξw)
³
ŵt + b̃wt

´
+ ξw (ŵt−1 − (π̂t − π̂t−1))

or
(1− ξw)

³
ŵt + b̃wt

´
ŵt = ŵt − ξw (ŵt−1 − (π̂t − π̂t−1))
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Subsituting this into (2.52), and multiply by 1− λw :

1

(1− βξw) (1− ξw)
[λwσL − (1− λw)] [ŵt − ξw (ŵt−1 − (π̂t − π̂t−1))]

=
βξw

(1− βξw) (1− ξw)
[λwσL − (1− λw)] [ŵt+1 − ξw (ŵt − (π̂t+1 − π̂t))]

+ [λwσL − (1− λw)]βξwπ̂t+1 + (1− λw)

·
λ̂z,t − τ l

1− τ l
τ̂ lt

¸
+σLλwŵt − (1− λw) σLl̂t

− βξw
1− βξw

[λwσL − (1− λw)] [π̂t − βξwπ̂t+1]− (1− λw) ζ̂t

Letting bw = [λwσL − (1− λw)] / [(1− ξw) (1− βξw)] , we obtain

bw[ŵt − ξw (ŵt−1 − (π̂t − π̂t−1))]
= βξwbw[ŵt+1 − ξw (ŵt − (π̂t+1 − π̂t))]

+bw(1− ξw) (1− βξw) βξwπ̂t+1 + (1− λw)

·
λ̂z,t − τ l

1− τ l
τ̂ lt

¸
+σLλwŵt − (1− λw)σLl̂t

−βξwbw(1− ξw) [π̂t − βξwπ̂t+1]− (1− λw) ζ̂t

So, the linearized expression for the real wage is what it was before, with a (minor)
adjustment to reflect the presence of a preference shock:

(∗∗) Et

½
η0ŵt−1 + η1ŵt + η2ŵt+1 + η−3 π̂t−1 + η3π̂t + η4π̂t+1 + η5l̂t + η6

·
λ̂z,t − τ l

1− τ l
τ̂ lt

¸
+ η7ζ̂t

¾
= 0

where

η =



bwξw
−bw (1 + βξ2w) + σLλw

βξwbw
bwξw

−ξwbw (1 + β)
bwβξw

−σL (1− λw)
1− λw
− (1− λw)


=



η0
η1
η2
η3̄
η3
η4
η5
η6
η7


.
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The above expression is the linearized Euler equation for the wage rate, scaled by technology.
One thing to notice here is the presence of lt. This corresponds to homogeneous labor, not
the sum of households’ differentiated labor, Lt. Usually, we will work in settings where it is
safe to ignore the distinction. However, we may also consider settings where the distinction
matters a lot.

2.7. Monetary and Fiscal Policy

We plan to investigate various alternative monetary policies. In particular we plan to inves-
tigate varients of the Taylor rule, including several which make use of monetary aggregates,
as in Christiano and Rostagno (2001).
For now, we consider a representation of monetary policy in which base growth feeds

back on the shocks. The law of motion for the base is:

M b
t+1 =M b

t (1 + xt),

where xt is the net growth rate of the monetary base. (Above, we have also used the notation,
Xt, where xt = Xt/M

b
t .) We have adopted the scaling, m

b
t =M b

t /(Ptzt). So, the law of motion
of mb

t is:
M b

t+1

Pt+1zt+1
=

Ptzt
Pt+1zt+1

M b
t

Ptzt
(1 + xt),

or,

mb
t+1 =

1

πt+1µz,t+1
mb

t(1 + xt).

Then,

(∗∗) m̂b
t+1 = m̂b

t +
x

1 + x
x̂t − π̂t+1 − µ̂z,t+1

Monetary policy is characterized by a feedback from x̂t to an innovation in monetary
policy and to the innovation in all the other shocks in the economy. Let the p− dimensional
vector summarizing these innovations be denoted ϕ̂t, and suppose that the first element in ϕ̂t

is the innovation to monetary policy. Then, monetary policy has the following representation:

(∗∗) x̂t =
pX

i=1

xit,

where xit is the component of money growth reflecting the i
th element in ϕ̂t. Also,

xit = ρixi,t−1 + θ0i ϕ̂it + θ1i ϕ̂i,t−1, (2.53)

for i = 1, ..., p, with θ01 ≡ 1.
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2.8. Goods Market Clearing

The demand for goods arises from several sources: the fraction, 1−γ, of dying entrepreneurs
who consume a fraction, Θt, of their net worth

Θ(1− γ)Vt
Pt

,

purchases by entrepreneurs associated with utilization costs of capital,

a(ut)K̄t,

purchases by households of consumption goods

Ct,

purchases by capital goods producers of investment goods,

It,

monitoring costs of banks,

µ

Z ω̄t

0

ωdF (ω)
¡
1 +Rk

¢
QK̄0,t−1K̄t.

The household budget constraint is:

Qt+1 = (1 +Rat) (At +Xt)− Tt − PtCt + (1−Θ) (1− γ)Vt −W e
t

+(1 +Re
t )Tt−1 +Wj,thj,t +Mt +Πb

t +Πk
t +

Z
Πf
t df +Aj,t.

Profits of the capital producers and the banks are:

Πk
t = QK̄0,t [x+ F (It, It−1)]−QK̄0,tx− PtIt.

Πb
t = (At +Xt) + (1 +Rt +Rat)S

w
t − (1 +Rat)Dt −

£
(1 + ψk,tRt)Ptr

k
tK

b
t

¤
+

"
1 +Re

t +
µ
R ω̄t
0

ωdF (ω)
¡
1 +Rk

t

¢
QK̄0,t−1K̄t

QK̄0,t−1K̄t −Nt

#
Bt

−µ
Z ω̄t

0

ωdF (ω)
¡
1 +Rk

t

¢
QK̄0,t−1K̄t − (1 +Re

t )Tt−1

+Tt −Bt+1
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so,
Πk
t +Πb

t = (At +Xt) +RtS
w
t − (1 +Rat) (At +Xt)−

£
(1 + ψk,tRt)Ptr

k
tK

b
t

¤
where we have used

Dt = At +Xt + Sw
t , Tt−1 = Bt, Tt = Bt+1, Bt = QK̄0,t−1K̄t −Nt

2.9. Resource Constraint

We now develop the aggregate resource constraint for this economy. For this, we make use of
the tricks of Tak Yun. Thus, define Y ∗ at the unweighted sum of output of the intermediate
good producers:

Y ∗ =
Z 1

0

Y (f)df =

Z 1

0

F (�, z,K(f), l(f))df

and, assuming production is positive everywhere,

F (�, z,K(f), l(f)) = �z1−αK(f)αl(f)1−α − zφ.

Here, by l(f), we mean homogeneous labor hired by the f th intermediate good firm, f ∈
(0, 1). Recall that all firms confront the same wage rate and rental rate on capital. As a
result, they all have the same capital-labor ratio, K(f)/l(f). Moreover, this ratio coincides
with the ratio of the aggregate inputs:

Kf

lf
, Kf =

Z 1

0

K(f)df, lf =

Z 1

0

l(f)df,

where Kf and lf are aggregate capital and labor used in the goods producing sector, respec-
tively. Then,

Y ∗ =

Z 1

0

£
z1−α�K(f)αl(f)1−α − zφ

¤
df

=

Z 1

0

·
�z1−α

µ
Kf

lf

¶α

l(f)− zφ

¸
df

=

·
�z1−α

µ
Kf

lf

¶α

lf − zφ

¸
= F (�, z,Kf , lf)

The demand curve for Y (f) is µ
P

P (f)

¶ λf
λf−1

=
Y (f)

Y
,
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so that

Y ∗ =

Z 1

0

Y (f)df =

Z 1

0

Y

µ
P

P (f)

¶ λf
λf−1

df

= Y P
λf

λf−1
Z 1

0

P (f)
λf

1−λf df

= Y P
λf

λf−1 (P ∗)
λf

1−λf ,

where

P ∗ =
·Z 1

0

P (f)
λf

1−λf df

¸ 1−λf
λf

Then,

Y ∗ = Y

µ
P

P ∗

¶ λf
λf−1

.

Then, putting these things together,

Y =

µ
P ∗

P

¶ λf
λf−1 h

z1−α�
¡
Kf
¢α ¡

lf
¢1−α − zφ

i
,

or,

µ

Z ω̄t

0

ωdF (ω)
¡
1 +Rk

t

¢
QK̄0,t−1K̄t + a(u)K̄t +

Θ(1− γ)Vt
Pt

+Gt + Ct + It

=

µ
P ∗

P

¶ λf
λf−1 h

z1−α�(νkt Kt)
α
¡
νltlt
¢1−α − ztφ

i
,

where
Kf

t = νkKt, l
f
t = νllt.

The left side of the goods market clearing condition displays the uses of goods: payment for
monitoring costs, utilization costs of capital, last meals of entrepreneurs slated for death,
consumption and investment. The right side displays the source of goods. Here, Gt denotes
government consumption:

Gt = ztgt.

86



Note that l is the sum of all employment of the labor ‘produced’ by the representative la-
bor contractor. It is not necessarily the simple sum over all the labor supplied by households.
We now relate l to the sum of differentiated labor supplied by households. Recall,

l =

·Z 1

0

(hj)
1
λw dj

¸λw
, 1 ≤ λw <∞.

Let the sum of the differentiated labor supplied by households be denoted by l∗ :

L =

Z 1

0

hjdj

Substituting out using the labor demand curve:

L =

Z 1

0

·
Wj

W

¸ λw
1−λw

ldj

= lW
λw

λw−1 (W ∗)
λw

1−λw

= l

µ
W

W ∗

¶ λw
λw−1

,

where

W ∗ =
·Z 1

0

W
λw

1−λw
j dj

¸ 1−λw
λw

.

Finally,

l =

µ
W ∗

W

¶ λw
λw−1

L

Using an argument like the one used for prices, we find:

µ

Z ω̄t

0

ωdF (ω)
¡
1 +Rk

¢
QK̄0,t−1K̄ + a(u)K̄ +Θ(1− γ)vtzt +Gt + Ct + It (2.54)

≤ (p∗t )
λf

λf−1
½
z1−αt �

¡
νkt Kt

¢α h
νlt (w

∗
t )

λw
λw−1 Lt

i1−α
− ztφ

¾
,

where

vt =
Vt
ztPt

, p∗ =
P ∗

P
, w∗ =

W ∗

W
.
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Both p∗t and w∗t represent ‘efficiency gaps’. It turns out that when non-optimized prices
and wages are indexed, either to steady state inflation, or to actual lagged inflation, these
efficiency gaps are roughly constant. This was shown by Tak Yun, and is demonstrated in
the first subsection below.
The pricing equation is:

P ∗t =

"
(1− ξp)

³
P̃t

´ λf
1−λf + ξp

¡
πt−1P ∗t−1

¢ λf
1−λf

# 1−λf
λf

.

Dividing by Pt :

p∗t =

(1− ξp) (p̃t)
λf

1−λf + ξp

µ
πt−1
πt

p∗t−1

¶ λf
1−λf


1−λf
λf

. (2.55)

Linearizing:

p∗p̂∗t =
1− λf
λf

(p∗)
λf

1−λf

·
1−λf
λf

−1
¸
[(1− ξp)

λf
1− λf

(p̃t)
λf

1−λf
−1

p̃b̃pt + ξp
λf

1− λf

µ
πt−1
πt

p∗t−1

¶ λf
1−λf

−1

×( 1
πt
p∗t−1ππ̂t−1 −

πt−1
π2t

p∗t−1ππ̂t +
πt−1
πt

p∗p̂∗t−1)]

Evaluating in steady state when - from (C.2) and (2.55) respectively - we see p̃ = p∗ = 1 :

p̂∗t = (1− ξp)b̃pt + ξp
¡
π̂t−1 − π̂t + p̂∗t−1

¢
. (2.56)

We find that in principle p∗t could move around with other variables. If a shock were to
move p∗t , it would have to do so via its impact on one of the other variables on the right
of (2.56). However, in practice those other variables must comove in such a way that their
impact on p∗t cancels out, so that p

∗
t is only a function of p

∗
t−1. Thus, movements in other

variables cannot get into p∗t , at least to a first approximation.
To establish these observations requires linearizing b̃pt in the expression for the aggregate

price level:

Pt =

·
(1− ξp)

³
P̃t

´ 1
1−λf + ξp (πt−1Pt−1)

1
1−λf

¸1−λf
.

Divide on both sides by Pt :

1 =

"
(1− ξp) (p̃t)

1
1−λf + ξp

µ
πt−1
πt

¶ 1
1−λf

#1−λf
.
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Linearizing this:

0 = (1− ξp)
1

1− λf
(p̃t)

1
1−λf

−1
p̃b̃pt + ξp

1

1− λf

µ
πt−1
πt

¶ 1
1−λf

−1 ·
1

πt
ππ̂t−1 − πt−1

π2t
ππ̂t

¸
,

or, in steady state:
0 = (1− ξp)b̃pt + ξp [π̂t−1 − π̂t]

Substituting this back into (2.56), we obtain:

p̂∗t = −ξp [π̂t−1 − π̂t] + ξp
¡
π̂t−1 − π̂t + p̂∗t−1

¢
,

which implies
p̂∗t = ξpp̂

∗
t−1.

this establishes the result sought. Namely, p∗t can be treated as being a function only of p
∗
t−1.

Since the linear relationship is damped, it is fair to suppose that p∗t = 1 always, and that
p̂∗t = 0.
We now turn to evaluating the evolution of w∗t :

W ∗
t =

·
(1− ξw)

³
W̃t

´ λw
1−λw

+ ξw
¡
µztπt−1W ∗

t−1
¢ λw
1−λw

¸ 1−λw
λw

.

Divide both sides by W :

W ∗
t

Wt
=

(1− ξw)

Ã
W̃t

Wt

! λw
1−λw

+ ξw

µ
µztπt−1

Wt−1
Wt

W ∗
t−1

Wt−1

¶ λw
1−λw


1−λw
λw

or,

w∗t =

"
(1− ξw) (w̃t)

λw
1−λw + ξw

µ
µztπt−1

zt−1Pt−1wt−1
ztPtwt

W ∗
t−1

Wt−1

¶ λw
1−λw

# 1−λw
λw

,

where

w̃t =
W̃t

Wt
, w∗t =

W ∗
t

Wt
, wt =

Wt

ztPt
.

Then,

w∗t =

"
(1− ξw) (w̃t)

λw
1−λw + ξw

µ
πt−1
πt

wt−1
wt

w∗t−1

¶ λw
1−λw

# 1−λw
λw

.
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w∗ŵ∗t =
1− λw
λw

(w∗t )
λw

1−λw [
1−λw
λw

−1] ×

[(1− ξw)
λw

1− λw
b̃wt + ξw

λw
1− λw

µ
πt−1
πt

wt−1
wt

w∗t−1

¶ λw
1−λw−1

×( 1
πt

wt−1
wt

w∗t−1ππ̂t−1 −
πt−1
π2t

wt−1
wt

w∗t−1ππ̂t

+
πt−1
πt

1

wt
w∗t−1wŵt−1 − πt−1

πt

wt−1
w2t

w∗t−1wŵt +
πt−1
πt

wt−1
wt

w∗ŵ∗t−1)]

Evaluating this in steady state:

ŵ∗t = (1− ξw) (w
∗
t )
− λw
1−λw b̃wt + ξw(π̂t−1 − π̂t + ŵt−1 − ŵt + ŵ∗t−1)

We now obtain w∗ in steady state from the w∗t equation above:

w∗ =
h
(1− ξw) + ξw (w

∗)
λw

1−λw
i 1−λw

λw
.

From this it is obvious that w∗ = 1. So,

ŵ∗t = (1− ξw)b̃wt + ξw(π̂t−1 − π̂t + ŵt−1 − ŵt + ŵ∗t−1), (2.57)

and in principle w∗t moves around. However, it turns out that the comovements between w̃t

and πt−1, πt induced by the aggregate wage equation are such that, to a first approximation,
shocks which make the latter variables move around, have no impact on w∗t . This is why in
the end we can just set w∗t to its steady state value. This is why this variable does not, to a
first approximation, enter as a kind of ‘Solow residual’ in the aggregate resource constraint.
To figure out ŵ∗t , we need an expression for b̃wt. For this, we work with the expression for

the aggregate wage:

Wt =

·
(1− ξw)W̃

1
1−λw
t + ξw (µz,tπt−1Wt−1)

1
1−λw

¸1−λw
.

Divide both sides by ztPt :

wt =

(1− ξw)

Ã
W̃t

Wt

Wt

ztPt

! 1
1−λw

+ ξw

µ
zt
zt−1

πt−1Wt−1
ztPt−1

Pt−1
Pt

¶ 1
1−λw

1−λw ,
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or,

wt =

"
(1− ξw) (w̃twt)

1
1−λw + ξw

µ
πt−1
πt

wt−1

¶ 1
1−λw

#1−λw
.

Totally differentiating this:

wŵt = (1− λw) (wt)
−λw
1−λw [(1− ξw)

1

1− λw
(w̃twt)

1
1−λw−1

³
w̃twŵt + w̃wt

b̃wt

´
+ξw

1

1− λw

µ
πt−1
πt

wt−1

¶ 1
1−λw−1µ 1

πt
wt−1ππ̂t−1 − πt−1

π2t
wt−1ππ̂t +

πt−1
πt

wŵt−1

¶
]

or, taking into account w̃ = 1,

ŵt = (1− ξw)
³
ŵt + b̃wt

´
+ ξw (π̂t−1 − π̂t + ŵt−1)

From the earlier expression, (2.57),

(1− ξw)b̃wt = ŵ∗t − ξw(π̂t−1 − π̂t + ŵt−1 − ŵt + ŵ∗t−1)

Combining the previous two expressions:

ŵt = (1− ξw)ŵt + ŵ∗t − ξw(π̂t−1 − π̂t + ŵt−1 − ŵt + ŵ∗t−1) + ξw (π̂t−1 − π̂t + ŵt−1)

or,
ŵ∗t = ξwŵ

∗
t−1.

According to this, if ŵ∗t starts in steady state, it will stay there, even if there are shocks. So,
we can just assume ŵ∗t = 0 for all t.
To summarize what we have so far, write (2.54) neglecting terms of p∗t and w∗t :

µ

Z ω̄t

0

ωdF (ω)
¡
1 +Rk

t

¢
QK̄0,t−1K̄t+a(ut)K̄t+Gt+Ct+It ≤

n
z1−αt �

¡
νkt K

f
¢α ¡

νltLt

¢1−α − ztφ
o
.

Scaling this by zt:

dt + a(ut)
K̄t

zt
+ gt +

Ct

zt
+

It
zt
+Θ(1− γ)vt ≤ �t

µ
ut
νkt K̄t

zt

¶α ¡
νltLt

¢1−α − φ,

91



where

dt =
µ
R ω̄t
0

ωdF (ω)
¡
1 +Rk

t

¢
QK̄0,t−1K̄t

ztPt

=
µ
R ω̄t
0

ωdF (ω)
¡
1 +Rk

t

¢
Pt−1qt−1K̄t

ztPt

=
µ
R ω̄t
0

ωdF (ω)
¡
1 +Rk

t

¢
qt−1K̄t

zt

1

πt

or,

dt + a(ut)
zt−1
zt

K̄t

zt−1
+ gt +

Ct

zt
+

It
zt
+Θ(1− γ)vt ≤ �t

µ
ut
zt−1
zt

νkt
K̄t

zt−1

¶α ¡
νltLt

¢1−α − φ,

or,

dt + a(ut)
1

µz,t
k̄t + gt + ct + it +Θ(1− γ)vt ≤ �t

µ
ut
1

µz,t
νkt k̄t

¶α ¡
νltLt

¢1−α − φ,
(2.58)

where

k̄t =
K̄t

zt−1
.

The reason K̄t has to be scaled by lagged zt−1 and not zt is that it is K̄t+1 that is chosen in
period t. If we scaled K̄t by zt, then think of the implication that k̄t+1 is chosen in period t.
Since zt+1 is not known in period t, this would be tantamount to assuming we are choosing
K̄t+1 as the outcome of a random mechanism. We also adopt the notation:

ct =
Ct

zt
, it =

It
zt
.

It is useful to have a linearization of the dt equation. Rewriting this in a slightly more
convenient form:

dt = µG(ω̄t)
¡
1 +Rk

t

¢
qt−1k̄t

1

µz,tπt
.

Then,

d̂t = \G(ω̄t) +
Rk

1 +Rk
R̂k
t + q̂t−1 + b̄kt − µ̂z,t − π̂t

=
G0(ω̄)
G(ω̄)

ω̄b̄ωt +
Rk

1 +Rk
R̂k
t + q̂t−1 + b̄kt − µ̂z,t − π̂t
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Linearize the scaled resource constraint:

dd̂t + a0(ut)
1

µz,t
k̄tuût + a(ut)

1

µz,t
k̄b̄kt − a(ut)

1

µ2z,t
k̄tµzµ̂z,t + gĝt + cĉt + îıt

+Θ(1− γ)vv̂t = α

µ
ut

νkt
µz,t

k̄t

¶α−1 ¡
νltLt

¢1−α
[
νkt
µz,t

k̄tuût − ut
νkt
µ2z,t

k̄tµzµ̂z,t + ut
νkt
µz,t

k̄b̄kt + ut
1

µz,t
k̄tν

kν̂kt ]

+�t(1− α)

µ
ut

νkt
µz,t

k̄t

¶α

(νltLt)
−α
h
νltLL̂t + νlLν̂lt

i
+

µ
ut

νkt
µz,t

k̄t

¶α ¡
νltLt

¢1−α
��̂t

+

µ
1

µz
νkk̄

¶α ¡
νlL
¢1−α \

(p∗t )
λf,t

λf,t−1

f(λt,t) = (p∗t )
λf,t

λf,t−1

= exp

·
λf,t

λf,t − 1 log (p
∗
t )

¸
f 0(λf,t) = log (p∗t )

"
λt

λf − 1 −
λf

(λf − 1)2
#
λ̂f,t

= 0,

since p∗t = 1 in steady state.
Evaluating in steady state, when ut = 1 and a(1) = 0 and a0(1) = a0 :

dd̂t + a0
1

µz
k̄ût + gĝt + cĉt + îıt +Θ(1− γ)vv̂t

= α

µ
νk

µz
k̄

¶α ¡
νlL
¢1−α

[ût − µ̂z,t +
b̄kt + ν̂kt ]

+(1− α)

µ
νk

µz
k̄

¶α

(νlL)1−α
h
L̂t + ν̂lt

i
+

µ
νk

µz
k̄

¶α ¡
νlL
¢1−α

�̂t

Output is the sum of consumption and investment. Thus,

gt + ct + it +Θ(1− γ)vt = yt

so that:

yt = �t

µ
ut
1

µz,t
νkt k̄t

¶α ¡
νltLt

¢1−α − φ− a(ut)
1

µz,t
k̄t − dt,

93



and, in steady state:

y =

µ
νk

µz
k̄

¶α ¡
νlL
¢1−α − φ− d.

The variable, yt, is our measure of final output of goods, scaled by zt. This does not corre-
spond exactly to gnp as it is measured in the data, because that includes services from the
banking sector. We should be able to figure out a right measure of final banking services
to add to yt, to get a full measure of final goods and services production. Presumably, the
services from the demand deposits held by firms should not be included in final output. They
should be thought of as intermediate goods, already included in yt. But, the services of the
demand deposits held by households seem not to be included in yt. How to measure those?
One possibility would be to measure them as (Rt −Rat)Dt/Pt.
Continuing with the linearization of the resource constraint

dd̂t + a0
1

µz
k̄ût + gĝt + cĉt + îıt +Θ(1− γ)vv̂t (2.59)

= [y + φ+ d] [α
³
ût − µ̂z,t +

b̄kt + ν̂kt

´
+ (1− α)

³
L̂t + ν̂lt

´
+ �̂t],

or

dyd̂t+uyût+gyĝt+cy ĉt+
i

y + φ+ d
ı̂t+Θ(1−γ)vyv̂t = α

³
ût − µ̂z,t +

b̄kt + ν̂kt

´
+(1−α)

³
L̂t + ν̂lt

´
+�̂t,

where

cy =
c

y + φ+ d
, gy =

g

y + φ+ d
, dy =

d

y + φ+ d

vy =
v

y + φ+ d
, uy =

a0 1
µz
k̄

y + φ+ d
.

The next step is to develop an expression for ı̂t in terms of physical capital. The capital
accumulation technology that we assume is:

K̄t+1 = (1− δ)K̄t + F (It, It−1).

Divide both sides by zt :

k̄t+1 = (1− δ)
1

µz,t
k̄t +

F (It, It−1)
zt

.

The adjustment cost function is:

F (I, I−1) = [1− S(I/I−1)] I,
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where I−1 denotes last period’s level of investment. We suppose that S = S0 = 0 and S00 < 0
in non-stochastic steady state. The growth rate of investment is µz > 1 in non-stochastic
steady state:

I

I−1
=

i× z

i−1 × z−1
= µz.

Evaluating the capital accumulation technology in steady state:

k̄ = (1− δ)
1

µz
k̄ + i,

so that:

i = k̄

·
1− 1− δ

µz

¸
= k̄

µz − 1 + δ

µz
.

Writing out the adjustment costs in terms of the scaled variables:

F (It, It−1)
zt

=

·
1− S(

itµz,t
it−1

)

¸
it = f (it, it−1, µz,t) = ft,

say. Linearizing f :

ff̂t =

·
−S0 µz,t

it−1
it +

µ
1− S(

itµz,t
it−1

)

¶¸
îıt − S0

i2tµz
it−1

µ̂zt + S0
itµz,t
i2t−1

itîıt−1.

Evaluating this in steady state:
ff̂t = îıt

The capital accumulation technology is:

k̄t+1 = (1− δ)
1

µz,t
k̄t +

·
1− S(

itµz,t
it−1

)

¸
it.

Linearizing this, and evaluating the result in steady state:

k̄b̄kt+1 = (1− δ)
1

µz
k̄b̄kt − (1− δ)

1

µz
k̄µ̂z,t + îıt,

so that

(∗∗) b̄kt+1 = 1− δ

µz

³b̄kt − µ̂z,t
´
+

i

k̄
ı̂t.

95



Substituting this into (2.59):

dyd̂t + uyût + gyĝt + cy ĉt + k̄y
i

k̄
ı̂t +Θ(1− γ)vyv̂t

= α
³
ût − µ̂z,t +

b̄kt + ν̂kt

´
+ (1− α)

³
L̂t + ν̂lt

´
+ �̂t,

where

k̄y =
k̄

y + φ+ d
.

It is convenient to substitute out for d̂t from (2.59):

(∗∗) dy
·
G0(ω̄)
G(ω̄)

ω̄b̄ωt +
Rk

1 +Rk
R̂k
t + q̂t−1 + b̄kt − µ̂z,t − π̂t

¸
+uyût + gyĝt + cyĉt + k̄y

i

k̄
ı̂t +Θ(1− γ)vyv̂t

= α
³
ût − µ̂z,t +

b̄kt + ν̂kt

´
+ (1− α)

³
L̂t + ν̂lt

´
+ �̂t,

3. Solving the Model

To solve the model, we to do three things: determine the steady state, collect the linearized
equations that characterize the equilibrium, and combine the latter into matrix format.

3.1. Steady State

We now develop equations for the steady state of our benchmark model. For purposes of
these calculations, the exogenously set variables are:

τ l, τ c, β, F (ω̄), µ, x, µz, λf , λw, α, ψk, ψl, δ, υ,

τk, γ, τ, τT , τD, σL, ζ, σq, θ, υ, w
e, νl, νk, m, ηg, r

k

The variables to be solved for are

q, π, Re, Ra, her , R, R
k, ω̄, k, n, i, w, l, c, uzc , m

b, λz, ψL, e
r
z, ev, a

bxb, ξ, hKb, y, g

The equations available for solving for these unknowns are summarized below. The first
three variables are trivial functions of the structural parameters, and from here on we treat
them as known. There remain 22 unknowns. Below, we have 22 equations that can be used
to solve for them.
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The algorithm proceeds as follows. Solve for Ra using (3.16); her using (3.12).
We now compute R to enforce (3.8). This equation is a nonlinear function of R. For a

given R, evaluate (3.8) as follows. Solve for Rk using (3.4); solve for ω̄ using (3.5); solve for
k and n using (3.6) and (3.7); solve for i using (3.3); solve for w using (3.1); solve for l using
(3.2); solve for c using (3.18); solve (3.20) and (3.21) for g and y; solve for uzc using (3.16);
solve for mb and λz using (3.15) and (3.15); solve (3.17) for ψL; solve for e

r
z using (3.14);

solve ξ from (3.13); solve ev from (3.11); solve a
bxb from (3.10); hKb from (3.9). Vary R until

(3.8) is satisfied. In these calculations, all variables must be positive, and:

0 ≤ m ≤ 1 + x, 0 ≤ ξ ≤ 1, λz > 0, k > n > 0.

We are interested in solving the steady state when the ‘exogenous variables’ are the eco-
nomically exogenous ones, and the ‘endogenous variables’ are the economically endogenous
ones. In particular, consider the situation in which the exogenous variables are:

τ l, τ c, β, F (ω̄), µ, x, µz, λf , λw, α, ψk, ψl, δ, υ, a
bxb, ξ,

τk, γ, τ, τT , τD, σL, ζ, σq, θ, υ, w
e, νl, ηg, ψL,

and the variables to be solved for are:

q, π, Re, Ra, her , r
k, Rk, ω̄, k, n, i, w, l, c, uzc , m

b, R, λz, e
r
z, ev, hKb, y, g, νk, m

We solve for the above 25 variables as follows. The first three are solved in the same way as
before. The remainder are solved by solving three equations, (3.8), (3.10) and (3.12), in the
three unknowns, rk, νk and R. Ideally, we start in a neighborhood of the solution obtained
in the previous calculations. Fix a set of values for rk, νk and R. The basic sequence of
calculations is the same as above. Solve for Rk using (3.4), and then ω̄ using (3.5), and
then for k, n, and i using (3.6), (3.7) and (3.3) in that order. Then, we obtain w from (3.1)
and l from (3.2). The resource constraint, (3.18) can be used to obtain c, and (3.20), (3.21)
can be used to compute y, g. Then, obtain λz and uzc from (3.16) and (3.17). Solve (3.15),
(3.15) and (3.16) for Ra, m, and mb. This can be made into a one-dimension search in m.
In particular, for a given m, solve for Ra from (3.16) and for mb from (3.15). Vary m until
(3.15) is satisfied. Compute her , hKb, eν , e

r
z, using (3.9), (3.11), (3.13), and (3.14). We can

now evaluate (3.8), (3.10) and (3.12). Vary rk, νk and R until these equations are satisfied.
We are also interested in a version of our model in which the entrepreneurial sector has

been removed. In practical terms, this means dropping the entrepreneur sector equations
(equations (3.5), (3.6) and (3.7) below) and replacing them by:

Rk = Re.

97



Our strategy for solving the steady state adapts the first strategy described above. In
particular, for purposes of the calculations, the exogenous variables are

τ l, τ c, β, µ, x, µz, λf , λw, α, ψk, ψl, δ, υ, l,

τk, γ, τ, τT , τD, σL, ζ, σq, θ, υ, w
e, νl, νk, m, ηg, r

k

The variables to be solved for are

q, π, Re, rk, Ra, her , R, R
k, k, i, w, c, uzc , m

b, λz, ψL, e
r
z, ev, a

bxb, ξ, hKb, y, g

The variables, ω̄ and n, have been removed and l has been shifted to the list of exogenous
variables. Among the variables to be solved, q, π, Re, Ra, r

k and Rk are now trivial. There
remain 17 variables to be solved for. For this, there are 17 equations. The algorithm proceeds
as follows. We view equation (3.8) as a nonlinear equation in R. We now discuss how to
evaluate this equation. Fix a value for R. Solve (3.1)-(3.3) for l/k, w and i/k. Solve (3.18)
with µ = 0 for c/k. Solve for cuzc using (3.16). Multiplying each of (3.15) and (3.15) by c,
those equations become two equations in unknowns, c/mb and cλz. These can be found by
doing a one-dimensional search in c/mb. Solve (3.11) for eν and (3.12) for her . Solve (3.13)
for ξ. Solve (3.10) for xb. Solve for hKb using (3.9). Evaluate (3.8). Vary R until (3.8) is
satisfied.
We are also concerned with a version of the model in which we drop both the entrepre-

neurial and banking sectors (see section 3.3 below). The exogenous variables are like the
ones for the version of the model without the entrepreneurs, except that now we move m
from the list of exogenous variables to the list of variables to be solved for (the variable,
l, stays on the list of exogenous variables). As before, solving for q, π, Re, rk and Rk is
trivial. The remaining variables are found by solving a single non-linear equation, (3.15), in
m ∈ [0, 1 + x].13 To evaluate (3.15), fix m. Solve for Ra using (3.16). Zero profits and zero
costs in the financial intermediary then implies R = Ra. Solve for k, w, i, c and u

z
c as in the

version of the problem with no entrepreneurs. Solve for mb using the steady state version of
the loan market clearing condition:

ψlwl +
ψkr

k

µz
k̄ = mb (1−m+ x) .

Solve for λz using (3.15). Now evaluate (3.15).
Whether we adopt our benchmark preferences, (2.40), or the ACEL preferences does not

substantially change the algorithm for finding the steady state. The relevant changes are
indicated below.

13Actually, to ensure Ra ≥ 0, m ≤ θ(1 + x).
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3.1.1. Firm Sector

From the firm sector, and the assumption that there are no price distortions in a steady
state, we have

s =
1

λf
.

Also, evaluating (2.3) in steady state:

1

λf
=

µ
1

1− α

¶1−αµ
1

α

¶α ¡
rk [1 + ψkR]

¢α
(w [1 + ψlR])

1−α , (3.1)

Combining (2.3) and (2.4):

rk [1 + ψkR]

w [1 + ψlR]
=

α

1− α

µzl

k̄
(3.2)

3.1.2. Capital Producers

From the capital producers,

λztqtF1,t − λz,t +
β

µz,t+1
λz,t+1qt+1F2,t+1 = 0

or, since F1,t = 1 and F2,t = 0,
q = 1.

Also,

k̄t+1 = (1− δ)
1

µz,t
k̄t +

·
1− S

µ
itµz,t
it−1

¶¸
it,

so that in steady state, when S = 0,

i

k̄
= 1− 1− δ

µz
. (3.3)

3.1.3. Entrepreneurs

From the entrepreneurs:
rk = a0.

Also,
u = 1.
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The after tax rate of return on capital, in steady state, is:

Rk =
£
(1− τk)rk + (1− δ)

¤
π + τkδ − 1 (3.4)

Conditional on a value for Rk, Re, the steady state value for ω̄ may be found using the
following equation:

[1− Γ(ω̄)]
1 +Rk

1 +Re
+

1

1− µω̄h(ω̄)

·
1 +Rk

1 +Re
(Γ(ω̄)− µG(ω̄))− 1

¸
= 0, (3.5)

where the hazard rate, h, is defined as follows:

h(ω) =
F 0(ω)
1− F (ω)

.

This equation has two additional parameters, the two parameters of the lognormal distribu-
tion, F. These two parameters, however, are pinned down by the assumption, Eω = 1, and
the fact that we specify F (ω̄) exogenously. With these conditions, the above equation forms
a basis for computing ω̄. Note here that when µ = 0,(3.5) reduces to Rk = Re. Then, com-
bining (3.4) with the first order condition for time deposits, we end up with the conclusion
that rk is determined as it is in the neoclassical growth model.
Conditional on F (ω̄) and ω̄, we may solve for k using (2.21):

k̄

n
=

1

1− 1+Rk

1+Re (Γ(ω̄)− µG(ω̄))
. (3.6)

The law of motion for net worth implies the following relation in steady state:

n =

γ
πµz

£
Rk −Re − µG(ω̄)

¡
1 +Rk

¢¤
k̄ + we

1− γ
¡
1+Re

π

¢
1
µz

. (3.7)

3.1.4. Banks

The first order condition associated with the bank’s capital decision is:

(1 + ψkR) r
k =

RhKb

1 + τher
. (3.8)

The first order condition for labor is redundant given (3.1), (3.2), and (3.8), and so we do
not list it here. In the preceding equations,

hKb = αξabxb (ev)
1−ξ
µ
µzl

k

¶1−α
, (3.9)
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her = (1− ξ) abxb (ev)
−ξ , (3.10)

and

ev =
(1− τ)mb (1−m+ x)− τ

³
ψlwl +

1
µz
ψkr

kk̄
´

³
1
µz
(1− νk)k̄

´α
((1− νl)l)1−α

. (3.11)

Another efficiency condition for the banks is (2.34). Rewriting that expression, we obtain:

1 +
R

Ra
= her

·
(1− τ)

R

Ra
− τ

¸
(3.12)

Substituting out for abxb (ev)
−ξ from (3.10) into the scaled production function, we obtain:

her

(1− ξ)
erz = mb (1−m+ x) + ψlwl + ψkr

k k̄

µz
, (3.13)

where

erz = (1− τ)mb (1−m+ x)− τ

µ
ψlwl + ψkr

k k̄

µz

¶
. (3.14)

3.1.5. Households

The first order condition for T :

1 +
¡
1− τT

¢
Re =

µzπ

β

The first order condition for M :

υ

"
c

µ
1

m

¶θ µ
1

1−m+ x

¶1−θ#1−σq
[
θ

m
− 1− θ

1−m+ x
]
¡
mb
¢σq−2

−λz
¡
1− τD

¢
Ra = 0

The first order condition for M b

υ (1− θ)

"
c

µ
1

m

¶θ µ
1

1−m+ x

¶1−θ#1−σq µ
1

mb

¶2−σq µ 1

1−m+ x

¶

= πλz

(
µz
β
−
£
1 +

¡
1− τDt

¢
Ra

¤
π

)
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Under the ACEL specification of preferences, c in the previous two expressions are replaced
by unity. The first order condition for consumption corresponds to:

uzc − (1 + τ c)λz = υc−1
¡
mb
¢σq−1 "

c

µ
1

m

¶θ µ
1

1−m+ x

¶1−θ#1−σq
, (3.15)

Under the ACEL specification, the expression to the right of the equality in (3.15) is replaced
by zero.
Taking the ratio of (3.15) and the first order conditions for mb, and rearranging, we

obtain:

Ra =
(1−m+x)

m
θ − (1− θ)

(1−m+x)
m

θ

³
πµz
β
− 1
´

(1− τD)

=

·
1− m

1−m+ x

(1− θ)

θ

¸
1− τT

1− τD
Re

The marginal utility of consumption is:

cuzc =
µz,

µz − b
− bβ

1

µz − b
=

µz − bβ

µz − b
(3.16)

The first order condition for households setting wages is:

w
λz(1− τ l)

λw
= ζψLl

σL (3.17)

3.1.6. Monetary Authority

π =
(1 + x)

µz
.

3.1.7. Resource Constraint and Zero Profits

After substituting out for the fixed cost in the resource constraint using the restriction that
firm profits are zero in steady state, and using g = ηgy, we obtain:

c = (1− ηg)

·
1

λf

µ
1

µz
νkk̄

¶α ¡
νll
¢1−α − µG(ω̄)(1 +Rk)

k

µzπ

¸
− i. (3.18)
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Here, we have made use of the facts,

y =
1

λf

µ
1

µz
νkk̄

¶α ¡
νll
¢1−α − µG(ω̄)(1 +Rk)

k

µzπ
,

and g = ηgy, so that c = (1− ηg)y − i.
We now develop the condition on φ to assure that intermediate good firm profits in steady

state are zero. If we loosely write their production function as F −φz, then the total cost of
labor and capital inputs to the firm are sF, where s is real marginal cost, or the (reciprocal of
the) markup (at least, in steady state when aggregate price and the individual intermediate
good firm prices coincide). We want sF to exhaust total revenues, F − φz, i.e., we want
sF = F − φz, or, φ = F (1− s)/z = (F/z)(1− 1/λf), or

φ =

µ
zt−1νkKt

zt−1zt

¶α ¡
νll
¢1−α

(1− 1

λf
) =

µ
νkk

µz

¶α ¡
νll
¢1−α

(1− 1

λf
) (3.19)

We obtain (3.18) by substituting from the last equation into the resource constraint:

y =

µ
1

µz
νkk̄

¶α ¡
νll
¢1−α − φ− µG(ω̄)(1 +Rk)

k

µzπ
, (3.20)

We obtain g from output from:

g = ηgy. (3.21)

3.1.8. Other Variables

Other variables of interest include measures of the external finance premium. For each dollar
borrowed by entrepreneurs, the bank receives:

1 +Re
t +

µ
R ω̄t
0

ωdF (ω)
¡
1 +Rk

t

¢
QK̄0,t−1K̄t

QK̄0,t−1K̄t − N̄t

.

This is a return across both entrepreneurs who are bankrupt and entrepreneurs who can pay
the interest rate specified in the CSV. In steady state, this reduces to:

1 +Re +
µG(ω̄)

¡
1 +Rk

t

¢
k

k − n
.

We refer to the excess of this over 1 + Re as the average external finance premium. The
marginal external finance premium is the interest rate that non-bankrupt entrepreneurs pay
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the bank over 1 + Re. The gross rate of return, Z, is the value that solves the following
expression:

ω̄
¡
1 +Rk

¢
Ptztk = Z (Ptztk − Ptztn) ,

or,

Z =
ω̄
¡
1 +Rk

¢
k

k − n
.

Monitoring costs, expressed as a ratio to quarterly GDP is:

µ
R ω̄t
0

ωdF (ω)
¡
1 +Rk

t

¢
QK̄0,t−1K̄t

PtYt
,

where Yt is gross output before it has been scaled. Expressing this in scaled terms:

µG(ω̄)
¡
1 +Rk

¢
Pt−1zt−1k

Ptzty
=

µG(ω̄)
¡
1 +Rk

¢
k

πµzy

The currency to total deposit ratio is given by:

Mt

At +Xt + Sw
t

,

where:
Sw
t = ψl,tWtlt + ψk,tPtr

k
tKt,

or, substituting and using (2.42):

Mt

M b
t −Mt +Xt + ψl,tWtlt + ψk,tPtrktKt

=
mt

1−mt + xt + ψl,t
Wt

Mb
t
lt + ψk,t

PtrktKt

Mb
t

=
m

1−m+ x+ ψl
w
mb l + ψk

Ptrkzt−1k
Ptztmb

=
m

1−m+ x+ ψl
w
mb l + ψk

rkk
µzmb

We’re interested in velocity. The velocity of the base is:

PtYt
M b

t

=
Ptzty

Ptztmb
=

y

mb
.
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The velocity of M1 is:

PtYt
Mt +M b

t −Mt +Xt + ψl,tWtlt + ψk,tPtrktKt

=
Ptzty

M b
t

£
1 + x+

¡
ψl,tWtlt + ψk,tPtrktKt

¢
/M b

t

¤
=

y

(1 + x)mb + ψlwl + ψkrkk/µz

We define period t M3 asM1 plus the time deposits that mature in period t, QK̄0,t−1K̄N
t −Nt.

So, the velocity of M3 is:

PtYt
Mt +M b

t −Mt +Xt + ψl,tWtlt + ψk,tPtrktKt + Pt−1K̄N
t −Nt

,

using the fact that, along a steady state growth path, QK̄0,t−1 = Pt−1. Taking into account
scaling,

Ptzty

M b
t

£
1 + xt +

¡
ψl,tPtztwlt + ψk,tPtzt (zt−1/zt) rkt k + Pt−1zt−1k − Pt−1zt−1n

¢
/M b

t

¤
=

Ptzty

M b
t

£
1 + xt + (ψl,tPtztwlt + ψk,tPtztrkk/µz + Ptztk/(πµz)− Ptztn/(πµz)) /M b

t

¤
=

y

mb (1 + x) + ψlwl + ψkrkk/µz + (k − n) /(πµz)

We now develop expressions for the balance sheet of the banks. On the asset side are
the working capital loans (labor, as well as capital rental), loans to entrepreneurs (the ones
maturing in the current period) and reserves. On the liability side there is the demand
deposits and time deposits. We express the components of the balance sheet as a fraction of
the bank’s total assets:

M b
t −Mt +Xt + ψl,tWtlt + ψk,tPtr

k
tKt + Pt−1K̄N

t −Nt

= M b
t

£
1−m+ x+

¡
ψlwl + ψkr

kk/µz + (k − n) /(πµz)
¢
/mb

¤
Working capital loans for wages are:

ψl,tWtlt
M b

t −Mt +Xt + ψl,tWtlt + ψk,tPtrktKt + Pt−1K̄N
t −Nt

=
Ptztψlwl

M b
t [1−m+ x+ (ψlwl + ψkrkk/µz + (k − n) /(πµz)) /mb]

=
ψlwl

mb (1−m+ x) + (ψlwl + ψkrkk/µz + (k − n) /(πµz))
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Working capital loans for capital rental are:

ψk,tPtr
k
tKt

M b
t [1−m+ x+ (ψlwl + ψkrkk/µz + (k − n) /(πµz)) /mb]

=
ψkr

kk/µz
mb (1−m+ x) + (ψlwl + ψkrkk/µz + (k − n) /(πµz))

Loans to entrepreneurs:

(k − n) /(µzπ)

mb (1−m+ x) + (ψlwl + ψkrkk/µz + (k − n) /(πµz))

Total reserves are:

M b
t −Mt +Xt

M b
t [1−m+ x+ (ψlwl + ψkrkk/µz + (k − n) /(πµz)) /mb]

=
(1−m+ x)mb

mb (1−m+ x) + (ψlwl + ψkrkk/µz + (k − n) /(πµz))

Required reserves are:

τ
¡
(1−m+ x)mb +

¡
ψlwl + ψkr

kk/µz
¢¢

mb (1−m+ x) + (ψlwl + ψkrkk/µz + (k − n) /(πµz))

Excess reserves are:

(1−m+ x)mb − τ
¡
(1−m+ x)mb +

¡
ψlwl + ψkr

kk/µz
¢¢

mb (1−m+ x) + (ψlwl + ψkrkk/µz + (k − n) /(πµz))

The ratio of firm demand deposits to total assets are:

ψl,tWtlt + ψk,tPtr
k
tKt

M b
t [1−m+ x+ (ψlwl + ψkrkk/µz + (k − n) /(πµz)) /mb]

=
ψlwl + ψkr

kk/µz
mb [1−m+ x+ (ψlwl + ψkrkk/µz + (k − n) /(πµz)) /mb]

3.2. Linearization

There are 24 endogenous variables whose values are determined at time t. We load them
into a vector, zt. The elements in this vector are reported in the following table. In addition,
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there is an indication about which shocks the variable depends on. If it depends on the
realization of all period t shocks, then we indicate a, for ‘all’. If it depends only on the
realization of the current period non-financial shocks, then we indicate p, for ‘partial’. The
table also indicates the information associated with each of the 24 equations used to solve
the model. These equations are collected below from the preceding discussion. Note that
the number of equations and elements in zt is the same. Note also, in each case, the third
and fourth columns always have the same entry. In several cases, zt contains variables dated

t+1. In the case of b̄kt+1, for example, the presence of a p in the third column indicates thatb̄kt+1 is a function of the realization of the period t non-financial shocks, and is not a function
of the realization of period t financial shocks, or later period shocks. In the case of R̂e

t+1, the
presence of an a indicates that this variable is a function of all period t shocks, but not of
any period t+ 1 shocks.

zt information, z information, equation
1 π̂t p p
2 ŝt a a
3 r̂kt a a
4 ı̂t p p
5 ût p p
6 b̄ωt a a

7 R̂k
t a a

8 n̂t+1 a a
9 q̂t a a
10 ν̂lt a a
11 êν,t a a
12 m̂b

t a a

13 R̂t a a
14 ûzc,t a a

15 λ̂z,t a a
16 m̂t a a

17 R̂a,t a a
18 ĉt p p
19 ŵt p p

20 l̂t a a

21 b̄kt+1 p p

22 R̂e
t+1 a a

23 x̂t a a

(3.22)
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The last of these variables is money growth, x̂t. As we show below, this is simply a trivial
function of the underlying shocks. In addition, recall (2.35), in which the 10th and 11th

variables are the same. A combination of the efficiency conditions for labor and capital in
the firm sector, equations (1) and (2) below, are redundant with the efficiency conditions for
labor and capital in the banking sector, (11) and (12). We deleted equation (11) below from
our system.
In fact, we have 25 equations and unknowns in our model. The system we work with

is one dimension less because we set Θ ≡ 0, so that v̂t disappears from the system. When
we want Θ > 0, we can get our 25th equation by linearizing (2.24), and v̂t is then our 25

th

variable.

3.2.1. Firms

The inflation equation, when there is indexing to lagged inflation, is:

(1) E

·
π̂t − 1

1 + β
π̂t−1 − β

1 + β
π̂t+1 − (1− βξp)(1− ξp)

(1 + β) ξp

³
ŝt + λ̂f,t

´
|Ωt

¸
= 0

The linearized expression for marginal cost is:

(2) αr̂kt +
αψkR

1 + ψkR
ψ̂k,t + (1− α) ŵt +

(1− α)ψlR

1 + ψlR
ψ̂l,t

+

·
αψkR

1 + ψkR
+
(1− α)ψlR

1 + ψlR

¸
R̂t − �̂t − ŝt = 0

Another condition that marginal cost must satisfy is that it is equal to the marginal cost of
one unit of capital services, divided by the marginal product of one unit of services. After
linearization, this implies:

(3) r̂kt +
ψkR

³
ψ̂k,t + R̂t

´
1 + ψkR

− �̂t − (1− α)
³
µ̂z,t + l̂t −

hb̄kt + ût

i´
− ŝt = 0

3.2.2. Capital Producers

The ‘Tobin’s q’ relation is:

(4) E
©
q̂t − S00µ2z(1 + β)̂ıt − S00µ2zµ̂z,t + S00µ2z ı̂t−1 + βS00µ2z ı̂t+1 + βS00µ2zµ̂z,t+1|Ωt

ª
= 0

108



The coefficients in the canonical form are:

α1(4, 9) = 1

α1(4, 4) = −S00µ2z(1 + β)

α2(4, 4) = S00µ2z
α0(4, 4) = βS00µ2z
β0(4, 46) = βS00µ2z
β1(4, 46) = −S00µ2z

3.2.3. Entrepreneurs

The variable utilization equation is

(5) E
£
r̂kt − σaût|Ωt

¤
= 0,

where r̂kt denotes the rental rate on capital. The date t standard debt contract has two
parameters, the amount borrowed and b̄ωt+1. The former is not a function of the period t+1
state of nature, and the latter is not. Two equations characterize the efficient contract. The
first order condition associated with the quantity loaned by banks in period t in the optimal
contract is:

(6) E{λ
Ã
RkR̂k

t+1

1 +Rk
− ReR̂e

t+1

1 +Re

!

− [1− Γ(ω̄)]
1 +Rk

1 +Re

·
Γ00(ω̄)ω̄
Γ0(ω̄)

− λ [Γ00(ω̄)− µG00(ω̄)] ω̄
Γ0(ω̄)

¸ b̄ωt+1|Ωµ
t } = 0.

Note that this is not a function of the period t+1 uncertainty. Also, note that when µ = 0,

so that λ = 1, then this equation simply reduces to E
h
R̂k
t+1|Ωµ

t

i
= R̂e

t+1. The linearized zero

profit condition is:

(7)
³
k̄
n
− 1
´

Rk

1+Rk R̂
k
t −

³
k̄
n
− 1
´

Re

1+Re R̂
e
t +

³
k̄
n
− 1
´
(Γ0(ω̄)−µG0(ω̄))
(Γ(ω̄)−µG(ω̄)) ω̄b̄ωt

−
³
q̂t−1 + b̄kt − n̂t

´
= 0.

The law of motion for net worth is:

(8) − n̂t+1 + a0R̂
k
t + a1R̂

e
t + a2

b̄kt + a3ŵ
e
t + a4γ̂t + a5π̂t + a6µ̂z,t + a7q̂t−1 + a8 b̄ωt + a9n̂t = 0
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The definition of the rate of return on capital is:

(9) R̂k
t+1−

(1− τk)rk + (1− δ)q

Rkq
π

"¡
1− τk

¢
rkr̂kt+1 − τkrkτ̂kt + (1− δ)qq̂t+1

(1− τk)rk + (1− δ)q
+ π̂t+1 − q̂t

#
−δτ

kτ̂kt
Rk

These are the coefficients corresponding to this equation, in the canonical representation of
the model:

α1(9, 7) = 1 : R̂k
t , α1(9, 3) = −

π
¡
1− τk

¢
rk

Rkq
: r̂kt

β1(9, 57) =
¡
rkπ − δ

¢ τk
Rk

: τ̂kt−1

α1(9, 1) = −(1− τk)rk + (1− δ)

Rk
π : π̂t

α1(9, 9) = −(1− δ)π

Rk
: q̂t

α2(9, 9) =
(1− τk)rk + (1− δ)

Rk
π : q̂t−1

3.2.4. Banking Sector

In the equations for the banking sector, it is capital services, kt, which appears, not the
physical stock of capital, k̄t. The link between them is:

k̂t =
b̄kt + ût.

An expression for the ratio of excess reserves to value added in the banking sector is:

(10) − êv,t + nτ τ̂t + nmbm̂b
t + nmm̂t + nxx̂t + nψlψ̂l,t

+nψkψ̂k,t + (nk − dk)
hb̄kt + ût

i
+ nrk r̂

k
t + nwŵt

+(nl − dl) l̂t + (nµz − dµz) µ̂z,t − dνk ν̂
k
t − dνlν̂

l
t = 0
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where mb
t is the scaled monetary base, mt is the currency-to-base ratio, xt is the growth rate

of the base

nτ =
−τmb (1−m+ x)− τ

³
ψlwl +

1
µz
ψkr

kk
´
− τ 1

µz
ψkr

kk

n
,

n = (1− τ)mb (1−m+ x)− τ

µ
ψlwl +

1

µz
ψkr

kk

¶
,

nmb = (1− τ)mb (1−m+ x) /n

nm = − (1− τ)mbm/n

nx = (1− τ)mbx/n

nψl = nw = nl = −τψlwl/n

nψk = nrk = nk = −τ 1
µz

ψkr
kk/n

nµz = τ
1

µz
ψkr

kk/n

and

d =

µ
1

µz
(1− νk)k

¶α ¡
(1− νl)l

¢1−α
dµz =

−α
³
1
µz
(1− νk)k

´α ¡
(1− νl)l

¢1−α³
1
µz
(1− νk)k

´α
((1− νl)l)1−α

= −α

dk = α

dνk = −α νk

1− νk

dl = 1− α

dνl = −(1− α)
νl

1− νl

The first order condition for capital in the banking sector is:

0 = kRR̂t + kξξ̂t − r̂kt + kxx̂
b
t + keêv,t + kµµ̂z,t

+kνl ν̂
l
t + kνk ν̂

k
t + kl l̂t + kk

hb̄kt + ût
i
+ kτ τ̂t + kψkψ̂k,t
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kR =

·
1− ψkR

1 + ψkR

¸
, kξ = 1− log (ev) ξ +

τher
h

1
1−ξ + log (ev)

i
ξ

1 + τher

kx =
1

1 + τher
, ke = 1− ξ +

τherξ

1 + τher
, kµ = (1− α)

kνl = −(1− α)
νl

1− νl
, kνk = (1− α)

νk

1− νk
, kl = (1− α), kk = −(1− α)

kτ = − τher

1 + τher
, kψk = −

ψkR

1 + ψkR
.

The latter equation was deleted from our system, because it is redundant given the two firm
Euler equations and the following equation.
The first order condition for labor in the banking sector is:

(11) 0 = lRR̂t + lξξ̂t − ŵt + lxx̂
b
t + leêv,t + lµµ̂z,t

+lνl ν̂
l
t + lνk ν̂

k
t + ll l̂t + lk

hb̄kt + ût
i
+ lτ τ̂t + lψlψ̂l,t,

where

li = ki for all i, except

lR =

·
1− ψlR

1 + ψlR

¸
, lψl = − ψlR

1 + ψlR

lµ = kµ − 1, lνl = kνl +
νl

1− νl
, ll = kl − 1,

lνk = kνk − νk

1− νk
, lk = kk + 1.

The production function for deposits is:

(12) x̂bt − ξêv,t − log (ev,t) ξξ̂t − τ (m1 +m2)

(1− τ)m1 − τm2
τ̂t

=

·
m1

m1 +m2
− (1− τ)m1

(1− τ)m1 − τm2

¸ ·
m̂b

t +
−mm̂t + xx̂t
1−m+ x

¸
+

·
m2

m1 +m2
+

τm2

(1− τ)m1 − τm2

¸
×[ ψlwl

ψlwl + ψkrkk/µz

³
ψ̂l,t + ŵt + l̂t

´
+

ψkr
kk/µz

ψlwl + ψkrkk/µz

³
ψ̂k,t + r̂kt + k̂t − µ̂zt

´
].
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The coefficients in the canonical form are:

β1(12, 16) = −1: x̂bt ,
β1(12, 4) =

τ (m1 +m2)

m1 − τ (m1 +m2)
: τ̂t ‘ratio, required to excess reserves’

β1(12, 13) = log (ev) ξ : ξ̂t

α1(12, 11) = ξ : êv,t, α1(12, 12) = m1z̄ : m̂b
t

α1(12, 19) = α1(12, 20) = β1(12, 7) = m2zwl : ŵt, l̂t, ψ̂l,t

α1(12, 3) = α1(12, 5) = α2(12, 21) = β1(12, 10) = −β1(12, 46)
= m2zwk : r̂kt , ût,

b̄kt, ψ̂k,t, µ̂zt

α1(12, 23) = m1z̄
x

1−m+ x
: x̂t

α1(12, 16) = −m1z̄
m

1−m+ x
: m̂t,

where

z̄ =
1

m1 +m2
− (1− τ)

(1− τ)m1 − τm2
=
(1− τ)m1 − τm2 − (1− τ) (m1 +m2)

(m1 +m2) [m1 − τ(m1 +m2)]

= − m2

(m1 +m2) [m1 − τ(m1 +m2)]

z =
1

m1 +m2
+

τ

(1− τ)m1 − τm2
=
(1− τ)m1 − τm2 + τ (m1 +m2)

(m1 +m2) [m1 − τ(m1 +m2)]

=
m1

(m1 +m2) [m1 − τ(m1 +m2)]
,

wl =
ψlwl

ψlwl + ψkrkk/µz
, labor component of working capital loans

wk =
ψkr

kk/µz
ψlwl + ψkrkk/µz

, capital component in working capital loans,

where m1 +m2 is total deposits and m1 − τ(m1 +m2) is excess reserves.

(13) R̂at −
·

her − τher

(1− τ)her − 1 −
τher

τher + 1

¸ ·
−
µ

1

1− ξ
+ log (ev)

¶
ξξ̂t + x̂bt − ξêv,t

¸
+

·
τher

(1− τ)her − 1 +
τher

τher + 1

¸
τ̂t − R̂t = 0
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The coefficients in the canonical form are:

α1(13, 17) = 1 : R̂at

α1(13, 11) = ξher

·
1− τ

(1− τ)her − 1 −
τ

τher + 1

¸
: êv,t

α1(13, 13) = −1 : R̂t

β1(13, 13) = her

·
1− τ

(1− τ)her − 1 −
τ

τher + 1

¸µ
1

1− ξ
+ log (ev)

¶
ξ : ξ̂t

β1(13, 16) = −her
·

1− τ

(1− τ)her − 1 −
τ

τher + 1

¸
: x̂bt

β1(13, 4) = τher

·
1

(1− τ)her − 1 +
1

τher + 1

¸
=

τh2er

[(1− τ)her − 1] (τher + 1) : τ̂t

In the version of the model in which the banking sector is dropped, we must nevertheless
have a loan market clearing condition:

ψl,tWtlt + ψk,tPtr
k
tKt =M b

t −Mt +Xt.

The right side of this equation is the supply of base for the purpose of lending. The left
hand side is the corresponding demand. Scale this by dividing by Ptzt :

ψl,twtlt + ψk,tr
k
t ut

k̄t
µz,t

= mb
t (1−mt + xt) . (3.23)

Linearizing this:

(25) ψlwl
h
ψ̂l,t + ŵt + l̂t

i
+ ψkr

k k̄
µz

h
ψ̂k,t + r̂kt + ût +

b̄kt − µ̂z,t
i

−mb (1−m+ x)
£
m̂b

t +
−mm̂t+xx̂t
1−m+x

¤
= 0.
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The parameters of the reduced form are:

α1(25, 19) = ψlwl : ŵt, α1(25, 20) = ψlwl : l̂t

α1(25, 3) = ψkr
k k̄

µz
: r̂kt , α1(25, 5) = ψkr

k k̄

µz
: ût

α1(25, 12) = −mb (1−m+ x) : m̂b
t , α1(25, 16) = mbm : m̂t

α2(25, 21) = ψkr
k k̄

µz
: b̄kt, α1(25, 23) = −mbx : x̂t

β1(25, 7) = ψlwl : ψ̂l,t, β1(25, 10) = ψkr
k k̄

µz
: ψ̂k,t

β1(25, 46) = −ψkr
k k̄

µz
: µ̂z,t.

3.2.5. Household Sector

The definition of uzc is:

(14) E{uzc ûzc,t −
·

µz
c (µz − b)

− µ2zc

c2 (µz − b)2

¸
µ̂z,t − bβ

µzc

c2 (µz − b)2
µ̂z,t+1

+
µ2z + βb2

c2 (µz − b)2
cĉt − bβµz

c2 (µz − b)2
cĉt+1 − bµz

c2 (µz − b)2
cĉt−1|Ωµ

t } = 0.

The coefficients in the canonical form are:

α1(14, 18) =

µ
1

c (µz − b)

¶2 £
µ2z + b2β

¤
c, : ĉt

α0(14, 18) = −bβ
µ

1

c (µz − b)

¶2
µzc : ĉt+1

α2(14, 18) = −
µ

1

c (µz − b)

¶2
bµzc : ĉt−1

β0(14, 46) = bβ

µ
1

c (µz − b)

¶2
cµ2z : µz,t+1

β1(14, 46) =

"
− µz
c (µz − b)

+

µ
1

c (µz − b)

¶2
cµz

#
: µz,t
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The household’s first order condition for time deposits is:

(15) E

(
−λ̂z,t + λ̂z,t+1 − µ̂z,t+1 − π̂t+1 − ReτT

1 + (1− τT )Re
τ̂Tt+1 +

Re
¡
1− τT

¢
1 + (1− τT )Re

R̂e
t+1|Ωµ

t

)
= 0.

The household’s first order condition for capital is:

(24) E

½
−λ̂zt +

·
Rk

1 +Rk
R̂k
t+1 + λ̂z,t+1 − π̂t+1 − µ̂z,t+1

¸
|Ωt

¾
The coefficients in the canonical form are:

α0(24, 15) = 1 : λ̂z,t+1

α0(24, 7) =
Rk

1 +Rk
: R̂k

t+1

α0(24, 1) = −1 : π̂t+1

α1(24, 15) = −1 : λ̂z,t

β0(24, 46) = −1 : µ̂z,t+1
The first order condition for currency, Mt :

(16) υ̂t + (1− σq) ĉt +

"
−(1− σq)

µ
θ − (1− θ)

m

1−m+ x

¶
−

θ
m
+ 1−θ

(1−m+x)2m
θ
m
− 1−θ

1−m+x

#
m̂t

−
"
(1− σq) (1− θ)x

1−m+ x
−

1−θ
(1−m+x)2x
θ
m
− 1−θ

1−m+x

#
x̂t

+

·
−(1− σq) (log (m)− log (1−m+ x)) +

1 + x

θ (1 + x)−m

¸
θθ̂t

− (2− σq) m̂
b
t −

·
λ̂z,t +

−τD
1− τD

τ̂Dt + R̂a,t

¸
= 0

With ACEL preferences, set the coefficient on ĉt to zero here. The household’s first
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order condition for currency, M b
t+1, is:

(17) E{ β

πµz
υ (1− θ)

"
c

µ
1

m

¶θ
#1−σq µ

1

1−m+ x

¶(1−θ)(1−σq)+1µ 1

mb

¶2−σq
×{υ̂t+1 − θθ̂t+1

1− θ
+ (1− σq)ĉt+1 − (1− σq) log (m) θθ̂t+1 − θ(1− σq)m̂t+1

− [(1− θ) (1− σq) + 1]

µ
1

1−m+ x

¶
[xx̂t+1 −mm̂t+1]

+ (1− σq) log (1−m+ x) θθ̂t+1 − (2− σq) m̂
b
t+1}

+
β

πµz
λz
£
1 +

¡
1− τD

¢
Ra

¤
λ̂z,t+1

+
β

πµz
λz
h¡
1− τD

¢
RaR̂a,t+1 − τDRaτ̂

D
t+1

i
− λz

h
λ̂zt + π̂t+1 + µ̂z,t+1

i
|Ωµ

t }

= 0.

With ACEL preferences, replace c by unity and set ĉt+1 to zero. We now derive the coefficients
in the canonical form are. Let

Υ = βυ (1− θ)

"
c

µ
1

m

¶θ
#1−σq µ

1

1−m+ x

¶(1−θ)(1−σq)+1µ 1

mb

¶2−σq
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α0(17, 18) =
Υ

πµz
(1− σq)

α0(17, 16) = − Υ

πµz

·
θ(1− σq) + [(1− θ) (1− σq) + 1]

µ
m

1−m+ x

¶¸
α0(17, 12) = − Υ

πµz
(2− σq)

α0(17, 15) =
β

πµz
λz
£
1 +

¡
1− τD

¢
Ra

¤
α0(17, 17) =

β

πµz
λz
¡
1− τD

¢
Ra

α0(17, 1) = λz

α1(17, 15) = −λz : λ̂z,t
β0(17, 40) =

Υ

πµz
: υ̂t+1

β0(17, 22) = − Υ

πµz

·
θ

1− θ
+ (1− σq) log (m) θ − (1− σq) log (1−m+ x) θ

¸
: θ̂t+1

α0(17, 23) = − Υ

πµz
[(1− θ) (1− σq) + 1]

µ
x

1−m+ x

¶
: x̂t+1

β0(17, 25) = − β

πµz
λzτ

DRa : τ̂
D
t+1

β0(17, 46) = −λz : µ̂z,t+1
With ACEL preferences, replace c with unity in Υ. Also, α0(17, 18) should be zero. The first
order condition for consumption is:

(18) E{uzc ûzc,t − υc−σq
"
1

mb

µ
1

m

¶θ µ
1

1−m+ x

¶1−θ#1−σq
×[υ̂t − σqĉt + (1− σq)

µ
−m̂b

t − θtm̂t − (1− θt)

µ −m
1−m+ x

m̂t +
x

1−m+ x
x̂t

¶¶
+(1− σq)

·
log

µ
1

m

¶
− log

µ
1

1−m+ x

¶¸
θθ̂t]

− (1 + τ c)λz

·
τ c

1 + τ c
τ̂ ct + λ̂z,t

¸
|Ωt} = 0

With ACEL preferences, the middle term is replaced by zero. The reduced form wage
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equation is:

(19) E

½
η0ŵt−1 + η1ŵt + η2ŵt+1 + η−3 π̂t−1 + η3π̂t + η4π̂t+1 + η5l̂t + η6

·
λ̂z,t − τ l

1− τ l
τ̂ lt

¸
+ η7ζ̂t|Ωt

¾
= 0

where

η =



bwξw
−bw (1 + βξ2w) + σLλw

βξwbw
bwξw

−ξwbw (1 + β)
bwβξw

−σL (1− λw)
1− λw
− (1− λw)


=



η0
η1
η2
η3̄
η3
η4
η5
η6
η7


.

3.2.6. Aggregate Restrictions

The resource constraint is:

(20) 0 = dy

·
G0(ω̄)
G(ω̄)

ω̄b̄ωt +
Rk

1 +Rk
R̂k
t + q̂t−1 + b̄kt − µ̂z,t − π̂t

¸
+ uyût + gyĝt + cy ĉt + k̄y

i

k̄
ı̂t

+Θ(1− γ)vyv̂t − α
³
ût − µ̂z,t +

b̄kt + ν̂kt

´
− (1− α)

³
l̂t + ν̂lt

´
− �̂t
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α1(20, 6) = dy
G0(ω̄)
G(ω̄)

ω̄ : b̄ωt

α1(20, 7) =
Rk

1 +Rk
dy : R̂k

t

α1(20, 1) = −dy : π̂t

α1(20, 5) = uy − α : ût

α1(20, 18) = cy : ĉt

α1(20, 4) = k̄y
i

k
: ı̂t

α1(20, 10) = −α− (1− α) : ν̂lt

α1(20, 20) = −(1− α) : l̂t

α2(20, 21) = dy − α : b̄kt
α2(20, 9) = dy : q̂t−1
β1(20, 46) = −dy + α : µ̂z,t

β1(20, 37) = gy : ĝt

β1(20, 52) = −1 : �̂t

where

k̄y =
k̄

y + φ+ d
,

and the object in square brackets corresponds to the resources used up in monitoring.

(21) b̄kt+1 − 1− δ

µz

³b̄kt − µ̂z,t
´
− i

k̄
ı̂t = 0.

Monetary policy is represented by:

(22) m̂b
t +

x

1 + x
x̂t − π̂t+1 − µ̂z,t+1 − m̂b

t+1 = 0

The parameters in the reduced form are:

α0(22, 1) = −1 : π̂t+1, α0(22, 12) = −1 : m̂b
t+1,

α1(22, 12) = 1 : m̂b
t , α1(22, 23) =

x

1 + x
: x̂t,

β0(22, 46) = −1 : µ̂z,t+1.
The timing of this equation could be changed to:

(22)0 m̂b
t−1 +

x

1 + x
x̂t−1 − π̂t − µ̂z,t − m̂b

t = 0
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3.2.7. Monetary Policy

Monetary policy has the following representation:

(23) x̂t =

pX
i=1

xit,

where the xit’s are functions of the underlying shocks.

3.2.8. Other Variables

The currency to deposit ratio is:

dct =
mt

1−mt + xt + ψl,t
wt
mb
t
lt + ψk,t

rkt utk̄t
µz,tmb

t

,

with
dc =

m

1−m+ x+ ψl
w
mb l + ψk

rkk
µzmb

d̂ct = m̂t −
\·

1−m+ x+ ψl
w

mb
l + ψk

rkk

µzmb

¸

= m̂t −
d
h
1−mt + xt + ψl,t

wt
mb
t
lt + ψk,t

rkt utk̄t
µz,tmb

t

i
1−m+ x+ ψl

w
mb l + ψk

rkk
µzmb

= m̂t − dc

m
d

·
1−mt + xt + ψl,t

wt

mb
t

lt + ψk,t
rkt utk̄t
µz,tmb

t

¸
so

d̂ct = m̂t

+dcm̂t − dcx

m
x̂t − dcψl

m

w

mb
l
h
ψ̂l,t + ŵt − m̂b

t + l̂t
i

−d
cψk

m

rkk

µzmb

h
ψ̂k,t + r̂kt + ût +

b̄kt − µ̂z,t − m̂b
t

i

121



We are interested in obtaining a linearized representation for the external finance pre-
mium:

P e
t =

µ
R ω̄t
0

ωdF (ω)
¡
1 +Rk

t

¢
QK̄0,t−1K̄t

QK̄0,t−1K̄t − N̄t

=
µ
R ω̄t
0

ωdF (ω)
¡
1 +Rk

t

¢
Pt−1qt−1zt−1k̄t

Pt−1qt−1k̄t − zt−1Pt−1nt

=
µ
R ω̄t
0

ωdF (ω)
¡
1 +Rk

t

¢
Pt−1qt−1zt−1k̄t

Pt−1qt−1k̄t − zt−1Pt−1nt

=
µG(ω̄t)

¡
1 +Rk

t

¢
qt−1k̄t

qt−1k̄t − nt
.

Then,

P̂ e
t = G0(ω̄t)b̄ωt +

RkR̂k
t

1 +Rk
+ q̂t−1 + b̄kt − \£

qt−1k̄t − nt
¤

= G0(ω̄)b̄ωt +
Rk

1 +Rk
R̂k
t + q̂t−1 + b̄kt − k̄

³
q̂t−1 + b̄kt´− nn̂t

k̄ − n

We need a measure of output for the economy as a whole, and a measure of output
for the two sectors in the economy. Here are some random notes to start thinking about
this...Goods-producing sector resource costs are

(1 + ψl,tRt)Wtνtlt + (1 + ψk,tRt)Ptr
k
t νtkt

= Wtνtlt + Ptr
k
t νtkt| {z }

factor input costs

+ ψl,tRtWtνtlt + ψk,tRtPtr
k
t νtkt| {z }

purchases of ‘intermediate inputs’ from banking sector

Value-added of the goods producing sector is profits and factor incomes generated by that
sector. In our case, profits are zero in steady state, but can be non-zero outside of steady
state. So, in steady state at least, value-added in the goods producing sector is Wtνtlt +
Ptr

k
t νtkt. F − φz = sF. The purchases of this gross output is divided between c + i +

g+monitoring costs. Let i = 1 denote the goods producing industry and i = 2 is banking
industry. a11 is the quantity of output of the goods producing industry going into goods.
This is zero in our setup. a12 is the quantity of goods used in the banking industry. These
are monitoring costs. a21 is the inputs going from banking to goods, which are the interest
charges. a22 ....
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3.3. Alternative Versions of the Model

We consider versions of the model which drop the entrepreneurial and banking sectors. To
drop the entrepreneurial sector, simply drop equations 6 (a), 7 (a) and 8 (a), and add
equation 24 (p). Letters in parentheses indicate whether the equation is full (a) or partial
(p) information. The first three are the equations pertaining to the costly state verification
contract. The last equation is the household’s intertemporal Euler equation for accumulating
capital. There are two variables to be dropped, 6 (a) and 8 (a). These are the cutoff
productivity level implicit in the costly state verification contract and the law of motion for
entrepreneur net worth. The household’s intertemporal equation pertaining to time deposits
remains as a way to define the risk free rate. Note that there is a sense in which more
equations than variables have been dropped. Two ‘a’ variables are dropped, but, three a
equations are dropped, with only a ‘p’ replacing one of them. To keep the number of ‘a’
equations and ‘a’ variables equal to each other, some variable has to be converted from ‘a’
to ‘p’.
But, what variable? One option focusses on the labor market. In the model without

banking or entrepreneurs, we know that aggregate employment is a ‘p’. This is because
aggregate demand, prices and wages (these enter the ‘efficiency gaps’ in the resource con-
straint), the physical stock of capital and the rate of capital utilization are all predetermined
relative to a financial market shock. With everything else in the resource constraint pre-
determined, aggregate employment is predetermined too. But, this argument breaks down
when there are banks. Because of this, the capital stock available to the goods sector is
not predetermined. We could make this predetermined, of course, by requiring that firms
choose the capital that they rent before the realization of the financial market shocks. But,
this would change the nature of the firm problems and so would necessitate a change in the
model. It’s not clear this is the way we want to go. There is an alternative possibility, based
on a change of variable.
Note from the scaled resource constraint, (2.58), that a financial market shock leaves

V f
t = νlt (Lt)

1−α

unaffected. In this notation, (2.58) is written:

dt + a(ut)
1

µz,t
k̄t + gt + ct + it +Θ(1− γ)vt ≤ �t

µ
ut
1

µz,t
k̄t

¶α

V f
t − φ.

Linearizing this,
V̂ f
t = ν̂lt + (1− α)L̂t.

The proposed strategy would replace L̂t (actually, l̂t) by V̂
f
t in zt in (3.22). A simple way to

do this proceeds as follows. Below, we argue that the linearized system leads to the following
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canonical form:
Et[α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st] = 0,

where zt is defined in (3.22), except that the two variables mentioned above are not included.

Thus, zt is a 21× 1 column vector. Let z̃t be zt, with l̂t replaced by V̂
f
t . The vectors, zt and

z̃t, have a simple relationship. Let Q be a 21-dimensional square matrix which, with the
exception of the 18th row, is the 21-dimensional identity matrix. The 18th row has (1 − α)
in the diagonal location and unity in the 8th. Then,

Qzt = z̃t.

Note that,

Et[α0Q−1Qzt+1 + α1Q
−1Qzt + α2Q

−1Qzt−1 + β0st+1 + β1st] = 0,

or,

Et[α̃0z̃t+1 + α̃1z̃t + α̃2z̃t−1 + β0st+1 + β1st] = 0,

α̃i = αiQ
−1, i = 0, 1, 2.
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The vector, z̃t, is displayed below:

z̃t information, z̃ information, equation (#)
1 π̂t p p(1)
2 ŝt a a(2)
3 r̂kt a a(3)
4 ı̂t p p(4)
5 ût p p(5)

6 R̂k
t a a(9)

7 q̂t a a(10)
8 ν̂lt a a(11)
9 êν,t a a(12)
10 m̂b

t a a(13)

11 R̂t a a(14)
12 ûzc,t a a(15)

13 λ̂z,t a a(16)
14 m̂t a a(17)

15 R̂a,t a p(18)
16 ĉt p p(19)
17 ŵt p a(20)

18 V̂ f
t p p(21)

19 b̄kt+1 p a(22)

20 R̂e
t+1 a a(23)

21 x̂t a p(24)

The right column reports the equations in the system, with corresponding equation numbers
from the text, and an indication of what information set is associated with the the given
equation. The left column gives the numerical location of a variable in z̃t. Recall that the
computational algorithm is set up so the ith variable is an ‘a’ if, and only if, the ith equation
is an ‘a’. Similarly for ‘p’. At the moment, the equations are not lined up properly. However,
if the 15th and 17th equations are interchanged, as well as the 19th and 21st, then the required
alignment does occur.
When we drop the banks and entrepreneurs, there is still a ‘financial sector’. Households

start the period with the entire stock of high powered money, M b. They set a part of this,
M, aside. The rest, M b−M, is deposited with a financial intermediary, where they earn Ra.
The financial intermediary loans this out, plus the money injection, X, to firms for working
capital, at a rate of interest, R. The intermediary has no costs and so the zero profit condition
associated with competition implies R = Ra. Households still have access to risk free lending,
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with return, Re. This market will have zero activity and simply defines the risk free rate.
In steady state, it is just the usual intertemporal marginal rate of substitution, adjusted for
inflation. If θ = 1, so that households do not get utility from their deposits at the financial
intermediary (as they would if these deposits produced transactions services) then, in steady
state, Ra = R = Re. If they did earn utility from deposits, then then Ra < Re.
To also drop the banking sector, drop the 4 equations pertaining directly to the banks,

10 (a), 11 (a), 12 (a), 13 (a). One equation must be added, the clearing condition for the
loan market, 25 (a). So, there is a net deletion of 3 ‘a’ equations. We drop variables 10, 11

and 17. These are ν̂lt, êν,t and R̂a,t. The last variable enters the household’s Mt and M b
t+1

equations (equations 16 and 17). However, R̂a,t there should simply be replaced by R̂t. All
these variables are a’s.

3.4. Computational Notes

We can write the 24 equations listed above in matrix form as follows:

Et[α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st] = 0,

where zt is defined above and Et is the expectation operator which takes into account the
information set associated with each equation. Also, st is constructed from the vector of
shocks, Ψt, that impact on agents’ environment, and it has the following representation:

st = Pst−1 + ε̃t. (3.24)

We now discuss the construction of the elements, st and P, of this time series representation.
There are N = 20 basic exogenous shocks, ςt, in the model:

λ̂f,t, τ̂t, ψ̂l,t, ψ̂k,t, ξ̂t, x̂
b
t , τ̂

T
t , θ̂t, τ̂

D
t , τ̂

l
t ,

τ̂kt , ζ̂t, ĝt, υ̂t, ŵ
e
t , µ̂z,t, γ̂t, �̂t, x̂pt, τ̂

C
t

Here, λf is the steady state markup for intermediate good firms; τ is the reserve requirement
for banks; ψl is the fraction of the wage bill that must be financed in advance; ψk is the
fraction of the capital services bill that must be financed in advance; xt is the growth rate
of the monetary base; ξt is a shock influencing bank demand for reserves; x

b
t is a technology

shock to the bank production function; τTt is the tax rate on household earnings of interest
on time deposits; θt is a shock to the relative preference for currency versus deposits; τ

D
t

is the tax rate on household earnings of interest on deposits; τ lt is the tax rate on wage
income; τkt is the tax rate paid by entrepreneurs on their earnings of rent on capital services;
ζt is a preference shock for household leisure; gt is a shock to government consumption; υ̂t
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is a shock to the household demand for transactions services; ŵe
t is a shock to the transfers

received by entrepreneurs; µ̂z,t is a shock to the growth rate of technology; γ̂t is a shock to
the rate of survival of entrepreneurs; �̂t is a stationary technology shock to intermediate good
production; x̂pt is the monetary policy shock; τ̂

C
t is the tax on consumption.

In each case, we give the shock an ARMA(1,1) representation. In addition, we suppose
that monetary policy corresponds to the innovation in a shock according to an ARMA(1,1),

as in (2.53). Consider, for example, the first shock λ̂f,t. The following vector first order

autoregression captures in its first row, the ARMA(1,1) representation of λ̂f,t and in the
third row the ARMA(1,1) representation of the response of monetary policy to the shock: λ̂f,t

�f,t
xf,t

 =

 ρf ηf 0
0 0 0
0 φ1f φ2f

 λ̂f,t−1
�f,t−1
xf,t−1

+
 �f,t

�f,t
φ0f�f,t

 .

There are 6 parameters associated with λ̂f,t : ρf , ηf , φ
2
f , φ

1
f , φ

0
f and the standard deviation

of �f,t, σf . The parameters φ
0
f and σf are only needed when the model is simulated, such as

for computing impulse response functions or obtaining second moments. It is not required
for computing the model solution. In this way, there are 6 parameters associated with each
of the first 18 shocks, and the 20th. Since logically there is no monetary policy response to a
monetary policy shock, there are only three parameters for that shock. So, the total number
of parameters associated with the exogenous shocks is 19× 6 + 3 = 117.
We now discuss the construction of (3.24) in detail. Define the 3N × 1 vector Ψt as

follows:

Ψt =

 Ψ1,t
...

ΨN,t

 .
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Here, Ψi,t is 3× 1 for i = 1, ..., N :

Ψ1,t =

 λ̂f,t
�f,t
xf,t

 , Ψ2,t =

 τ̂t
�τ,t
xτ,t

 , Ψ3,t =

 ψ̂l,t

�l,t
xl,t

 , Ψ4,t =

 ψ̂k,t

�k,t
xk,t


Ψ5,t =

 ξ̂t
�ξ,t
xξ,t

 , Ψ6,t =

 x̂bt
�b,t
xb,t

 , Ψ7,t =

 τ̂Tt
�T,t
xT,t

 , Ψ8,t =

 θ̂t
�θ,t
xθ,t

 ,

Ψ9,t =

 τ̂Dt
�D,t

xD,t

 , Ψ10,t =

 τ̂ lt
�τ l,t
xτ l,t

 , Ψ11,t =

 τ̂kt
�τk,t
xτk,t

 , Ψ12,t =

 ζ̂t
�ζ,t
x
ζ,t

 ,

Ψ13,t =

 ĝt
�g,t
xg,t

 , Ψ14,t =

 υ̂t
�υ,t
xυ,t

 , Ψ15,t =

 ŵe
t

�we,t
xwe,t

 , Ψ16,t =

 µ̂z,t
�µz ,t
xµz ,t

 ,

Ψ17,t =

 γ̂t
�γ,t
xγ,t

 , Ψ18,t =

 �̂t
��,t
x�,t

 , Ψ19,t =

 x̂pt
�p,t
τ̂kt−1

 , Ψ20,t =

 τ̂Ct
�τC ,t
x̂τC ,t


The non-financial market shocks are

λ̂f,t, τ̂t, x̂
b
t , τ̂

T
t , τ̂

D
t , τ̂

l
t , τ̂

k
t , ζ̂t, ĝt, ŵ

e
t , µ̂z,t, �̂t, τ̂

C
t

The financial market shocks are:

ψ̂l,t(7− 9), ψ̂k,t(10− 12), ξ̂t(13− 15), θ̂t(22− 24), υ̂t(40− 42), γ̂t(49− 51), x̂pt(55− 56)
Numbers in parentheses correspond to the associated entries in Ψt.
The time series representation of Ψt is:

Ψt = ρΨt−1 + εΨt ,

where ρ is a 3N × 3N matrix. With one exception, it is block diagonal in a way that is
conformable with the partitioning of Ψt. Each block is 3 × 3. Thus, with one exception, ρ
has the following structure:

ρ =

 ρ1 0 0

0
. . . 0

0 0 ρN

 ,
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with the partitioning being conformable with the partitioning of Ψt. The exception is the
31st entry in the 57th row of ρ, which is unity. For example,

ρ1 =

 ρf ηf 0
0 0 0
0 φ2f φ1f

 , ρ19 =
 ρf ηf 0
0 0 0
0 0 0

 .
In general, ρi is 3 × 3 for i = 1, ..., 18, with zeros in the middle row and in the 1,3 and 3,1
elements. Similarly, we partition

εΨt =

 ε1t
...

ε20t

 ,
where εit is 3× 1 for i = 1, ..., 20, and the last element of ε19,t is zero. The first two entries of
εit are equal and represent the innovation in the associated exogenous shock variable. The
last entry is proportional to the second, where the factor of proportionality characterizes the
contemporaneous response of monetary policy to the shock.
We now discuss the relation between st and Ψt. In the ‘standard case’ we assume that

the information set in each equation is Ωµ
t . In this case,

st = θt, P = ρ, ε̃t = εΨt .

If any one of the information sets in any one of the equations contains less information than
Ωµ
t , then st is constructed slightly differently:

st =

µ
Ψt

Ψt−1

¶
, P =

·
ρ 0
I 0

¸
, ε̃t =

µ
εΨt
0

¶
. (3.25)

The matrices, β0 and β1 provided to the computational algorithm are the ones that are
suitable for the standard case. If the algorithm detects that some information sets are small,
then it makes appropriate adjustments to the β’s.
Monetary policy is a function of Ψt, according to equation (24) and (2.53):

x̂t =

"
20X

i=1, i6=19
(0, 0, 1)Ψit

#
+ (1, 0, 0)Ψ19,t.

A solution to the model is a set of matrices, A and B, in:

zt = Azt−1 +Bst,

where B is restricted to be consistent with our information set assumptions. In what fol-
lows, we first address the issue of computing the ‘feedback matrix’, A. We then turn to the
computation of the ‘feedforward matrix’, B.
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3.4.1. The Feedback Matrix, A

For now, we consider the problem of finding the 23×23 matrix A. For these purposes, we
lose nothing by simply ‘forgetting’ exogenous shocks. So, we consider the case where Ψt = 0.
The matrix A must satisfy the equilibrium conditions:

α0zt+1 + α1zt + α2zt−1 = 0,

for t = 0, 1, ... . Here, the vector zt is defined as the 23 by 1 vector displayed in (3.22). We
require: £

α0A
2 + α1A+ α2I

¤
zt−1 = 0,

for all zt−1, so that
α(A) = α0A

2 + α1A+ α2I = 0|{z}
23×23

.

To find A, we apply the procedure developed in Blanchard and Kahn. First, set up the
previous second order difference equation as a first order system. Let

Yt =

·
zt
zt−1

¸
.

Then,

aYt+1 + bYt = 0, (3.26)

where

a =

·
α0 0
0 I

¸
, b =

·
α1 α2
−I 0

¸
.

We seek a sequence, Y0, Y1, ...., which satisfies several conditions: (i) it must satisfy the
above difference equation and the initial conditions of the system, which are contained in
the bottom 23 elements of Y0; (ii) it must be a ‘minimal state sequence’, namely, that there
must exist a 23×46 matrix, D, such that DYt = 0 for all t; (iii) it must satisfy ‘convergence’

Yt → 0.

Finally, we would like (iv), that Y0, Y1, .... is the only sequence that satisfies (i)-(iii).
It is straightforward to determine if a sequence satisfying (i)-(iii) can be found and

whether such a sequence is unique, i.e., whether it satisfies (iv). A particularly simple
case occurs when a is invertible, which corresponds to the assumption that α0 is invertible.
In fact, α0 in our example is singular so that a is not invertible. Still, even to explore the
non-invertible case, it is instructive to study the invertible case first.
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The Invertible a Case Define
Π = −a−1b.

Then, the entire class of solutions to the difference equation (whether or not they satisfy
(ii)-(iii)) can be written

Yt+1 = ΠYt. (3.27)

Each sequence, Y0, Y1, ..., that satisfies (3.27) is differentiated by a different value for the first
23 elements of Y0, namely, z0 (recall, the initial conditions of the system are in z−1, the last
23 elements of Y0). Thus, the space of sequences that satisfy (i) is 23 dimensional. That’s
because z0 is arbitrary, and z0 ∈ R23. We seek a sequence that satisfies not just (3.27) (i.e.,
(i)), but one that is a minimal state sequence, and which satisfies convergence.
We proceed now to identify sequences that satisfy (i)-(iii). Write the eigenvalue-eigenvector

decomposition of Π :
Π = PΛP−1,

where Λ is a diagonal matrix containing the eigenvalues and each column of P is the right
eigenvector corresponding to the associated eigenvalue in Λ. Let

P̃ =

 p̃1
...
p̃46

 , P̃ ≡ P−1

where p̃i is the i
th left eigenvector of Π. Let

Ỹt = P̃Yt =

 p̃1Yt
...

p̃46Yt

 .
Premultiplying (3.27) by P̃ :

Ỹt = ΛỸt−1 = ΛtỸ0.

Recall that z−1, the bottom 23 elements in Y0, are free. So, it is possible to select Y0 so that
p̃iY0 = 0 for up to 23 left eigenvectors. Note:

p̃iY0 = 0→ p̃iYt = 0, for all t.

So, to construct a sequence that satisfies (i) and (ii), simply construct a matrix D using any
subset of 23 of the 46 left eigenvectors of Π. Thus, there are 46 choose 23 sequences that
satisfy (i) and (ii).
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We now consider convergence. Clearly, convergence requires that we ‘suppress’ the ex-
plosive eigenvalues of the system. This means that we select z0 so that p̃iY0 = 0 where λi
is an eigenvalue with |λi| > 1. Suppose there are exactly 23 explosive eigenvalues. Then,
there is exactly one sequence, Yt, that satisfies (i)-(iii). This is because there is exactly one
way to construct a matrix, D, that satisfies DYt = 0 for all t, satisfies (3.27), and displays
convergence. If there are fewer explosive eigenvalues there are many such solutions. If there
are more than 23 explosive eigenvalues, then there is no sequence that satisfies (i)-(iii). Sup-

pose the first scenario applies. Partition D = [D1...D2], where D1 and D2 are each 23 by 23
matrices. In addition, D is constructed from the 23 left eigenvectors associated with the 23
explosive eigenvalues of Π. Then, DYt = 0 implies:

zt = Azt−1, A = −
¡
D1
¢−1

D2.

The matrix A is the object that we seek.

The Non-Invertible a Case In our model, a is not invertible. The rank of the 23 by 23
matrix, α0 is 8. It follows that the rank of a is 31=8+23, where 23 is the rank of the identify
matrix in a. Still, a variant of the previous argument works, using the QZ decomposition,
as implemented by Chris Sims. The first step is to find the orthonormal matrices Q and Z,
and the upper triangular matrices H0 and H1 with the properties:

QaZ = H0, QbZ = H1.

The matrix H0 is structured so that the zeros on its diagonal are located in the lower right
part of H0. Denote the upper 31×31 block of H0 by G0. This matrix has rank 31. The lower
right 15 by 15 block ofH0 has rank zero and has zeros on the diagonal. Let the corresponding
upper left 31× 31 block in H1 be denoted G1. The diagonal terms in the lower right 15× 15
block of H1 are non-zero. Partition Z 0 as follows:

Z 0 =
µ

L1
L2

¶
,

where L1 is 31× 46 and L2 is 15× 46.
Inserting ZZ 0 (= I) before Yt+1 and Yt in (3.26), defining γt ≡ Z 0Yt, and pre-multiplying

(3.26) by Q, (3.26) becomes:

H0γt+1 +H1γt = 0, t = 0, 1, ... . (3.28)

Partition γt as follows:

γt =

µ
γ1t
γ2t

¶
, (3.29)

132



where γ1t is 31 × 1 and γ2t is 15 × 1. It is easy to verify that (3.28) implies γ2t = 0, t ≥ 0,
i.e.,14

L2Yt = 0, t = 0, 1, ... . (3.30)

With (3.30) imposed, the last 15 equations in (3.28) are redundant, so (3.28) can be written

G0γ
1
t+1 +G1γ

1
t = 0, t = 0, 1, ... . (3.31)

The set of solutions to this system can be expressed as γ1t = (−G−10 G1)
tγ10 , t ≥ 0, or,

P−1γ1t = ΛtP−1γ10 , (3.32)

where PΛP−1 = −G−10 G1 is the eigenvector, eigenvalue decomposition of −G−10 G1. The γ
1
t

that solve (3.32) converge to zero asymptotically if, and only if, p̃γ10 = 0, where p̃ is composed
of the rows of P−1 corresponding to diagonal terms in Λ that exceed 1 in absolute value.
This condition is:

p̃L1Y0 = 0. (3.33)

Recall that the number of free elements in Y0 is 23. Equation (3.30) for t = 0 represents
15 restrictions on Y0, so that to pin Y0 down uniquely, 8 more restrictions are needed. Thus,
uniqueness requires that there be 8 explosive eigenvalues in Λ, i.e., that p̃L1 contain 7 rows.
Then, define

D =

·
p̃L1
L2

¸
. (3.34)

The matrix A that we seek is then obtained by manipulating D in exactly the same way
that was done before.

14To see this, let us temporarily adopt a simpler notation. Let the lower right 8 × 8 block
of H0 be denoted Γ and let the corresponding block of H1 be denoted W. Write Γ = [Γij ] and
W = [Wij ]. The matrices, Γ and W, are upper triangular, with the former having zeros along
its diagonal and the latter having non-zero terms along its diagonal. Also, write xt = γ2t , with
xt = [x1t, ..., x8t]

0. Then we have Γxt+1 +Wxt = 0 for t = 0, 1, 2, ... . Note that the last row of
Γ is composed of zeros, so that the last row of this system of equations is W8,8x8t = 0 for all t.
Since W8,8 6= 0, this implies x8t = 0 for all t. Now consider the 8− 1th equation:

Γ7,8x8,t+1 +W7,7x7,t +W7,8x8,t = 0,

for t = 0, 1, 2, ... . But, since x.,t = 0 for all t, this implies W7,7x7,t = 0 for all t. Since W7,7 6= 0,
this in turn implies x7,t = 0 for t = 0, 1, 2,... .Proceeding in this way, we establish recursively
that xj,t = 0 for all t, for j = 8, 7, ..., 1.
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3.4.2. The Feedforward Matrix, B

Our system of equations is, taking into account the matrix A already computed:

Et[α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st] = 0.

We solution we seek has the form, zt = Azt−1 +Bst. Note,

zt+1 = Azt +Bst+1

= A [Azt−1 +Bst] +B [Pst + ε̃t+1]

= A2zt−1 +ABst +BPst +Bε̃t+1.

Et[α0 (A [Azt−1 +Bst] +B [Pst + ε̃t+1]) + α1 (Azt−1 +Bst) + α2zt−1 + β0st+1 + β1st] = 0

Substituting this, and the expression for zt into the difference equation, and rearranging:

Et{α(A)zt−1 + Fst + α0Bε̃t+1 + β0ε̃t+1t} = 0,
where

F = α0AB + α0BP + α1B + β0P + β1 (3.35)

Since Etε̃t+1 = 0, a solution requires α(A) = 0 and EtFst = 0, or,
EtFst = F̃ st = 0, (3.36)

for all st, so that
F̃ = 0.

Here, F̃ is a 23 by 120 matrix constructed from F. If the ith equation in our system is a full
information equation, then the ith row of F̃ is just the ith row of F. When the ith equation
in our system is a partial information equation, then the entries of the ith row of F̃ that
correspond to elements that are not observed in period t are zero. We now discuss what the
other entries of such a row of F̃ look like.
The following discussion has two parts. In the first part, we suppose we have candidate

A and B in hand, and we wish to verify that these correspond to a solution. To do this, we
evaluate α(A) = 0 and F̃ = 0. The former calculation is trivial. If F = F̃ , then the latter is
also trivial. However, in the partial information case, constructing F̃ from a candidate B is
not trivial. In the second part of the discussion below, we describe a constructive approach
to finding a B that sets F̃ to zero.
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Checking a Given B Suppose that the exogenous shocks that are not observed in period
t by a given equation are given by DΨt. Each row of D is composed of all zeros except for a
single entry which is unity, and which corresponds to the element of Ψt that is not observed.
In particular, when an equation does not observe all current shocks (i.e., has a ‘p’ attached to
it in (3.22)), it is specifically the 7 financial market shocks that are not observed. So, D is a
20×60 matrix. The fact that the left dimension of D is 20 reflects that each financial market
shock, with the exception of the monetary policy shock, corresponds to three variables in Ψt

(i.e., the variable itself, its innovation and the monetary policy response to the shock). So,
there are 18 shocks coming from the non-monetary policy financial shocks. Then, there are
another 2 coming from monetary policy.
The ith row of D is the ith row of the 60-dimensional identity matrix, where i is the

location in Ψt of the shock that is not observed in period t to a partial information equation.
We need to know what the date t conditional expectation these random variables is:

E [DΨt|period t non-financial market shocks and past information]

= DE [Ψt|period t non-financial market shocks and past information]

= DE [Ψt|Ψt−1] .

The last equality reflects two assumptions: that the innovations in the variables are uncor-
related, and that Ψt is a first order Markov process. The property of the innovations implies
that the current realization of the period t non-financial market shocks is of no use in com-
puting the conditional expectation of the period t financial market shocks. The solution to
the above conditional expectation is straightforward15. So, we conclude:

E [DΨt|period t non-financial market shocks]

= DρΨt−1.

From (3.22), the ‘partial information’ equations are i = 1, 4, 5, 18, 19, 21. In each case,
the D matrix is the same, because the variables not observed in all partial information
equations are the same. Write,

EtFist = Et
£
F 1
i F 2

i

¤µ Ψt

Ψt−1

¶
= EtF 1

i Ψt + F 2
i Ψt−1,

since EtΨt−1 = Ψt−1. Let D̃ be composed of the 40 rows of the 60 dimensional identity matrix

15Solveb is designed to handle the case where the correlations between the shocks are non-zero.
However, I do not know if that part of the program has ever been properly tested.
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which are not contained in D. That is, the matrix D̄, where

D̄ =

·
D

D̃

¸
,

is just the 60 dimensional identity matrix with the rows rearranged. Note that D̄0D̄ = I.
Taking this into account,

EtFist = EtF 1
i Ψt + F 2

i Ψt−1
= EtF 1

i D̄
0D̄Ψt + F 2

i Ψt−1
= EtF̄ 1

i D̄Ψt + F 2
i Ψt−1,

where F̄ 1
i = F 1

i D̄
0. That is, F̄ 1

i is just F
1
i with the columns reshuffled so that the first

20 columns correspond to the financial market shocks, and the others pertain to the non-
financial market shocks. Similarly, D̄Ψt is Ψt rearranged, so the first 20 elements of D̄Ψt are
the financial market parts of Ψt and the next 40 are the non-financial market shock parts of
Ψt. Partition F̄ 1

i appropriately, so :

EtFist = Et
·
F̄ 1
1i

...F̄ 1
2i

¸ ·
DΨt

D̃Ψt

¸
+ F 2

i Ψt−1

= EtF̄ 1
1iDΨt + F̄ 1

2iD̃Ψt + F 2
i Ψt−1

= F̄ 1
1iDρΨt−1 + F̄ 1

2iD̃Ψt + F 2
i Ψt−1

= F̄ 1
2iD̃Ψt +

£
F 2
i + F̄ 1

1iDρ
¤
Ψt−1,

= F̃i

µ
Ψt

Ψt−1

¶
.

where

F 1
i D̄

0 =
·
F̄ 1
1i

...F̄ 1
2i

¸
.

Note that the ith row of F̃i has zeros in the entries corresponding to the elements of Ψt that
are not observed in period t. Those entries of Fi (i.e., F̄

1
1i) appear in the part of F̃i that

multiplies Ψt−1.
To check the program that finds B, compute F̃ from A and B, and verify that F̃ = 0. If

it is zero, and A satisfies α(A) = 0, then we know we have a solution. To evaluate F̃ , first
compute F. The latter 23× 120 matrix is easy to compute using (3.35). The row dimension
of F corresponds to the 23 equations in our system. For the full information equations,
the corresponding row of F̃ is just the corresponding row of F. For the other equations, the
corresponding row of F̃ has some zeros, and the non-zero elements of that row are functions
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of the elements of that row of F and of ρ. To construct such a row of F̃ , first partition that

row of F into

·
F 1
1i

...F 1
2i

¸
. Then, construct D and D̃ and

·
F̄ 1
1i

...F̄ 1
2i

¸
.

AMethod for Finding B in the First Place We now develop a method for constructing
B when we don’t know it. Suppose we already have A in hand (it’s a solution to α(A) = 0).
We seek a B which contains a pattern of zeros identical to the pattern in F̃ , which implies
that F̃ = 0.We first address the ‘standard case’, when the information sets in each equation
are full, and F̃ = F, and there are no entries in B forced to be zero. We make heavy use of
the following results:

vec(A1A2A3) = (A03 ⊗A1)vec(A2)

vec(A+B) = vec(A) + vec(B),

where ⊗ denotes the Kronecker product16 and vec(·) denotes the vectorization operator.17
Applying this to (3.35), we obtain:

F 0 = B0A0α00 + P 0B0α00 +B0α01 + P 0β00 + β01

vec(F 0) = vec (I80B
0A0α00) + vec(P 0B0α00) + vec(I80B

0α01) + vec(P 0β00 + β01) = 0,

where I80 is the 80-dimensional identify matrix. Then,

vec(F 0) = [(α0A⊗ I80) + (α0 ⊗ P 0) + (α1 ⊗ I80)] vec(B
0) + vec(P 0β00 + β01)

That is,
d+ qδ = 0,

16The Kronecker product of two matrices, X and Y, is, if X is 3,2 X(1, 1)Y X(1, 2)Y
X(2, 1)Y X(2, 3)Y
X(3, 1)Y X(3, 2)Y

 .

17If X = [x1
...x2
... · · · ...xn], where xi denotes the ith column of X, then

vec(X) ≡
 x1
· · ·
xn

 .
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where

q = [(α0A⊗ I) + (α0 ⊗ P 0) + (α1 ⊗ I)] , d = vec(P 0β00 + β01), and δ = vec(B0).

Evidently, we obtain δ in this case by solving:

δ = −q−1d.
It is useful to notice the dimension of these matrices. In our (benchmark) example, A and αi

are 23-dimensional. The matrix B is 23×120. So, the identity matrix in vec(F 0) is 120×120.
This means that the dimension of q is 23·120× 23 · 120, or 2760× 2760. This is an enormous
matrix to invert. For example, on a 1.1Gig machine with plenty of RAM memory, it took 89
seconds to execute the instruction, a\b, where a is a 2760× 2760 matrix of random numbers
and b is the conformable identity matrix.
One way to reduce the size of the matrices being computed would be to include as lags only

the 20 elements of Ψt, i.e., the object DΨt above, which are not observed contemporaneously.
This would reduce the st vector from 120-dimensional to 80-dimensional. This change in the
definition of st would of course require a change in the definition of P in the structure of
the st process, in (3.25). Then, the matrix being inverted above would be of dimension
23× 80 = 1840 by 1840. This reduces the time requirement of computing a\b to 26 seconds.
Another way to reduce the size of the matrices might be to reduce the number of shocks.

A relatively unobtrusive way to do this would be to impose that particular columns of B are
zero, in the solution:

zt = Azt +Bst

To see how this impacts on the calculations, it is necessary to review how those calculations
are done. To keep things simple, suppose there are only two equations. Then,

EtFst = Et
·
F11 F12
F21 F22

¸µ
Ψt

Ψt−1

¶
= Et

·
F11Ψt F12Ψt−1
F21Ψt F22Ψt−1

¸
= Et

·
0 F12 + F11ρ
F21 F22

¸µ
Ψt

Ψt−1

¶
= F̃ st
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Here, Fij is a 1× 120 column vector. Then,

vec(F̃ 0) =


0

F12 + F11ρ
F21
F22

 = R̃vec(F 0)

= R̃ (q + dδ)

Let R denote a matrix that selects from q the non-zero elements. Thus, the dimension of
R is [1840− (120 + 340)] = 1380 by 1840. It is composed of the 1380 elements of the 1840−
dimensional identity matrix which correspond to the entries of δ which are not set to zero.
Let the vector whose entries are sought be denoted δ̄. Then, δ̄ = Rδ.We need to ‘remove’

the columns of q that correspond to the entries of δ that are identically zero, and which do
not appear in δ̄. The corresponding rows of q need also be removed. We do this by defining,
q̄ = RqR0. Also, let d̄ = Rd. Then, consider the following system:

d̄+ q̄δ̄ = 0.

Solve this for δ̄. The matrix B that we seek can be constructed from δ̄ computed in this way.
As a check on the calculations, it is useful to apply the calculations described above.
To implement this strategy, we need a time series representation for the relevant st

process, an efficient way to compute R, and an efficient way to map from δ̄ to B. We adopt
the following structure:

st =

µ
Ψt

DΨt−1

¶
, P =

·
ρ 0
D 0

¸
, ε̃t =

µ
εΨt
0

¶
, (3.37)

where D was defined above. This structure makes heavy use of the recursive assumption,
that lagged non-financial variables are not useful for predicting the current value of financial
variables.
To construct D, let γp denote a vector containing the indeces of the equations for which

there is full information. Thus,

γp = (1, 4, 5, 18, 19, 21).

Then, γf denotes the complementary vector, containing the indeces of the equations for
which there is partial information. We also need to know the indeces of the elements of Ψt

which are and are not, observed in period t by partial information equations. Let the indeces
that are not observed be denoted by τ p :

τ p = [[7 : 9][10 : 12][13 : 15][22 : 24][40 : 42][49 : 51][55 : 56]].
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For each financial market shock, there are three indeces. Thus, the indeces corresponding to
ψ̂l,t are 7, 8, and 9, in Ψt. A more convenient way to construct τ

p may be to start from the
basic vector of shocks, (3.25). The financial market shocks are elements 3, 4, 5, 8, 14, 17,
19 of this set. Then, τ p can be constructed using the details of the mapping from the basic
shocks to Ψt. To obtain D, just select the rows of the 60-dimensional identity matrix that
correspond to the indeces in τ p. It is also convenient to define the complementary vector,
τ f , which contains the indeces of the non-financial market shocks, in (3.25).
We now turn toR. This matrix is block diagonal, withR1, ..., R23, down the diagonal. The

matrix, Ri, multiplies B
0
i in δ. The matrix, Ri, is of one of two types, depending on whether

i corresponds to a full or partial information equation. Either way, the rows of Ri are
selections from the 80-dimensional identity matrix. For i corresponding to full information
equations, Ri is the first 60 rows of this identity matrix. Such an Ri has the property that
RiB

0
i selects the elements of B

0
i that correspond to Ψt, and ignores the ones that correspond

to DΨt−1. Now consider i’s that correspond to partial information equations. Such an Ri

has the property that RiB
0
i ignores the elements of B

0
i that correspond to current period

financial market shocks. Since there are 40 current period non-financial market shocks and
20 lagged financial market shocks in st, this means that Ri is 60 by 80. The 60 rows of
the 80 dimensional identity matrix in Ri are obtained as follows. The first 40 are the rows
corresponding to the indeces in τ f . The remaining 20 are the last 20 rows of the identity
matrix.
The matrix, R, is 60 · 23× 80 · 23, or 1380× 1840. It is constructed as follows:

R
1380×1840

=


R1
60×80

0 · · · 0

0 R2 · · · 0
...

...
. . .

...
0 0 · · · R23


It turns out that the computational time needed to evaluate RqR0 can be substantial. For
example, to do it once for this example requires 26 seconds. Note, however, that there
is substantial structure on this multiplication, and it makes sense to exploit this to get
computational time down.
The new approach to computing B here necessitates a different checking procedure on

B. The formulas, (3.35)-(3.36) continue to hold. There is one small difference. To see this,
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note first that:

E [DΨt|period t non-financial market shocks]

= DρΨt−1
= DρD̄0D̄Ψt−1

= Dρ

·
D0...D̃0

¸µ
DΨt−1
D̃Ψt−1

¶
=

·
DρD0...DρD̃0

¸µ
DΨt−1
D̃Ψt−1

¶
Because of our assumption on the structure of ρ, DρD̃0 = 020×40. So,

Et [DΨt] = (DρD0)DΨt−1.

We use this in what follows. With the adjustment for the new structure of st,

EtFist = EtF 1
i Ψt + F 2

i DΨt−1
= EtF̄ 1

i D̄Ψt + F 2
i DΨt−1

= F̄ 1
1iDρΨt−1 + F̄ 1

2iD̃Ψt + F 2
i DΨt−1

= F̄ 1
2iD̃Ψt +

£
F 2
i DD̄0 + F̄ 1

1iDρD̄0¤ D̄Ψt−1.

This expression can be simplified using a couple of results:

DD̄0 = D
h
D0 D̃0

i
= [DD0 DD̃0]

= [ I20
... 0
20×40

],

and,

DρD̄0 = Dρ
h
D0 D̃0

i
= [DρD0 DρD̃0]

= [DρD0 ... 0
20×40

].
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Then,

EtFist = F̄ 1
2iD̃Ψt +

£
F 2
i DD̄0 + F̄ 1

1iDρD̄0¤ D̄Ψt−1

= F̄ 1
2iD̃Ψt +

½
F 2
i [ I20

... 0
20×40

] + F̄ 1
1i[DρD0 ... 0

20×40
]

¾µ
DΨt−1
D̃Ψt−1

¶
= F̄ 1

2iD̃Ψt +

½
F 2
i [ I20

... 0
20×40

] + F̄ 1
1i[DρD0 ... 0

20×40
]

¾µ
DΨt−1
D̃Ψt−1

¶
= F̄ 1

2iD̃Ψt +
£
F 2
i + F̄ 1

1iDρD0¤DΨt−1

=

µ
F̄ 1
2iD̃
...
£
F 2
i + F̄ 1

1iDρD0¤¶ st.

As before, for i corresponding to equations with full information, Fi is just the i
th row of F

in (3.35).

3.5. Simulations

In many cases, the actual variables produced by simulating zt = Azt−1+Bst are not the ones
we’re directly interested in. For example, we may want the percent deviation of consumption
from its unshocked path. Instead, we get a simulation of ĉt. To ‘unwind’ this:

ĉt =
ct − c

c
,

where c denotes steady state consumption and ct denotes consumption, scaled by zt. So,

ĉt =
C̃t
z̃t
− Ct

zt
Ct
zt

,

where a tilde signifies the value of the variable along the shocked path, and the absence of
a tilde means the variable along an unshocked steady state growth path. Supposing the
system starts up at

ĉt =
C̃t
z̃t
− Ct

zt
Ct
zt

=
zt
Ct

C̃t

z̃t
− 1,

or,
C̃t

Ct
=

z̃t
zt
(1 + ĉt) .

But,
zt
zt−1

= µzt
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so,
zt = µztzt−1,

or,

z0 = µz,0z−1
z1 = µz,1z0 = µz,1µz,0z−1
z2 = µz,2z1 = µz,2µz,1µz,0z−1

...

zt = µz,tzt−1 = µz,t · · · µz,0z−1.
Along the perturbed path:

z̃t = µ̃z,t · · · µ̃z,0z−1,
so,

z̃t
zt
=

µ̃z,t
µz

· · · µ̃z,0
µz

But,

µ̂z,t =
µ̃z,t − µz

µz
,

so,
µ̃z,t
µz

= µ̂z,t + 1,

and
z̃t
zt
= (µ̂z,t + 1) · · · (µ̂z,0 + 1)

Finally,
C̃t − Ct

Ct
= [(µ̂z,t + 1) · · · (µ̂z,0 + 1)] (1 + ĉt)− 1.

Note that when there is no shock to technology, so that µ̂z,t = 0, then

C̃t − Ct

Ct
= ĉt,

and no adjustment is required.
Total output, Yt, is:

Yt = Gt + Ct + It,
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or, after scaling:
Yt
zt
=

Gt

zt
+

Ct

zt
+

It
zt
,

so that
yŷt = gĝt + cĉt + îıt

ŷt =
g

y
ĝt +

c

y
ĉt +

i

y
ı̂t.

We’d also like the ratio of currency to deposits.

4. Econometric Methodology

We plan to explore various econometric methodologies. The basic strategy is to begin with
an array of limited information estimation and testing procedures. These might focus on a
subset of the model’s second moment implications, or on a subset of the model’s implications
for responses to various economic shocks. The distinguishing feature of limited information
methods is that they do not impose all of the restrictions of the model, and permit a relatively
informal assessment of the model’s strengths and weaknesses. We expect that at this stage,
various changes to the model structure will be needed to improve its empirical implications.
At later stages, we expect to be able to move to full information methods such as maximum
likelihood.
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The previous graph displays data on the currency to deposit ratio (the steeply trending line)
and the currency to monetary base ratio (the other line). 18

18Data are taken from Citibase, and curency is measured by FMSCU; the monetary base is
measured by FZFBA; deposits are measured by FMSD.
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Following are the velocity of the monetary base, M1 and M3.

1947 1952 1957 1962 1967 1972 1977 1982 1987 1992
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
VELM1
VELBASE
VELM3

The following two pictures depict a set of parameter values for the model and the asso-
ciated steady state. The capital output ratio is a little low here. But, the equity to debt
ratio seems ‘ball-park’. Also, note how the velocity of the different monetary aggregates
corresponds roughly to the numbers reported in the previous figure. The velocity of the base
is 14, the velocity of M1 is a little over 4. The velocity of M3 is 0.9.
&&&&&&&&&&&&&&
Following is a set of steady state parameter values. Eventually, they should be put in a

nice table...
year = 2002, month = 9, day = 14, hour = 12, minute = 41, second = 37.02, 14-Sep-2002
Variant of the model solved
entr = 1, model with entrepreneurs
pref = 1, so work with benchmark preferences
Fomegabar = 0.0300, muzˆ4 = 1.0150
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y = c + i + g = 2.6383, we/y = 0.0569
we = 0.1500, ((1+R)ˆ4-1)*100 = 10.4007
sigma = 0.3992
Gamma = 0.4340, psiL = 0.4627
n = 12.1030, n/k = 0.5637
n/(k-n) = 1.2922, ksi = 0.9549
Total Assets of Banks equals reserves plus working capital plus entrepreneur loans =

11.5535
Loans to Entrepreneurs and Time Deposits (as fraction of bank assets) = 0.7987
fraction of gnp devoted to monitoring = mu*G*(1+Rk)*k/(muz*pi))/y1
fraction = 0.00559713
Gross Interest rate paid by non-bankrupt entrepreneursˆ4 = 1.11812812
Gross Average Interest rate paid by all entrepreneursˆ4 = 1.10006389
Annualized velocity of M3 = 0.8702
mu = 0.0600, lambdaf = 1.2000
((1+x)ˆ4-1)*100 = 6.1364, lambdaw = 1.05
alpha = 0.3600, psik = 0.5000
psil = 1.0000, delta = 0.0200
tauk = 0.2800, taul = 0.2500
gamma = 0.9700, l = 1.1254
tauT = 0.0000, tauD = 0.0000
sigmaL = 1.0000, zeta = 1.0000
etag = 0.1800, theta = 0.8000
v = 0.0050, betaˆ(-4)= 1.0300
sigmaq = 0.6600, b = 0.6300
m = 0.8000, vl = 0.9800
vk = 0.9800, tau = 0.0250
k/y = 8.1377, c/y = 0.6276
i/y = 0.1924, g/y = 0.1800
k/l = 19.0778, inflationˆ4 = 1.0457
elasticity of demand for currency (should be negative) = -0.0156
Annualized velocity of base = 4*y/mb 14.7182
Annualized velocity of M1 = 3.6399
household currency / household demand deposits = 3.7209
household deposits / firm demand deposits = 0.0710
household currency / total demand deposits = 0.2466
((1+Ra)ˆ4-1)*100 = 0.63018
((1+Re)ˆ4-1)*100 = 9.32045
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((1+Rk)ˆ4-1)*100 = 12.27501
rk = 0.0450 mb = 0.7170
xb = 35.1704, lamz = 0.4854
Banking Sector Balance Sheet in SS (Fraction of Total Assets)
Total Reserves = 0.0133
Required Reserves = 0.0050
Excess Reserves = 0.0083
Working Capital Loans = 0.1880
Working Capital Loans (Cap. Rental) = 0.0417
Working Capital Loans (Labor costs) = 0.1463
Demand Deposit Liabilities = 0.2013
Household Demand Deposits = 0.0133
Firm Demand Deposits = 0.1880
***********************
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A. Appendix 1: Alternative Specification of Entrepreneur’s Rate
of Return

We now consider what happens to the CSV contract when we specify the entrepreneur’s rate
of return to have the following form:

1 +Rk,j
t+1 = (1 + R̃k

t+1)ω + τkt δ,

where (1 + R̃k
t+1) is defined in section 2.4.

As before, total borrowing by a type-N entrepreneur is:

BN
t+1 = QK̄0,tK̄

N
t+1 −Nt+1.

The parameters of the Nt+1−type standard debt contract, BN
t+1 Z

N
t+1, imply a cutoff value

of ω, ω̄N
t+1, as follows: h

(1 + R̃k
t+1)ω̄

N
t+1 + τkt δ

i
QK̄0,tK̄

N
t+1 = ZN

t+1B
N
t+1.

Note that it is possible for ω̄N
t+1 in this equation to be negative. The following condition

guarantees ω̄N
t+1 > 0 :

τkt δ < ZN
t+1

BN
t+1

QK̄0,tK̄
N
t+1

.

The object on the left of the equality is roughly 1/2.19 The object on the left should be an
order of magnitude smaller. We proceed under the assumption, ω̄N

t+1 > 0.
For ω < ω̄N

t+1, the entrepreneur pays all its revenues to the bank:h
(1 + R̃k

t+1)ω + τkt δ
i
QK̄0,tK̄

N
t+1,

which is less than ZN
t+1B

N
t+1. In this case, the bank must monitor the enterpreneur, at cost

µ
h
(1 + R̃k

t+1)ω + τkt δ
i
QK̄0,tK̄

N
t+1.

Zero profits for banks implies:

£
1− F

¡
ω̄N
t+1

¢¤
ZN
t+1B

N
t+1+(1− µ)

Z ω̄Nt+1

0

h
(1 + R̃k

t+1)ω + τkt δ
i
QK̄0,tK̄

N
t+1dF (ω) =

¡
1 +Re

t+1

¢
BN
t+1,

19This corresponds to a debt to equity ratio of unity, which is in line with estimates reported
for the US. See Benninga and Protopapadakis (1990) and literature cited there.
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or,

£
1− F

¡
ω̄N
t+1

¢¤ "
ω̄N
t+1 +

τkt δ

1 + R̃k
t+1

#
+(1− µ)

Z ω̄Nt+1

0

"
ω +

τkt δ

1 + R̃k
t+1

#
dF (ω) =

1 +Re
t+1

1 + R̃k
t+1

BN
t+1

QK̄0,tK̄
N
t+1

,

or, £
1− µF

¡
ω̄N
t+1

¢¤
τkt δ

1 + R̃k
t+1

+
£
1− F

¡
ω̄N
t+1

¢¤
ω̄N
t+1 + (1− µ)

Z ω̄Nt+1

0

ωdF (ω)

=
1 +Re

t+1

1 + R̃k
t+1

BN
t+1

QK̄0,tK̄
N
t+1

.

which can be written:£
1− µF

¡
ω̄N
t+1

¢¤
τkt δ

1 + R̃k
t+1

+ Γ(ω̄N
t+1)− µG(ω̄N

t+1) =
1 +Re

t+1

1 + R̃k
t+1

BN
t+1

QK̄0,tK̄
N
t+1

, (A.1)

where Γ(ω̄N
t+1) and µG(ω̄N

t+1) are defined as follows:

G(ω̄N
t+1) =

Z ω̄Nt+1

0

ωdF (ω).

Γ(ω̄N
t+1) = ω̄N

t+1

£
1− F (ω̄N

t+1)
¤
+G(ω̄N

t+1)

It is useful to work out the derivative of Γ :

Γ0(ω̄N
t+1) = 1− F (ω̄N

t+1)− ω̄N
t+1F

0(ω̄N
t+1) +G0(ω̄N

t+1)

= 1− F (ω̄N
t+1) > 0,

where we have used
G0(ω̄N

t+1) = ω̄N
t+1F

0(ω̄N
t+1).

Then

Γ0(ω̄N
t+1)− µG0(ω̄N

t+1) = 1− F (ω̄N
t+1)− µω̄N

t+1F
0(ω̄N

t+1)

=
£
1− F (ω̄N

t+1)
¤ ·
1− µ

ω̄N
t+1F

0(ω̄N
t+1)

1− F (ω̄N
t+1)

¸
=

£
1− F (ω̄N

t+1)
¤ £
1− µω̄N

t+1h(ω̄
N
t+1)

¤
,
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where

h(ω̄N
t+1) =

F 0(ω̄N
t+1)

1− F (ω̄N
t+1)

.

We follow BGG in adopting the assumption (page 10, equation 3.10) that h is increasing in
ω̄N
t+1. They show (see appendix A in BGG) that h increasing implies there is a unique ω̄

∗

such that Γ(ω̄N
t+1)− µG(ω̄N

t+1) is increasing for ω̄
N
t+1 < ω̄∗, has zero slope for ω̄N

t+1 = ω̄∗ and
is decreasing for ω̄N

t+1 > ω̄∗.
For sufficiently small τkt δ, the left side of (A.1) will share this property of Γ(ω̄

N
t+1) −

µG(ω̄N
t+1). We infer that the zero profit condition of banks resembles the usual Laffer curve

setup in some respects. The left side of (A.1) is an inverted U shape. The right side is
a horizontal line. If there is one value of ω̄N

t+1 that solves (A.1), then generically there is
another one too.
The non-negativity constraint on bank profits is, from (A.1):

1 + R̃k
t+1

1 +Re
t+1

(£
1− µF

¡
ω̄N
t+1

¢¤
τkt δ

1 + R̃k
t+1

+ Γ(ω̄N
t+1)− µG(ω̄N

t+1)

)
≥ QK̄0,tK̄

N
t+1 −Nt+1

QK̄0,tK̄
N
t+1

= 1− Nt+1

QK̄0,tK̄
N
t+1

,

or,

QK̄0,tK̄
N
t+1

Nt+1

1 + R̃k
t+1

1 +Re
t+1

(£
1− µF

¡
ω̄N
t+1

¢¤
τkt δ

1 + R̃k
t+1

+ Γ(ω̄N
t+1)− µG(ω̄N

t+1)

)
≥ QK̄0,tK̄

N
t+1

Nt+1
− 1

Let

ũt+1 ≡ 1 +Rk
t+1

E
¡
1 +Rk

t+1|Ωµ
t

¢ , st+1 ≡ E
¡
1 +Rk

t+1|Ωµ
t

¢
1 +Re

t+1

, kNt+1 =
QK̄0,tK̄

N
t+1

Nt+1
,

so that

kNt+1ũt+1st+1

( £
1− µF

¡
ω̄N
t+1

¢¤
τkt δ

ũt+1E
¡
1 +Rk

t+1|Ωµ
t

¢ + Γ(ω̄N
t+1)− µG(ω̄N

t+1)

)
≥ kNt+1 − 1

(A.2)

Competition implies that the CSV loan contract is the best possible one, from the point
of view of the entrepreneur, conditional on (A.2). That is, it maximizes the entrepreneur’s
‘utility’ subject to the zero profit constraint just stated. The entrepreneur’s expected rev-
enues over the period in which the standard debt contract applies are:20

20We treat this as the entrepreneur’s utility function, even though the entrepreneur will be
around in the future (either he will be around as a condemmed person eating his last meal in
the next period, or he will be around with at least one more period after that). Still, we drop
all reference to the future in our expression of his utility function. A possible rationale for this
is that future utility is a linear function of future net worth. We hope to show this in a future
draft.
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E

(Z ∞

ω̄Nt+1

h³
(1 + R̃k

t+1)ω + τkt δ
´
QK̄0,tK̄

N
t+1 − ZN

t+1B
N
t+1

i
dF (ω)|Ωt,Xt

)

= E

(Z ∞

ω̄Nt+1

h³
(1 + R̃k

t+1)ω + τkt δ
´
QK̄0,tK̄

N
t+1 −

³
(1 + R̃k

t+1)ω̄
N
t+1 + τkt δ

´
QK̄0,tK̄

N
t+1

i
dF (ω)|Ωt, Xt

)

= E

(Z ∞

ω̄Nt+1

£
ω − ω̄N

t+1

¤
dF (ω)

³
1 + R̃k

t+1

´
|Ωt,Xt

)
QK̄0,tK̄

N
t+1.

Note that21

1 =

Z ∞

0

ωdF (ω) =

Z ∞

ω̄Nt+1

ωdF (ω) +G(ω̄N
t+1),

so that the objective can be written:

E
n£
1− Γ(ω̄N

t+1)
¤ ³
1 + R̃k

t+1

´
|Ωµ

t

o
QK̄0,tK̄

N
t+1,

or, after dividing by (1+Re
t+1)Nt+1 (which is a constant with respect to date t+1 aggregate

uncertainty), and rewriting:

E
©£
1− Γ(ω̄N

t+1)
¤
ũt+1|Ωµ

t

ª
st+1k

N
t+1, ũt+1 =

1 + R̃k
t+1

E
³
1 + R̃k

t+1|Ωµ
t

´ , st+1 = E
³
1 + R̃k

t+1|Ωµ
t

´
1 +Re

t+1

,
(A.3)

where Ωµ
t denotes all period t shocks. From this expression and the fact, Γ

0 > 0, it is evident
that the objective is decreasing in ω̄N

t+1 for given kNt+1.
The problem solved by the CSV is to choose kNt+1 and ω̄N

t+1 to maximize (A.3) subject to
(A.2). Note that Nt+1 does not appear in the problem, so that, as before, we can delete N.

21Under the alternative treatment of depreciation,

E

(Z ∞
ω̄Nt+1

h³
(1 + R̃k

t+1)ω + τkt δ
´
QK̄0,tK̄

N
t+1 −

³h
1 + R̃k

t+1

i
ω̄Nt+1 + τkt δ

´
QK̄0,tK̄

N
t+1

i
dF (ω)|Ωt,Xt

)

= E

(Z ∞
ω̄Nt+1

£
ω − ω̄Nt+1

¤
dF (ω)

³
1 + R̃k

t+1

´
|Ωt,Xt

)
QK̄0,tK̄

N
t+1.
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In addition, for notational convenience we delete the time subscripts too. Thus, the problem
is to solve the following Lagrangian problem:

max
k,ω̄

E

[1− Γ(ω̄)] ũsk + λ

kũs

 [1− µF (ω̄)] τkδ

ũE
³
1 + R̃k

t+1|Ωµ
t

´ + Γ(ω̄)− µG(ω̄)

+ 1− k




B. Appendix 2: Indeterminacy In Money-in-the-Utility Function

We consider indeterminacy in simple monetary models. One is a cash in advance model, and
the other has money in the utility function like the one in our benchmark model.

B.1. Cash in Advance

Consider a simple monetary economy in which households have the following preferences:

∞X
t=0

βtu(ct, lt),

where

u(c, l) =
c1−σ

1− σ
− ψ0

l1+ψ

1 + ψ
.

Households must finance consumption purchases with cash obtained by setting aside part of
their claims to the monetary base, M b

t , and obtained with current wages:

Ptct ≤Wtlt +Mt,

where Mt is cash. Their cash evolution equation is:

M b
t+1 = (1 +Rt)(M

b
t −Mt +Xt) +Mt +Wtlt − PtCt,

where Xt denotes a transfer from the monetary authority. Households’ first order conditions
include the usual static one: −ul,t

uc,t
=

Wt

Pt
,

as well as the dynamic one:
uc,t
Pt

= β (1 +Rt)
uc,t+1
Pt+1
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Firms are required to finance the labor input using loans. The technology is linear and
one-for-one in labor, so that the resource constraint implies

ct = lt.

Firms’ first order condition for labor implies:

(1 +Rt)Wt

Pt
= 1.

Loan market clearing implies:

Wtlt =M b
t −Mt +Xt

Note that when the cash in advance constraint is binding (as it will whenever Rt > 0),

Ptct =M b
t +Xt =M b

t+1, (B.1)

where the latter is the law of motion of the aggregate monetary base.
We now characterize the equilibrium with a first order difference equation in lt. substitute

the two static euler equations into the household intertemporal equation:

−ul,t
Pt

= β
uc,t+1
Pt+1

,

or, making use of (B.1)
−ul,tct
M b

t+1

= β
uc,t+1ct+1

M b
t+1 +Xt+1

.

Multiply by M b
t+1

−ul,tct = β
uc,t+1ct+1
1 + xt+1

, 1 + xt+1 ≡ M b
t+1 +Xt+1

M b
t+1

.

Making use of our functional forms and the resource constraint, we find:

ψ0l
1+ψ
t = β

l1−σt+1

1 + xt+1
, 1 + xt+1 ≡ M b

t+1 +Xt+1

M b
t+1

,

or, after solving in terms of lt+1, with a constant money growth rate:

lt+1 =

·
ψ0
1 + x

β

¸ 1
1−σ
(lt)

1+ψ
1−σ .
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In this example, there is a unique steady state, and that steady state is indeterminate if,
and only if,

σ ≥ ψ + 2.

In this case, ¯̄̄̄
1 + ψ

1− σ

¯̄̄̄
< 1,

so the map cuts the 450 from above at the steady state.
The equilibrium rate of interest is given by:

1 +Rt =
1

ψ0
l
−(ψ+σ)
t .

The intuition for the multiplicity of equilibria in the neighborhood of steady state is
as follows. Consider the steady state equilibrium itself. That obviously involves constant
everything. Now, suppose low current employment were an equilibrium. In this economy,
this can only happen if the nominal rate of interest were high. But, if the nominal rate
of interest is high, then (as long as the real rate is high too), people will choose a high
consumption growth rate. That is, employment in the next period has to be relatively high.
For that to be true requires that next period’s interest rate is low. If that corresponds to a
low real rate, then, consumption growth starting in the next period has to be low.
Notice that in this model, indeterminacy is less likely the greater is ψ. This corresponds

to a low labor supply elasticity. In this case, fluctuations in demand for labor arising from
fluctuations in the nominal interest rate cannot induce substantial fluctations in employment.

B.2. Money in the Utility Function

We now consider an alternative version of the model, in which the reason Mt is set aside
is that it appears in the utility function. We drop the cash in advance constraint on the
household. The new preferences have the following form:

∞X
t=0

βtu(ct, lt,
Mt

Pt
),

where

u(c, l,
M

P
) =

c1−σ

1− σ
− ψ0

l1+ψ

1 + ψ
− υ

¡
Pc
M

¢1−σq
1− σq

.
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The cash evolution equation is the same as before. The Lagrangian representation of the
household problem is:

∞X
t=0

βt{u(ct, lt, Mt

Pt
)

+λt
£
(1 +Rt)(M

b
t −Mt +Xt) +Mt +Wtlt − Ptct −M b

t+1

¤}
The first order condition for ct is:

c−σt − υc
−σq
t

µ
Pt

Mt

¶1−σq
− λtPt = 0.

The first order condition for lt is:

−ψ0lψt + λtWt = 0

The first order condition for M b
t+1 is:

−λt + βλt+1(1 +Rt+1) = 0

Note that it is next period’s interest rate that enters the intertemporal Euler equation. This
reflects that consumption is a credit good in this economy. That is, purchasing a good in
period t does not entail setting aside cash in period t and therefore losing period t interest.
The first order condition for Mt is:

υ (Ptct)
1−σq Mσq−2

t − λtRt = 0.

Substituting out for the multiplier, these reduce to:

c−σt − υc
−σq
t

µ
Pt

Mt

¶1−σq
− ψ0l

ψ
t

Pt

Wt
= 0. (B.2)

υ (Ptct)
1−σq Mσq−2

t − ψ0l
ψ
t

Rt

Wt
= 0. (B.3)

lψt
Wt

= β
lψt+1
Wt+1

(1 +Rt+1) (B.4)
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The money demand equation here is obtained by substituting out for λt from the consumption
first order condition into the Mt first order condition:

υ (ct)
1−σq ¡mb

tmt

¢σq−2
c−σt − υc

−σq
t

¡
mb

tmt

¢σq−1 = Rt

The interest elasticity of money demand is

η = −d log
¡
mb

tmt

¢
d logRt

=
\¡mb

tmt

¢
R̂t

,

holding fixed ct. Expanding the money demand equation:

\
υ (ct)

1−σq ¡mb
tmt

¢σq−2 − · \
c−σt − υc

−σq
t

¡
mb

tmt

¢σq−1¸ = R̂t.

or, "
(σq − 2) +

υc−σq
¡
mbm

¢σq−1 (σq − 1)
c−σ − υc−σq (mbm)σq−1

#
\¡mb

tmt

¢
= R̂t,

or, using (B.2), "
(σq − 2) +

υc−σq
¡
mbm

¢σq−1 (σq − 1)
ψ0lψ/w

#
\¡mb

tmt

¢
= R̂t,

so that the elasticity is:

η =
1

2− σq

1

1 + σq−1
σq−2

υc−σq(mbm)
σq−1

ψ0lψ/w

=
1

2− σq

1

1 + σq−1
σq−2

υl−(σq+ψ)(mbm)
σq−1

(1+R)ψ0

=
1

2− σq + (1− σq)
υl−(σq+ψ)(mbm)

σq−1

(1+R)ψ0

Note that this is guaranteed to be positive only if σq ≤ 1. If σq ≥ 2, then the elasticity is
negative.
The firms and technology are just like in the previous example. That is, the resource

constraint is:
ct = lt
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and the firms’ efficiency condition is:

(1 +Rt)Wt

Pt
= 1.

In addition, loan market clearing requires:

M b
t −Mt +Xt =Wtlt,

Let’s convert all these equations into real terms. Let

mt =
Mt

M b
t

, mb
t =

M b
t

Pt
, 1 + xt =

M b
t+1

M b
t

, wt =
Wt

Pt
.

Rewriting (B.2):

c−σt − υc
−σq
t

µ
1

mb
tmt

¶1−σq
− ψ0l

ψ
t

1

wt
= 0. (B.5)

Rewriting (B.3):

υ

µ
ct

mtmb
t

¶1−σq 1

mtmb
t

− ψ0l
ψ
t

Rt

wt
= 0. (B.6)

Rewriting (B.4):

l1+ψt

lt+1Wt+1

ltWt
= βl1+ψt+1 (1 +Rt+1),

or, after substituting from the loan market clearing condition:

l1+ψt (1 + xt)

1−mt + xt
=

βl1+ψt+1 (1 +Rt+1)

1−mt+1 + xt+1
. (B.7)

The firm first order condition is:

(1 +Rt)wt = 1. (B.8)

Also, the loan market clearing condition is:

mb
t (1−mt + xt) = wtlt (B.9)

The equations available to us are the resource constraint, ct = lt, and the 5: (B.5)-(B.9).
The variables to be determined are 5: lt, wt, Rt, m

b
t , mt. The strategy is to use (B.5), (B.6),
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(B.7), (B.8) to define a mapping from lt to wt, Rt, m
b
t and mt.With Rt+1 and mt+1 functions

(hopefully, they’re not correspondences!) of lt+1 and mt a function of lt, (B.7) becomes a
first order difference equation in lt and lt+1.
Substitute out for wt from (B.8) into (B.5), (B.6), (B.7), and replace ct by lt to obtain:

l−σt − υl
−σq
t

µ
1

mb
tmt

¶1−σq
− ψ0l

ψ
t (1 +Rt) = 0

υ

µ
lt

mtmb
t

¶1−σq 1

mtmb
t

− ψ0l
ψ
t (1 +Rt)Rt = 0

(1 +Rt) =
lt

mb
t (1−mt + xt)

(B.10)

For given lt, this represents three equations in mb
t , mt and Rt. We can substitute out for Rt

using the last equation:

l−σt − υl
−σq
t

¡
mb

tmt

¢σq−1
=

ψ0l
1+ψ
t

mb
t (1−mt + xt)

υ

µ
mt

lt

¶σq−1 ¡mb
t

¢σq
mt

= ψ0l
ψ
t

lt
(1−mt + xt)

·
lt

(1−mt + xt)
−mb

t

¸
The second equation implies a unique mb

t for each fixed mt. To see this, note that the right
side is strictly decreasing inmb, while the left side is strictly increasing, for σq > 1. Also, note
that the left side is strictly smaller than the right at mb = 0, while at mb = l/(1−m+x) > 0
the left side is bigger than the right. There must be a unique intersection, for each possible
lt,mt. The first equation then can be thought of as a single non-linear equation inmt. Suppose
there is a unique solution. Existence and uniqueness is easy to check numerically for given
values of the model parameters, since mt is constrained to the compact set, [0, 1].
Suppose xt = x for all t. We now have a mapping, mb = mb(l) and m = m(l). Equation

(B.10) can be used to define a mapping, R = R(l). Taken together, these results imply that
(B.7) can be written:

B(l) = A(l0).

This implicitly defines a map from l to l0. The way to evaluate it numerically is to select an
arbitrary value of l, say l̄, for which B exists. Then, find l0 such that A(l0) = B(l̄).
It is useful to have the steady state for l. From (B.7), we have

1 + x

β
= 1 +R
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The steady state value of l is and l∗ such that

1 +R(l∗) =
1 + x

β
.

We found numerically that existence of a steady state is not assured for all parameter values.
We constructed an example with

σq = 2, σ = 1, ψ0 = 1, ψ = 1, x = 0.015, υ = 0.05, β =
1 + x

1 +R∗
.

The steady states are:

R∗ = 0.07708942392812

l∗ = 0.7760

mb,∗ = 6.08, m∗ = 0.897.

The money demand elasticity, η, is −1.85 for this example. This is obviously undesirable,
since the money demand curve slopes up in this case.
The following figure displays a graph of the equilibrium difference equation, against the

450 degree line. Note how the equilibrium difference equation cuts the 450 from above. This
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equilibrium is indeterminate.
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l(t)

l(t
+1

)

We now consider a second example, one in which σq = 1. Also, we set l
∗ = 0.70 and found

a steady state which rationalizes this by computing R(l∗) = 0.93877551020408, and then
finding the value of β such that β = (1+x)/(1+R(l∗)). In this case, β = 0.52352631578947.
These are obviously a very high interest rate, and low value for β. Still, the exercise is
interesting, because the money demand elasticity is now unity, i.e., η = 1. The equilibrium
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difference equation for this example is displayed in the following figure:
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)

The curved line is the equilibrium difference equation. Note how now it cuts the 450 line
from below, indicating that the steady state is determinate.
We can also evaluate determinacy of the steady state by differentiating the equilibrium

difference equation in the neighborhood of steady state. Thus, totaly differentiating the
equations that characterize the equilibrium:

−σl−σ l̂t + υl−σq
µ

1

mbm

¶1−σq h
σq l̂t + (1− σq)

¡
m̂b

t + m̂t

¢i
= ψ0l

ψ(1 +R)
h
ψl̂t + \(1 +Rt)

i

(1− σq)
h
l̂t − m̂t − m̂b

t

i
− m̂t − m̂b

t = ψl̂t + \(1 +Rt) + R̂t

\(1 +Rt) = l̂t − m̂b
t − \(1−mt + xt)
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Substituting:

−σl−σ l̂t+υl−σq
µ

1

mbm

¶1−σq h
σq l̂t + (1− σq)

¡
m̂b

t + m̂t

¢i
= ψ0l

ψ(1+R)
h
ψl̂t + l̂t − m̂b

t − \(1−mt + xt)
i

(1− σq)
h
l̂t − m̂t − m̂b

t

i
− m̂t − m̂b

t = ψl̂t + l̂t − m̂b
t − \(1−mt + xt) + R̂t

But,

\(1−mt + xt) =
−mm̂t

1−m+ x
so that,

−σl−σ l̂t + υl−σq
µ

1

mbm

¶1−σq h
σq l̂t + (1− σq)

¡
m̂b

t + m̂t

¢i
= ψ0l

ψ(1 +R)

·
ψl̂t + l̂t − m̂b

t +
mm̂t

1−m+ x

¸
(B.11)

and

(1− σq)
h
l̂t − m̂t − m̂b

t

i
− m̂t − m̂b

t = ψl̂t + l̂t − m̂b
t +

mm̂t

1−m+ x
+
1 +R

R

·
l̂t − m̂b

t +
mm̂t

1−m+ x

¸
(B.12)

In the last expression, we have used

\(1 +Rt) =
RR̂t

1 +R
,

so that

R̂t =
1 +R

R

·
l̂t − m̂b

t +
mm̂t

1−m+ x

¸
Collecting terms in (B.11):

l̂t

"
−σl−σ + υl−σq

µ
1

mbm

¶1−σq
σq − ψ0l

ψ(1 +R) (1 + ψ)

#
+ m̂b

t

"
(1− σq) υl

−σq
µ

1

mbm

¶1−σq
+ ψ0l

ψ(1 +R

+m̂t

"
(1− σq) υl

−σq
µ

1

mbm

¶1−σq
− ψ0l

ψ(1 +R)
m

1−m+

Collecting terms in (B.12):

l̂t

·
(1− σq)− (1 + ψ)− 1 +R

R

¸
+ m̂t

·
− (1− σq)− 1− m

1−m+ x
− 1 +R

R

m

1−m+ x

¸
+m̂b

t

·
− (1− σq)− 1 + 1 + 1 +R

R

¸
= 0
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Write these two equations as:·
a0 a1
b0 b1

¸µ
m̂b

t

m̂t

¶
=

µ
a2
b2

¶
l̂t,

where

a0 = (1− σq) υl
−σq
µ

1

mbm

¶1−σq
+ ψ0l

ψ(1 +R)

a1 = (1− σq) υl
−σq
µ

1

mbm

¶1−σq
− ψ0l

ψ(1 +R)
m

1−m+ x

a2 = −
"
−σl−σ + υl−σq

µ
1

mbm

¶1−σq
σq − ψ0l

ψ(1 +R) (1 + ψ)

#
b0 = − (1− σq)− 1 + 1 + 1 +R

R

b1 = − (1− σq)− 1− m

1−m+ x
− 1 +R

R

m

1−m+ x

b2 = −
·
(1− σq)− (1 + ψ)− 1 +R

R

¸
so that µ

m̂b
t

m̂t

¶
=

·
a0 a1
b0 b1

¸−1µ
a2
b2

¶
l̂t =

µ
a3
b3

¶
l̂t

Expanding (B.7):

(1 + ψ) l̂t +
mm̂t

1−m+ x
= (1 + ψ) l̂t+1 + l̂t+1 − m̂b

t+1 +
2mm̂t+1

1−m+ x
,

or, ·
(1 + ψ) +

mb3
1−m+ x

¸
l̂t =

·
(1 + ψ) + 1− a3 +

2mb3
1−m+ x

¸
l̂t+1,

or,

l̂t+1 =
(1 + ψ) + mb3

1−m+x
(1 + ψ) + 1− a3 +

2mb3
1−m+x

l̂t

= f l̂t,

where

f =
(1 + ψ) + mb3

1−m+x
(1 + ψ) + 1− a3 +

2mb3
1−m+x

.

Determinacy requires |f | > 1. The equilibrium is (locally) indeterminate if |f | < 1.
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C. Appendix 3: Calvo Pricing When Steady State Inflation is Non-
Zero and Non-Optimizers Can’t Change Their Price

This section works out the first order condition for Calvo price-setters when non-optimizers
can’t change their price. Let the price set by a firm that reoptimizes in period t be denoted
P̃t. Its price in period t+ 1 in case it does not reoptimize then is P̃t. In period t+ j it is P̃t,
j = 1, 2, ... , and so on. The firm’s objective is:

Et

∞X
j=0

(βξp)
j λt+j[

³
P̃t

´1− λf
λf−1 Yt+jP

λf
λf−1
t+j −MCt+j

Ã
Yt+jP

λf
λf−1
t+j

³
P̃t

´− λf
λf−1 + φzt+j

!
].

Differentiating this expression with respect to P̃t :

Et

∞X
j=0

(βξp)
j λt+j[

µ
1− λf

λf − 1
¶³

P̃t

´− λf
λf−1 Yt+jP

λf
λf−1
t+j

−
µ
− λf
λf − 1

¶
MCt+jYt+jP

λf
λf−1
t+j

³
P̃t

´− λf
λf−1

−1
] = 0

Multiply by −
³
P̃t

´ λf
λf−1

+1

(λf − 1)

Et

∞X
j=0

(βξp)
j λt+j

"
P̃tYt+jP

λf
λf−1
t+j − λfst+jYt+jP

λf
λf−1

+1

t+j

#
= 0.

Et

∞X
j=0

(βξp)
j (λt+jPt+j)Yt+jP

λf
λf−1
t+j

h
P̃tP

−1
t+j − λfst+j

i
= 0.

Et

∞X
j=0

(βξp)
j λz,t+jyt+j (Ptπt+1...πt+j)

λf
λf−1

·
p̃t

πt+1...πt+j
− λfst+j

¸
= 0,

where λz,t+j = λt+jPt+jzt+j, and yt+j = Yt+j/zt+j and it is understood that when j = 0,
πt+1...πt+j = 1. Finally,

Et

∞X
j=0

(βξp)
j λz,t+jyt+j (πt+1...πt+j)

λf
λf−1

·
p̃t

πt+1...πt+j
− λfst+j

¸
= 0. (C.1)
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Now, we proceed to linearize this expression about the steady state of the variables. We
adopt the following convention:

x̂t =
dxt
x
,

where x is the steady state value of xt.
First, we compute the value of p̃. Replacing the variables by their steady state values, we

obtain: ∞X
j=0

(βξp)
j π̄

j
λf

λf−1
·
p̃t
π̄j
− λfs

¸
= 0,

or

p̃t

∞X
j=0

(βξp)
j π̄

j

µ
λf

λf−1
−1
¶
= λfs

∞X
j=0

(βξp)
j π̄

j
λf

λf−1 ,

or,

p̃ = λfs

1

1−βξpπ̄
λf

λf−1

1

1−βξpπ̄
1

λf−1

= λfs
1− βξpπ̄

1
λf−1

1− βξpπ̄
λf

λf−1
.

Note that when π̄ = 1, p̃ = λfs. Also, when π̄ > 1, then p̃ > λfs. This is to be expected.
When π̄ > 1, then in steady state the firm that optimizes in a static sense, by setting
p̃ = λfs systematically undershoots its desired price in the future in the event that it cannot
reoptimize then. So, it ‘splits the difference’ by setting its price a little too high in the period
when it has the opportunity to reoptimize. Note that for p̃ to be a finite number, we must
have

βξpπ̄
λf

λf−1 < 1

or,

π̄ <

µ
1

βξp

¶λf−1
λf

.

Let’s see how tight this constraint is. We minimize the right hand side by setting β and ξp
to their biggest reasonable values.

Table: upper bounds on quarterly inflation
λf ξp = 0.75 ξp = 0.50
1.02 1.0059 1.0139
1.50 1.1043 1.2641
1.30 1.0711 1.1762
1.10 1.0274 1.066
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We view these as reasonably high upper bounds on inflation, particularly since ξp = 0.50
seems like an empirically reasonable estimate.
Now we proceed to linearize the first order condition of the firm. For convenience, we

repeat its first order condition here:

∞X
j=0

(βξp)
j λz,t+jyt+j (πt+1...πt+j)

λf
λf−1

·
p̃t

πt+1...πt+j
− λfst+j

¸
= 0.

It is useful to write this expression out:

λz,tyt [p̃t − λfst]

+ (βξp)λz,t+1yt+1 (πt+1)
λf

λf−1
·

p̃t
πt+1

− λfst+1

¸
+(βξp)

2 λz,t+2yt+2 (πt+1πt+2)
λf

λf−1
·

p̃t
πt+1πt+2

− λfst+2

¸
+(βξp)

3 λz,t+3yt+3 (πt+1πt+2πt+3)
λf

λf−1
·

p̃t
πt+1πt+2πt+3

− λfst+3

¸
+....

Differentiating with respect to st+j :

− (βξp)j λzy
¡
πj
¢ λf
λf−1 λfsŝt+j

Differentiating with respect to πt+1 :

π̄π̂t+1{(βξp)λz,t+1yt+1 λf
λf − 1 (πt+1)

λf
λf−1

−1
·

p̃t
πt+1

− λfst+1

¸
− (βξp)λz,t+1yt+1π

λf
λf−1
t+1

p̃t
π2t+1

+(βξp)
2 λz,t+2yt+2

λf
λf − 1π

λf
λf−1

−1
t+1 (πt+2)

λf
λf−1

·
p̃t

πt+1πt+2
− λfst+2

¸
− (βξp)2 λz,t+2yt+2 (πt+1πt+2)

λf
λf−1

p̃t
π2t+1πt+2

+(βξp)
3 λz,t+3yt+3

λf
λf − 1π

λf
λf−1

−1
t+1 (πt+2πt+3)

λf
λf−1

·
p̃t

πt+1πt+2πt+3
− λfst+3

¸
− (βξp)3 λz,t+3yt+3 (πt+1πt+2πt+3)

λf
λf−1

p̃t
π2t+1πt+2πt+3

+....}
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Evaluate the expression in braces in steady state, and multiply through by π̄ :

π̂t+1{(βξp)λzy λf
λf − 1 (π̄)

λf
λf−1

·
p̃

π
− λfs

¸
− (βξp)λzyπ

λf
λf−1

p̃

π

+(βξp)
2 λzy

λf
λf − 1

¡
π2
¢ λf
λf−1

·
p̃

π2
− λfs

¸
− (βξp)2 λzy

¡
π2
¢ λf
λf−1

p̃

π2

+(βξp)
3 λzy

λf
λf − 1

¡
π3
¢ λf
λf−1

·
p̃

π3
− λfst

¸
− (βξp)3 λzy

¡
π3
¢ λf
λf−1

p̃

π3
+ ....}

or,

π̂t+1

∞X
j=1

½
(βξp)

j λzy
λf

λf − 1
¡
πj
¢ λf
λf−1

·
p̃

πj
− λfs

¸
− (βξp)j λzy

¡
πj
¢ λf
λf−1

p̃

πj

¾

= π̂t+1λzy

(·
λf

λf − 1 − 1
¸
p̃
∞X
j=1

(βξp)
j ¡πj¢µ λf

λf−1
−1
¶
− λf

λf − 1λfs
∞X
j=1

(βξp)
j ¡πj¢ λf

λf−1

)

= π̂t+1λzy


·

λf
λf − 1 − 1

¸
p̃

βξpπ
1

λf−1

1− βξpπ
1

λf−1
− λf

λf − 1λfs
βξpπ

λf
λf−1

1− βξpπ
λf

λf−1


= π̂t+1

λzy

λf − 1

p̃
βξpπ

1
λf−1

1− βξpπ
1

λf−1
− λfλfs

βξpπ
λf

λf−1

1− βξpπ
λf

λf−1


= π̂t+1

λzy

λf − 1

λfs
1− βξpπ̄

1
λf−1

1− βξpπ̄
λf

λf−1

βξpπ
1

λf−1

1− βξpπ
1

λf−1
− λfλfs

βξpπ
λf

λf−1

1− βξpπ
λf

λf−1


= π̂t+1

λzyλfs

λf − 1

 βξpπ
1

λf−1

1− βξpπ̄
λf

λf−1
− λf

βξpπ
λf

λf−1

1− βξpπ
λf

λf−1


= π̂t+1

λzyλfs

λf − 1
βξp

1− βξpπ̄
λf

λf−1

½
π

1
λf−1 − λfπ

λf
λf−1

¾

We conjecture that the derivative corresponding to πt+i is:

π̂t+i
λzyλfs

λf − 1
1

1− βξpπ̄
λf

λf−1

(³
βξpπ

1
λf−1

´i
− λf

µ
βξpπ

λf
λf−1

¶i
)
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Differentiation with respect to λz,t+j :

(βξp)
j λzy

µ
π̄
j

λf
λf−1

¶·
p̃

π̄j
− λfs

¸
λ̂z,t+j

Differentiation with respect to yt+j :

(βξp)
j λzy

µ
π̄
j

λf
λf−1

¶·
p̃

π̄j
− λfs

¸
ŷt+j

Differentiation with respect to p̃t :

∞X
j=0

(βξp)
j λzy

¡
π̄j
¢ 1
λf−1 p̃b̃pt =

λzyp̃

1− βξpπ̄
1

λf−1
b̃pt

=
λzy

1− βξpπ̄
1

λf−1
λfs

1− βξpπ̄
1

λf−1

1− βξpπ̄
λf

λf−1

b̃pt
=

λzyλfs

1− βξpπ̄
λf

λf−1

b̃pt
The linearization of the firm’s Euler equation is:

λzyλfs

1− βξpπ̄
λf

λf−1

b̃pt + ∞X
j=1

π̂t+j
λzyλfs

λf − 1
1

1− βξpπ̄
λf

λf−1

(³
βξpπ

1
λf−1

´j
− λf

µ
βξpπ

λf
λf−1

¶j
)

+
∞X
j=0

(βξp)
j λzy

µ
π̄
j

λf
λf−1

¶·
p̃

π̄j
− λfs

¸³
λ̂z,t+j + ŷt+j

´
−

∞X
j=0

(βξp)
j λzy

¡
πj
¢ λf
λf−1 λfsŝt+j = 0

Solving this for b̃pt :
b̃pt =

1− βξpπ̄
λf

λf−1

λzyλfs
{
∞X
j=1

π̂t+j
λzyλfs

λf − 1
1

1− βξpπ̄
λf

λf−1

"
λf

µ
βξpπ

λf
λf−1

¶j

−
³
βξpπ

1
λf−1

´j#

+
∞X
j=0

(βξp)
j λzy

µ
π̄
j

λf
λf−1

¶·
λfs− p̃

π̄j

¸³
λ̂z,t+j + ŷt+j

´
+

∞X
j=0

(βξp)
j λzy

¡
πj
¢ λf
λf−1 λfsŝt+j}
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or,

b̃pt =
1

λf − 1
∞X
j=1

"
λf

µ
βξpπ

λf
λf−1

¶j

−
³
βξpπ

1
λf−1

´j#
π̂t+j

+
1− βξpπ̄

λf
λf−1

λfs

∞X
j=0

(βξp)
j

µ
π̄
j

λf
λf−1

¶·
λfs− p̃

π̄j

¸³
λ̂z,t+j + ŷt+j

´
+

µ
1− βξpπ̄

λf
λf−1

¶
λzy

∞X
j=0

(βξp)
j ¡πj¢ λf

λf−1 ŝt+j

The aggregate price index is:

Pt =

·
(1− ξp)

³
P̃t

´ 1
1−λf + ξp (Pt−1)

1
1−λf

¸1−λf
.

Dividing by Pt :

1 =

"
(1− ξp) (p̃t)

1
1−λf + ξp

µ
1

πt

¶ 1
1−λf

#1−λf
. (C.2)

Linearizing:

0 =
1

1− λf
(1− ξp) (p̃t)

1
1−λf

−1
p̃b̃pt − ξp

1

1− λf

µ
1

πt

¶ 1
1−λf

−1
1

π2t
ππ̂t

Evaluating the derivatives in steady state,

0 = (1− ξp) (p̃)
1

1−λf b̃pt − ξp

µ
1

πt

¶ 1
1−λf

π̂t

or, Ã
1− ξp

µ
1

π

¶ 1
1−λf

!b̃pt = ξp

µ
1

π

¶ 1
1−λf

π̂t,

or,

b̃pt = ξpπ
1

λf−1

1− ξpπ
1

λf−1
π̂t
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Combining the previous expression with the linearized first order condition for b̃pt, we
obtain:

ξpπ
1

λf−1

1− ξpπ
1

λf−1
π̂t =

1

λf − 1
∞X
j=1

"
λf

µ
βξpπ

λf
λf−1

¶j

−
³
βξpπ

1
λf−1

´j#
π̂t+j

+
1− βξpπ̄

λf
λf−1

λfs

∞X
j=0

(βξp)
j

µ
π̄
j

λf
λf−1

¶·
λfs− p̃

π̄j

¸³
λ̂z,t+j + ŷt+j

´
+

µ
1− βξpπ̄

λf
λf−1

¶
λzy

∞X
j=0

(βξp)
j ¡πj¢ λf

λf−1 ŝt+j

or,

π̂t =
1

λf − 1
1− ξpπ

1
λf−1

ξpπ
1

λf−1

∞X
j=1

"
λf

µ
βξpπ

λf
λf−1

¶j

−
³
βξpπ

1
λf−1

´j#
π̂t+j

+
1− βξpπ̄

λf
λf−1

λfs

1− ξpπ
1

λf−1

ξpπ
1

λf−1

∞X
j=0

"µ
βξpπ

λf
λf−1

¶j

λfs−
³
βξpπ

1
λf−1

´j
p̃

#³
λ̂z,t+j + ŷt+j

´

+

µ
1− βξpπ̄

λf
λf−1

¶
1− ξpπ

1
λf−1

ξpπ
1

λf−1
λzy

∞X
j=0

(βξp)
j ¡πj¢ λf

λf−1 ŝt+j

or, setting

χ = βξpπ
λf

λf−1 , γ = βξpπ
1

λf−1 , χ = γ/π

a =
1− ξpπ

1
λf−1

ξpπ
1

λf−1
, b = 1− βξpπ̄

λf
λf−1

π̂t =
1

λf − 1a
∞X
j=1

£
λfχ

j − γj
¤
π̂t+j + baλzy

∞X
j=0

χj ŝt+j

+ba
∞X
j=0

·
χj − γj

p̃

λfs

¸³
λ̂z,t+j + ŷt+j

´
.
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Writing this in lag-operator notation:·
1− 1

λf − 1a
µ

λfχL
−1

1− χL−1
− γL−1

1− γL−1

¶¸
π̂t =

+
baλzy

1− χL−1
ŝt + ba

·
1

1− χL−1
− 1

1− γL−1
p̃

λfs

¸³
λ̂z,t + ŷt

´
Multiply both sides by (1− χL−1) (1− γL−1) :·¡

1− χL−1
¢ ¡
1− γL−1

¢− 1

λf − 1a
µ
(1− γL−1)λfχL−1

1
− (1− χL−1) γL−1

1

¶¸
π̂t =

+
(1− γL−1) baλzy

1
ŝt + ba

·
(1− γL−1)

1
− (1− χL−1)

1

p̃

λfs

¸³
λ̂z,t + ŷt

´
·
1− (χ+ γ)L−1 + χγL−2 − 1

λf − 1a
µ
(1− γL−1)λfχL−1

1
− (1− χL−1) γL−1

1

¶¸
π̂t =

+
(1− γL−1) baλzy

1
ŝt + ba

·
(1− γL−1)

1
− (1− χL−1)

1

p̃

λfs

¸³
λ̂z,t + ŷt

´
or,

π̂t =

·
(χ+ γ)− χγL−1 +

1

λf − 1a
µ
(1− γL−1)λfχ

1
− (1− χL−1) γ

1

¶¸
π̂t+1

+
(1− γL−1) baλzy

1
ŝt + ba

·
(1− γL−1)

1
− (1− χL−1)

1

p̃

λfs

¸³
λ̂z,t + ŷt

´

π̂t =

·
(χ+ γ) +

1

λf − 1a (λfχ− γ)

¸
π̂t+1 − χγ [1 + a] π̂t+2

+baλzy (ŝt − γŝt+1) + ba
h³

λ̂z,t + ŷt
´
− γ

³
λ̂z,t+1 + ŷt+1

´i
− p̃

λfs
ba
h³

λ̂z,t + ŷt
´
− χ

³
λ̂z,t+1 + ŷt+1

´i
The final, reduced form representation of inflation is:

π̂t = γ

"
(
1

π
+ 1) +

λf
π
− 1

λf − 1a
#
π̂t+1 − γγ

π
[1 + a] π̂t+2

+baλzy (ŝt − γŝt+1) + ba
h³

λ̂z,t + ŷt
´
− γ

³
λ̂z,t+1 + ŷt+1

´i
− p̃

λfs
ba
h³

λ̂z,t + ŷt
´
− γ

π

³
λ̂z,t+1 + ŷt+1

´i
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D. Appendix 4: An Overlapping Generations Example

Here we work on a very simple dynamic economy to try and get a handle on the nature of
the optimal contract when there is aggregate uncertainty.

D.1. Households

Let the utility of the generation born in period t be given by:

u(cyt , lt, c
o
t ),

where cyt and c
o
t denote consumption when young and old, respectively, and lt denotes hours

worked. People only work when young. The budget constraint when young is

cyt + st = wtlt,

where st denotes saving. The budget constraint when old is:

cot = (1 +Rt)st,

where Rt denotes the rate of return, from t to t+ 1 on savings in period t.

D.2. Capital Producers

Capital producers buy the outstanding stock of capital in period t, (1−δ)Kt, and investment
goods, It, and produce new capital, Kt+1, using the following capital accumulation equation:

Kt+1 = (1− δ)Kt + It.

They make zero profits. The price of capital is unity in each date. This reflects the linearity
of the capital accumulation technology and that the marginal rate of technical substitution
between investment goods and consumption goods is unity.

D.3. Entrepreneurs

Entrepreneurs at the end of period t purchase the outstanding stock of capital, Kt+1, using
net worth, Nt+1, and loans. When an entreneur purchases Kt+1, ωKt+1 is available for use,
ω ≥ 0. Here, ω is iid across entrepreneurs and over time, with distribution function, F (ω),
and mean unity. The entrepreneurs rent their capital in a homogeneous capital market in
period t+1, where they earn rt+1ωKt+1. At the end of period t+1, they sell the undepreciated
component of their capital, (1−δ)ωKt+1, to the capital producers, and pay back their loans.
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The rate of return on capital enjoyed by the entrepreneurs of type ω is (1 +Rk
t )ω where:

1 +Rk
t = rt + 1− δ,

where we have imposed that the price of capital is always unity. Later, we will see that in
any equilibrium, rt = θt, so that

1 +Rk
t = θt + 1− δ

D.4. Lending Contract with Entrepreneur

There are banks which take the savings of households and lend them to entrepreneurs. We
adopt the usual CSV setup. So, zero profits for the representative bank in period t is:

[1− F (ω̄t)] ω̄t + (1− µ)

Z ω̄t

0

ωdF (ω) =
(1 +Rt)st
θt + 1− δ

The bank takes Rt and θt as given and chooses st and ω̄t.
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