
SOLVING LINEAR RATIONAL EXPECTATIONS MODELS

CHRISTOPHER A. SIMS

1. GENERAL FORM OF THE MODELS

The models we are interested in can be cast in the form

Γ0y(t) = Γ1y(t −1)+C +Ψz(t)+Πη(t) (1)

t = 1, . . . ,T , whereC is a vector of constants,z(t) is an exogenously evolving, possi-
bly serially correlated, random disturbance, andη(t) is an expectational error, satisfying
Etη(t +1) = 0, all t. Theη(t) terms are not given exogenously, but instead are treated as
determined as part of the model solution. Models with more lags, or with lagged expec-
tations, or with expectations of more distant future values, can be accommodated in this
framework by expanding the y vector. This paper’s analysis is similar to that of Blanchard
and Kahn (1980) with four important differences:

(i) They assume regularity conditions as they proceed that leave some models encoun-
tered in practice outside the range of their analysis, while this paper covers all linear
models with expectational error terms.

(ii) They require that the analyst specify which elements of the y vector are prede-
termined, while this paper recognizes that the structure of theΓ0, Γ1, Ψ, andΠ
matrices fixes the list of predetermined variables. Our approach therefore handles
automatically situations where linear combinations of variables, not individual vari-
ables, are predetermined.

(iii) This paper makes an explicit extension to continuous time, which raises some dis-
tinct analytic difficulties.

(iv) They assume that boundary conditions at infinity are given in the form of a maximal
rate of growth for any element of they vector, whereas this paper recognizes that
in general only certain linear combinations of variables are required to grow at
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bounded rates and that different linear combinations may have different growth
rate restrictions.

There are other more recent papers dealing with models like these (King and Watson,
1997, 1998; Anderson, 1997; Klein, 1997) that, like this one, expand the range of models
covered beyond what is covered in Blanchard and Kahn’s paper, particularly to include
singularΓ0 cases. All these papers, though, follow Blanchard and Kahn in requiring the
specification of “jump" and “predetermined"variables, rather than recognizing that in equi-
librium models expectational residuals more naturally are attached to equations. Also, only
Anderson (1997) has discussed the continuous time case.

Less fundamentally, this paper uses a notation in which time arguments or subscripts
relate consistently to the information structure: variables datedt are always known att.
Blanchard and Kahn’s use of a different convention often leads to confusion in the applica-
tion of their method to complex models.

An instructive example to illustrate how we get a model into the form (1) is a model of
overlapping contracts in wage setting along the lines laid out by Taylor.

w(t) = 1
3Et [W (t)+W (t +1)+W (t +2)]−α(u(t)−un)+ν(t)

W (t) = 1
3 (w(t)+w(t −1)+w(t −2))

u(t) = θu(t −1)+ γW (t)+ µ + ε(t) ,

(2)

whereEtν(t +1) = Etε(t +1) = 0. To cast (2) into the form (1) requires using the expanded
state vector

y(t) =




w(t)
w(t −1)

W (t)
u(t)

EtW (t +1)


 (3)
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With this definition ofy, (2) can be written in the matrix notation of (1), with definitional
equations added, by defining

Γ0 =




0 0 1
3 0 1

3
−1

3 −1
3 1 0 0

0 0 −γ 1 0
0 1 0 0 0
0 0 1 0 0


 , Γ1 =




1 0 −1
3 α 0

0 1
3 0 0 0

0 0 0 0 θ 0
1 0 0 0 0
0 0 0 0 1


 ,

C =




α ·un

0
µ
0
0


 , Ψ =




1 0
0 0
0 1
0 0
0 0


 , Π =




0 1
0 0
0 0
0 0
1 0


 ,

z(t) =
[

ε(t)
ν(t −1)

]
.

(4)

This example illustrates the principle that we can always get a linear model into the
form (1) by replacing terms of the formEtx(t +1) with y(t) = Etx(t + 1) and adding to
the system an equation readingx(t) = y(t −1)+ η(t). When terms of the formEtx(t + s)
appear, we simply make a sequence of such variable and equation creations. It is often
possible to reach the form (1) with fewer new variables by replacing expectations of vari-
ables in equations with actual values of the same variables, while addingη(t) disturbance
terms to the equation. While this approach always produces valid equations, it may lose in-
formation contained in the original system and thereby imply spurious indeterminacy. The
danger arises only in situations where a single equation involves some variables of the form
EtX(t +1) and other variables of the formY (t +1). In this case, dropping theEt operators
from the equation and adding anη(t) error term loses the information that some variables
are entering as actual values and others as expectations.

The formulation that most writers on this subject have used, following Blanchard and
Kahn, is

Γ0Ety(t +1) = Γ1y(t)+C +Ψz(t) . (5)

One then adds conditions that certain variables in they vector are “predetermined", mean-
ing that for themEty(t +1) = y(t +1). The formulation adopted here embodies the useful
notational convention, that all variables datedt are observable att; thus no separate list of
what is predetermined is needed to augment the information that can be read off from the
equations themselves. It also allows straightforward handling of the commonly occurring
systems in which a variableyi(t) and its expectationEt−1yi(t) both appear, with the samet
argument, in the same or different equations. To get such systems into the Blanchard-Kahn
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form requires introducing an extended state vector. For example, in our simple overlapping
contract model (2) above, the fact thatW appears as an expected value in the first equation
and/or in the dummy equation defining the artificial state variableζ (t) = EtW (t + 1) (the
bottom row of (4)), yet also in two other dynamic equations without any expectation, seems
to require that, to cast the model into standard Blanchard-Quah form, we addw(t −2) and
u(t −1) to the list of variables, with two corresponding additional dummy equations.

Standard difference equations of the form (1) have a single, exogenous disturbance vec-
tor. That is, they haveΓ0 = I andΠ = 0. They can therefore be interpreted as determining
y(t) for t > t0 from given initial conditionsy(t0) and random draws forz(t). In (1), how-
ever, the disturbance vectorΨz(t)+Πη(t) defined in (1) is not exogenously given the way
z(t) itself is. Instead, it depends ony(t) and its expectation, both of which are generally
unknown before we solve the model. Because we need to determineη(t) from z(t) as we
solve the model, we generally need to find a number of additional equations or restrictions
equal to the rank of the matrix in order to obtain a solution.

2. CANONICAL FORMS AND MATRIX DECOMPOSITIONS

Solving a system like (1) subject to restrictions on the rates of growth of components of
its solutions requires breaking its solutions into components with distinct rates of growth.
This is best done with some version of an eigenvalue-eigenvector decomposition. We are
already imposing a somewhat stringent canonical form on the equation system by insisting
that it involve just one lag and just one-step-ahead expectations. Of course as we made clear
in the example above, systems with more lags or with multi-step and lagged expectations
can be transformed into systems of the form given here, but there may be some computa-
tional work in making the transformation. Further tradeoffs between system simplicity and
simplicity of the solution process are possible.

To illustrate this point, we begin by assuming a very stringent canonical form for the
system:Γ0 = I, Etz(t +1) = 0, all t. Systems derived from even moderately large rational
expectation equilibrium models often have singularΓ0 matrices, so that simply “multiply-
ing through byΓ−1

0 " to achieve this canonical form is not possible. In most economic
models, there is little guidance available from theory in specifying properties forz. The
requirement thatEtz(t +1) = 0 is therefore extremely restrictive.

On the other hand, it is usually possible, by solving for some variables in terms of others
and thereby reducing system size, to manipulate the system into a form with non-singular
Γ0. And it is common practice to make a model tractable by assuming a simple flexible
parametric form for the process generating exogenous variables, so that the exogenous vari-
ables themselves are incorporated into they vector, while the serially uncorrelatedz vector
in the canonical form is just the disturbance vector in the process generating the exogenous
variables. So this initial very simple canonical form is in some sense not restrictive.
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Nonetheless, getting the system into a form with non-singularΓ0 may involve very sub-
stantial computational work if it is done ad hoc, on an even moderately large system. And
it is often useful to display the dependence ofy on current, past, and expected future exoge-
nous variables directly, rather than to make precise assumptions on how expected futurez’s
depend on current and pastz’s. For these reasons, we will below display solution methods
that work on more general canonical forms. While these more general solution methods
are themselves harder to understand, they shift the burden of analysis from the individual
economist/model-solver toward the computer, and are therefore useful.

3. USING THE JORDAN DECOMPOSITION WITH SERIALLY UNCORRELATED SHOCKS

3.1. Discrete time. In this section we consider the special case of

y(t) = Γ1y(t −1)+C +Ψz(t)+Πη(t) , (6)

with Etz(t +1) = 0. The system matrixΓ1 has a Jordan decomposition

Γ1 = PΛP−1 , (7)

whereP is the matrix of right-eigenvectors ofΓ1, P−1 is the matrix of left-eigenvectors,
and Λ has the eigenvalues ofΓ1 on its main diagonal and 0’s everywhere else, except
that it may haveλi,i+1 = 1 in positions where the corresponding diagonal elements satisfy
λii = λi+1,i+1. Multiplying the system on the left byP−1, and definingw = P−1y, we arrive
at

w(t) = Λw(t −1)+P−1C +P−1 · (Ψz(t)+Πη(t)) . (8)

In this setting, we can easily consider non-homogeneous growth rate restrictions. That is,
suppose that we believe that a set of linear combinations of variables,φiy(t), i = 1, . . . ,m,
have bounded growth rates, with possibly different bounding growth rates for eachi. That
is we believe that a solution must satisfy

Es
[
φiy(t)ξ−t

i

] →
t→∞

0 (9)

for eachi ands, with ξi > 1 for everyi. Equation (8) has isolated components of the system
that grow at distinct exponential rates. The matrix has a block- diagonal structure, so that
the system breaks into unrelated components, with a typical block having the form

w j (t) =




λ j 1 0 · · · 0

0 λ j 1
...

...

0 0
... ... 0

...
... . .. λ j 1

0 · · · 0 0 λ j




w j (t −1)+P j·C +P j· · (Ψz(t)+Πη(t)) , (10)
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whereP j· is the block of rows ofP−1 corresponding to thej’th diagonal block of (8). If the
disturbance term (including the combined effects ofz andη on the equation) is zero and
λ j �= 1, this block has the deterministic steady-state solution

w j(t) =
[
I −Λ j

]−1
P j·C , (11)

whereΛ j is the Jordan block displayed in (10). If
∣∣λ j

∣∣ > 1, thenEs
[
w j (t + s)

]
grows in

absolute value at the rate of
∣∣λ j

∣∣t ast → ∞, for any solution other than that given in (11).
Now consider thek’th restriction on growth,

Es [φky(t)]ξ−t
k = φkPEs [w(t)]ξ−t

k

= φkP
[
Λt−s(w(s)− (I −Λ)−1P−1C)+(I −Λ)−1P−1C

]
ξ−t

k → 0. (12)

In order for this condition to hold, every one of the vectorsw j corresponding to a
∣∣λ j

∣∣ > ξk

and to aφkP· j �= 0 must satisfy (11). This is obvious for cases whereΛ j is scalar. When
Λ j is a matrix with ones on the first diagonal above the main diagonal, a somewhat more
elaborate argument is required. We need to observe that we can expand terms of the form
on the right of (12) as

xΛs
jq = λ s

j x ·
(

q+ sλ−1
j q−1 +

s · (s−1)
2

λ−2
j q−2 + . . .+ cn(s)λ−n+1

j q−n+1

)
, (13)

whereck(s) is the(k,s)’th binomial coefficient, i.e.s!
/
((s− k)! · k!), for s � k, and is 0

otherwise, andq−k is the vectorq shifted up byk with the bottom elements filled out with
zeros, i.e.

q−k =


 0

(n−1)×1
I

0
1×1

0
1×(n−1)


 ·q−k+1 . (14)

Using (13), it is straightforward, though still some work, to show that indeed, for (12) to
hold, every one of the vectorsw j corresponding to a

∣∣λ j
∣∣ > ξk and to aφkP· j �= 0 must

satisfy (11).
Of course a problem must have special structure in order for it to turn out that there

is a k, j pair such thatφkP· j = 0. This is the justification for the (potentially misleading)
common practice of assuming that if any linear combination ofy’s is constrained to grow
slower thanξ t , then all roots exceedingξi in absolute value must be suppressed in the
solution. If (11) does hold for allt then we can see from (10) that this entails

P j· · (Ψz+Πη) = 0. (15)

Collecting all the rows ofP−1 corresponding toj’s for which (15) holds into a single matrix
PU · (where the U stands for "unstable"), we can write

PU · (Ψz+Πη) = 0. (16)
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Existence problems arise if the endogenous shocksη cannot adjust to offset the exogenous
shocksz in (16). We might expect this to happen ifPU · has more rows than has columns.
This accounts for the usual notion that there are existence problems if the number of unsta-
ble roots exceeds the number of "jump variables". However, the precise condition is that
columns ofPU ·Π span the space spanned by the columns ofPU ·Ψ, i.e.

span
(
PU ·Ψ

) ⊂ span
(
PU ·Π

)
. (17)

In order for the solution to be unique, it must be that (16) pins down not only the value of
PU ·Πη , but also all the other error terms in the system that are influenced byη . That is,
from knowledge ofPU ·Πη we must be able to determinePS·Πη , wherePS· is made up of
all the rows ofP−1 not included inPU ·. Formally, the solution is unique if and only if

span

(
Π′

(
PS·

)′) ⊂ span
(

Π′ (PU ·)′) . (18)

In this case we will have

PS·Πη = ΦPU ·Πη (19)

for some matrixΦ.
Usually we aim at writing the system in a form that can be simulated from arbitrary

initial conditions, delivering a solution path that does not violate the stability conditions.
We can construct such a system by assembling the equations of the form delivered by the
stability conditions (11), together with the lines of (10) that determinewS, the components
of w not determined by the stability conditions, and use (16) to eliminate dependence onη .
Specifically, we can use the system[

wS (t)
wU (t)

]
=

[
ΛS

0

]
wS(t −1)+

[
PS·C

(I −ΛU)−1PU ·C

]
+

[
I −Φ
0 0

]
P−1Ψz . (20)

To arrive at an equation iny, we usey = Pw to transform (20) into

y(t) = P·SΛSPS·y(t −1)+
(

P·SPS· +P·U (I −ΛU)−1PU ·
)

C

+
(

P·SPS· −P·SΦPU ·
)

Ψz . (21)

Labeling the three matrix coefficients in (21), we can give it the form

y(t) = Θ1y(t −1)+ΘcC +Θzz(t) , (22)

which can in turn be used to characterize the impulse responses ofy, according to

y(t + s)−Ety(t + s) =
s−1

∑
v=0

Θv
1Θzz(t + s− v) . (23)
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Of course to completely characterize the mapping from initial conditions andz realizations
to y, we need in addition to (23) a formula for the predictable part ofy, i.e.

Ety(t + s) = Θs
1y(t)+(I −Θs+1

1 ) · (I −Θ1)
−1ΘCC . (24)

However all the information needed to compute both (23) and (24) is contained in a report
of the coefficient matrices for (21). Note that (21), while it insures that the second row of
(20),

wU(t) = PU ·y(t) = (I −ΛU)−1PU ·C , (25)

holds for allt after the initial datet = 0, it does not in itself impose (25) att = 0, which in
fact is required by the solution.

3.2. Continuous time. In this type of canonical form, the analysis for continuous time is
nearly identical to that for discrete time. The equation we start with is

ẏ = Γ1y+C +Ψz+Πη , (26)

wherez andη are both assumed to be derivatives of martingale processes, i.e. white noise.
Just as in discrete time, we form a Jordan decomposition ofΓ1 of the form (7). Again we
use it to change variables tow = P−1y and split w into componentswS andwU that need not
be suppressed, and need to be suppressed, respectively, to satisfy the stability conditions.
The stability conditions in continuous time are naturally written, analogously to (12),

Es [φky(t)]e−ξkt = φkPEs [w(t)]e−ξkt = φkPeΛ·(t−s) [w(s)−Λ−1P−1C
]

e−ξkt → 0. (27)

The restricted components ofw are then those that correspond both to a non-zeroφkP· j and
to aλ j with real part exceeding the correspondingξk. Once we have partitionedw, P, and
P−1 into S andU components according to this criterion, the analysis proceeds as in the
discrete case, with the conditions for existence and uniqueness applying in unchanged form
— (17) and (18) . The final form of the equation usable for simulation is

ẏ = P·SΛSPS·y+P·SPS·C +P·S
(

PS· −ΦPU ·
)

Ψz . (28)

This equation is usable to compute impulse responses, according to

y(t + s)−Ety(t + s) =
s∫

0

eΘ1vΘzz(t + s− v)ds (29)

and the deterministic part ofy, according to

Ety(t + s) = eΘ1sy(t)−
(

I − eΘ1s
)

Θ−1
1 ΘcC . (30)
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In this case, in contrast to the discrete time case, the preceding three equations contain
no information about the stability conditions restricting the levels ofy at all. We need to
specify separately the condition

wU(t) = PU ·y(t) = −Λ−1
U PU ·C (31)

4. DISCRETE TIME, SOLVING FORWARD

In this section we consider the generic canonical form (1), allowing for possibly singular
Γ0 and not requiringz to be serially uncorrelated. At first, though, we consider only the
case where there is a single boundξ̄ on the maximal growth rate of any component ofy.
We find conditions that prevent such explosive growth as follows. First we compute a QZ
decomposition

Q′ΛZ′ = Γ0

Q′ΩZ′ = Γ1 .
(32)

In this decomposition,Q′Q = Z′Z = I, whereQ andZ are both possibly complex and the
′ symbol indicates transposition and complex conjugation. AlsoΩ and Λ are possibly
complex and are upper triangular. The QZ decomposition always exists. Lettingw(t) =
Z′y(t), we can multiply (1) byQ to obtain

Λw(t) = Ωw(t −1)+QC +QΠη(t)+QΨz(t) . (33)

Though the QZ decomposition is not unique, the collection of values for the ratios of di-
agonal elements ofΩ andΛ, {ωii/λii} (called the set of generalized eigenvalues), is usually
unique (if we include∞ as a possible value). The generalized eigenvalues are indetermi-
nate only whenΓ0 andΓ1 have zero eigenvalues corresponding to the same eigenvector.1

We can always arrange to have the largest of the generalized eigenvalues in absolute value
appear at the lower right. In particular, let us suppose that we have partitioned (8) so that∣∣ωii

/
λii

∣∣ � ξ̄ for all i>k and
∣∣ωii

/
λii

∣∣ < ξ̄ for all i ≤ k. Then (8) can be expanded as[
Λ11 Λ12

0 Λ22

]
·
[

w1(t)
w2(t)

]
=

[
Ω11 Ω12

0 Ω22

]
·
[

w1(t −1)
w2(t −1)

]

+
[

Q1·
Q2·

]
(C +Ψz(t)+Πη(t))

(34)

Note that some diagonal elements ofΛ22, but not ofΛ11, may be zero. Also note that
zeros at the same positioni on the diagonals of bothΛ and Ω cannot occur unless the
equation system is incomplete, meaning that some equation is exactly a linear combination
of the others.

1This would imply that a linear combination of the equations contains no y’s, i.e. that there is effectively
one equation fewer for determining the y’s than would appear from the order of the system.
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Because of the way we have grouped the generalized eigenvalues, the lower block of
equations in (33) is purely explosive. It has a solution that does not explode any faster than
the disturbancesz so long as we solve it "forward" to makew2 a function of future z’s. That
is, if we label the last additive term in (34)x(t) and setM = Ω−1

22 ·Λ22,

Z′
·2y(t) = w2(t) = Mw2(t +1)−Ω−1

22 x2(t +1)

= M2 ·w2(t +2)−M ·Ω−1
22 · x2(t +2)−Ω−1

22 · x2(t +1)

= −
∞

∑
s=1

Ms−1 ·Ω−1
22 · x2(t + s) . (35)

The last equality in (35) follows on the assumption thatMtw2(t) → 0 ast → ∞. Note
that in the special case ofλii = 0 there are equations in (34) containing no current values
of w. While these cases do not imply explosive growth, the corresponding components of
(35) are still valid. For example, if the lower right element ofΛ is zero, the last equation of
(34) has the form

0·wn(t) = ωnn ·wn(t −1)+ xn(t). (36)

Solving for wn(t −1) produces the corresponding component of (35). Sinceλii = 0 cor-
responds to a singularity inΓ0, the method we are describing handles such singularities
transparently.

Note that (35) asserts the equality of something on the left that is known at timet to
something on the right that is a combination of variables datedt +1 and later. Since taking
expectations as of datet leaves the left-hand side unchanged, we can write

Z′
·2y(t) = w2(t) = −Et

[
∞

∑
s=1

Ms−1 ·Ω−1
22 · x2(t + s)

]

= −
∞

∑
s=1

Ms−1 ·Ω−1
22 · x2(t + s) . (37)

If the original system (1) consisted of first order conditions from an optimization problem,
(37) will be what is usually called the decision rule for the problem. When the original
system described a dynamic market equilibrium, (37) will be composed of decision rules
of the various types of agents in the economy, together with pricing functions that map the
economy’s state into a vector of prices.

The last equality in (37) imposes conditions onx2 that may or may not be consistent with
the economic interpretation of the model. Recall thatx2 is made up of constants, terms in
z, and terms inη . But z is an exogenously given stochastic processes whose properties
cannot be taken to be related toΓ0 and Γ1. Thus if it should turn out thatx2 contains
no η component, the assertion in (37) will be impossible — it requires that exogenously
evolving events that occur in the future be known precisely now. Ifx2 does contain anη



LINEAR RE MODELS 11

component, then (37) asserts that this endogenously determined component of randomness
must fluctuate as a function of futurez’s so as exactly to prevent any deviation of the right-
hand side of (37) from its expected value.

Replacingx’s in (37) with their definitions, that equation becomes

Z′
·2y(t) = (Λ22−Ω22)

−1Q2·C−Et

[
∞

∑
s=1

Ms−1Ω−1
22 Q2·Ψz(t + s)

]

= (Λ22−Ω22)
−1Q2·C−

∞

∑
s=1

Ms−1Ω−1
22 Q2·

(
Ψz(t + s)+Πη(t + s)

)
. (38)

The latter equality is satisfied if and only if

Q2·Πη(t +1) =
∞

∑
s=1

Ω22Ms−1Ω−1
22 Q2·Ψ · (Et+1z(t + s)−Etz(t + s)) . (39)

A leading special case is that of serially uncorrelatedz’s, i.e. Etz(t + s) = 0, all s > 1. In
this case the right-hand-side of (39) is justQ2·Ψz(t + 1), so a necessary condition for the
existence of a solution2 satisfying (39) is that the column space ofQ2·Ψ be contained in
that ofQ2·Π, i.e.

span(Q2·Ψ) ⊂ span(Q2·Π) . (40)

This condition is necessary and sufficient whenEtz(t +1) = 0, all t. A necessary and suf-
ficient condition for a solution to exist regardless of the pattern of changes in the expected
future time path ofz’s is3

span
({

Ω22Ms−1Ω−1
22 Q2·Ψ

}n−k
s=1

)
⊂ span(Q2·Π) . (41)

In most economic models this latter necessary and sufficient condition is the more mean-
ingful one, even if it is always true thatEtz(t +1) = 0, because ordinarily our theory places
no reliable restrictions on the serial dependence of thez process, even if we have made
some assumption on it for the purpose at hand.

Assuming a solution exists, we can combine (39), or its equivalent in terms ofw (35),
with some linear combination of equations in (34) to obtain a new complete system in
w that is stable. However, the resulting system will not be directly useful for generating

2Note that here it is important to our analysis that there are no hidden restrictions on variation inz that
cannot be deduced from the structure of the equation system. In an equation system in which there are two
exogenous variables withz1(t) = 2z2(t−2), for example, our analysis requires that this restriction connecting
the two exogenous variables be included as an equation in the system and the number of exogenous variables
be reduced to one.

3It may appear thats should range from 1 to infinity, rather than 1 ton − k, in this expression. But
Ω−1

22 Q2·Ψ is in some invariant subspace ofM, if only the trivial full n−k-dimensional space Euclidean space.
The invariant space containing it, say of dimensionj, will be spanned byj elements of theMs−1Ω−1

22 Q2·Ψ
sequence.
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simulations or distributions ofy from specified processes forz unless we can free it from
references to the endogenous error termη . From (39), we have an expression that will
determineQ2·Πη(t) from information available att and a known stochastic process forz.
However the system also involves a different linear transformation ofη , Q1·Πη(t). It is
possible that knowingQ2·Πη(t) is not enough to tell us the value ofQ1·Πη(t), in which
case the solution to the model is not unique. In order that the solution be unique it is
necessary and sufficient that the row space ofQ1·Π be contained in that ofQ2·Π. In that
case we can write

Q1·Π = ΦQ2·Π (42)

for some matrixΦ. Premultiplying (34) by[I −Φ] gives us a new set of equations, free
of references toη , that can be combined with (35) to give us[

Λ11 Λ12−ΦΛ22

0 I

]
·
[

w1(t)
w2(t)

]

=
[

Ω11 Ω12−ΦΩ22

0 0

]
·
[

w1(t −1)
w2(t −1)

]
+

[
Q1· −ΦQ2·

(Ω22−Λ22)−1Q2·

]
C

+
[

Q1· −ΦQ2·
0

]
Ψz(t)−Et

[
0

∑∞
s=1Ms−1Ω−1

22 Q2·Ψz(t + s)

]
. (43)

This can be translated into a system iny of the form

y(t) = Θ1y(t −1)+Θc +Θ0z(t)+Θy

∞

∑
s=1

Θs−1
f ΘzEtz(t + s) . (44)

The details of the translation are

H = Z

[
Λ−1

11 −Λ−1
11 (Λ12−ΦΛ22)

0 I

]
; Θ1 = Z·1Λ−1

11

[
Ω11 (Ω12−ΦΩ22)

]
Z ;

Θc = H ·
[

Q1· −ΦQ2·
(Ω22−Λ22)

−1Q2·

]
C ; Θ0 = H ·

[
Q1· −ΦQ2·

0

]
·Ψ ;

Θy = −H·2 ; Θ f = M ; Θz = Ω−1
22 Q2·Ψ .

(45)

The system defined by (44) and (45) can always be computed and is always a complete
equation system fory satisfying the condition that its solution grow slower thanξ̄ t , even if
there is no solution forη in (39) or the solution forQ1·Π in (42) is not unique. If there is no
solution to (39), then (44)-(45) implicitly restricts the wayz enters the system, achieving
stability by contradicting the original specification. If the solution to (42) is not unique,
then the absence ofη from (44)-(45) contradicts the original specification. If the solution
is not unique, butΦ is computed to satisfy (42), the (44)-(45) system generates one of the
multiple solutions to (1) that grows slower thatξ̄ t . If one is interested in generating the
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full set of non-unique solutions, one has to add back in, as additional “disturbances", the
components ofQ1·Πη left undetermined by (42).

To summarize, we have the following necessary and sufficient conditions for existence
and uniqueness of solutions satisyfing the bounded rate of growth condition:

(A) A necessary and sufficient condition that (1) has a solution meeting the growth con-
dition for arbitrary assumptions on the expectations of futurez’s is that the column
space spanned by {

Ω22Ms−1Ω−1
22 Q2·Ψ

}n−k
s=1

be contained in that ofQ2·Π.
(B) A necessary and sufficient condition that any solution to (1) be unique is that the

row space ofQ1·Π be contained in that ofQ2·Π.

Condition A takes a simpler form if the system has fully specified the dynamics of exoge-
nous variables:

A′. A necessary and sufficient condition that (1) has a solution meeting the growth con-
dition for arbitrary assumptions on the covariance matrix of serially uncorrelatedz’s
is (40), i.e. that the column space spanned byQ2·Ψ be contained in that ofQ2·Π.

When condition A is met, a solution is defined by (44)-(45). In the special case of
Etz(t +1) = 0, the last term of (44) (involvingΘy, Θ f andΘz ) drops out.

5. COMPUTATIONAL DETAILS

If A has full column rank, we can check to see whether the column space of a matrixA
includes that of a matrixB by “regressing"B on A to see if the residuals are zero, i.e. by
checking (

I −A(A′A)−1A′)B = 0. (46)

If A has full row rank, then its column space automatically includes any other space of the
same dimension. If A has neither full row nor full column rank, other methods are required.
The singular value decomposition (svd) of a matrixA is a representation

A = UDV ′ (47)

in which U andV satisfyU ′U = I = V ′V (but are not in general square) andD is square
and diagonal.4 If B’s svd isTCW , A’s column space includesB’s if and only if(

I −UU ′)T = 0. (48)

4This is not actually the standard version of the svd. Matlab returns withU andV square,D of the same
order asA. From such an svd, the form discussed in the text can be obtained by replacingD with a square
non-singular matrix that has the non- zero diagonal elements of the originalD on the diagonal and by forming
U andV from the columns of the originalU andV corresponding to non-zeros on the diagonal of the original
D.
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If (48) holds, then

B = A ·V D−1U ′B . (49)

Equation (48) gives us a computationally stable way to check the column and row space
spanning conditions summarized in A and B at the end of the previous section, and (49)
is a computationally stable way to compute the matrix transformingA to B, and thus to
compute theΦ matrix in (42).5

Though the QZ decomposition is available in Matlab, it emerges with the generalized
eigenvalues not sorted along the diagonals ofΛ andΩ. Since our application of it depends
on getting the unstable roots into the lower right corner, an auxiliary routine is needed to
sort the roots around āξ level.6

If Γ0 in (1) is invertible we can multiply through by its inverse to obtain a system which,
like that in section 3, hasΓ0 = I. In such a system the QZ decomposition deliversQ = Z′,
and the decompositionΓ1 = Q′ΩQ is what is known as the (complex) Schur decomposition
of the matrixΓ1. Since the Schur decomposition is somewhat more widely available than
the QZ, this may be useful to know. Also in such a system we may be able to use an
ordinary eigenvalue decomposition ofΓ1 in place of either the Schur or the QZ. Most such
routines return a matrixV whose columns are eigenvectors ofΓ1, together with a vectorλ
of eigenvalues. IfV turns out to be non-singular, as it will ifΓ1 has no repeated roots, then
Γ1 =V diag(λ )V−1, and this decomposition can be used to check existence and uniqueness
and to find a system of the form (44) that generates the stable solutions.

With V , V−1 andλ partitioned to put the excessively explosive roots in the lower right,
we can write the conditions for existence and uniqueness just as in A and B of the previous
section but setting the matrices in those conditions to the following:

Ω22 = diag(λ22) ; M = diag(λ−1
22 ) ; Q2· = V 2· ; Q1· = V 1· . (50)

HereV i· refers to the i’th block of rows ofV−1. The calculations in (45) can be carried
out based on (50) also, withΛ = I. The advantage of this approach to the problem is that,
even though (50) is written withV , V−1 andλ ordered in a particular way, if the roots to
be re-ordered are distinct, they can be re-ordered simply by permuting the elements ofλ ,
the columns ofV , and the rows ofV−1. There is no need here, as there is with QZ, to
recompute elements of the matrices when the decomposition is re-ordered.

An intermediate form of simplification is available whenΓ0 is singular, but the general-
ized eigenvalues are all distinct. In that case it is possible to diagonalizeΛ andΩ in (32) to

5Of course sinceΦ is applied to rows rather than columns, corresponding adjustments have to be made in
the formula.

6The routineqzdiv does this and is available, with other Matlab routines that implement the methods of
this paper, athttp://www.princeton.edu/∼sims/#gensys.
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arrive at
PΛ0R = Γ0

PΛ1R = Γ1
(51)

in which theΛi are diagonal andP andR are both nonsingular. Here the conditions, which
we omit in detail, are almost exactly as in the QZ case, but as with (50), any re-ordering of
the decomposition that may be required can be done by permutations rather than requiring
new calculations.

6. MORE GENERAL GROWTH RATE CONDITIONS

Properly formulated dynamic models with multiple state variables generally do not put
a uniform growth rate restriction on all the equations of the system. Transversality con-
ditions, for example, usually restrict the ratio of a wealth variable to marginal utility not
to explode. In a model with several assets, there is no constraint that individual assets not
exponentially grow or shrink, so long as they do so in such a way as to leave total wealth
satisfying the transversality condition. Ignoring this point can lead to missing sources of
indeterminacy.

No program that simply calculates roots and counts how many fall in various partitions
will be able to distinguish such cases. To handle conditions like these formally, we proceed
as follows. We suppose that boundary conditions at infinity are given in the form

ξ−t
i Hiy(t) →

t→∞
0, (52)

i = 1, . . . , p. HereHiy is the set of linear combinations of y that are constrained to grow
slower thanξ t

i . Suppose we have constructed the QZ decomposition (32) for our system and
the j’th generalized eigenvalueω j j

/
λ j j exceedsξi in absolute value. To see whether this

root needs to be put in the forward part of the solution or instead belongs in the backward
part – i.e. to see whether the boundary condition generates a restriction – we must re-order
the QZ decomposition so that the j’th root appears at the upper left. Then we can observe
that

Hiy = HiZZ′y = HiZw , (53)

wherew = Z′y as in (8). Assuming that no component ofw other than the first produces
explosive growth inHiy faster thanξ t

i , the first component produces such growth if and
only if the first column ofHiZ is non-zero. If this first column is non-zero, the j’th root
generates a restriction, otherwise it does not. A test of this sort, moving the root in question
to the upper left of the QZ decomposition, needs to be done for each root that exceeds in
absolute value any of theξi’s. Roots can be tested this way in groups, with a block of roots
moved to the upper left together, and if it turns out that the block generates no restrictions,
each one of the roots generates no restrictions. However if the block of roots generates
restrictions, each root must then be tested separately to see whether it generates restrictions



LINEAR RE MODELS 16

by itself. The only exception is complex pairs of roots, which in a real system should
generate restrictions or not, jointly.

When we have this type of boundary condition, there may be a particular appeal to trying
to achieve the decomposition (51), as with that decomposition the required re-orderings
become trivial. Note that all that is essential to avoiding the work of re-ordering is that
the generalized eigenvalues that are candidates for violating boundary conditions all be
distinct and distinct from the eigenvalues that are not candidates for violating boundary
conditions. In that case we can achieve a block diagonal version of (51), with all the roots
not candidates for violating boundary conditions grouped in one block and the other roots
entering separately on the diagonal.

The Matlab programsgensys andgensysct that accompany this paper do not au-
tomatically check the more general boundary conditions discussed in this section of the
paper. Each has a component, however, called respectivelyrawsys andrawsysct, that
computes the forward and backward parts of the solution from a QZ decomposition that
has been sorted with all roots that generate restrictions grouped at the lower right. There
is also a routine available, called qzswitch, that allows the user to re-order the QZ in any
desired way. With these tools, it is possible to check existence and uniqueness and find the
form of the solution when boundary conditions take the form (52).

7. EXTENSION TO A GENERAL CONTINUOUS TIME SYSTEM

Consider a system in continuous time7 of the form

Γ0ẏ = Γ1y+C +Ψz+Πη , (54)

with an endogenous white noise errorη andz an exogenous process that may include a
white noise component with arbitrary covariance matrix. By a "white noise" here we mean
the time-derivative of a martingale. The martingales corresponding toz and could have
jump discontinuities in their paths without raising problems for this paper’s analysis. A
fully general analysis of continuous-time models is messier than for discrete-time models,
because whenz is an arbitrary exogenous process, the solution may in general contain both
a “forward component" like that in the discrete time case and a “differential component"
that relatesy to the non-white-noise components of first and higher- order derivatives ofz.
We therefore first work through the case of white-noisez, which is only a slight variation
on the analysis for the discrete-time model with serially uncorrelatedz.

7In this section we assume the reader is familiar with the definition of a continuous time white noise and
understands how integrals of them over time can be used to represent continuous time stochastic processes.
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An example of such a system is the continuous time analogue of (2),

w(t) = .3Et

∞∫
s=0

e−.3sW (t + s)ds−α · (u(t)−un)+ν(t)

W (t) = .3

∞∫
s=0

e−.3sw(t − s)ds

u̇(t) = −θ ·u(t)+ γ ·W (t)+ µ + ε(t) ,

(55)

which can be rewritten as

ẇ = .3w− .3W −α u̇+ .3α · (u−un)+ z1− .3ν +η1

ν̇ = z1

Ẇ = −.3W + .3w

u̇ = −θu+ γW + µ + z2 .

(56)

Note that to fit the framework with all exogenous disturbances white noise, we have made
ν a martingale. We could make other assumptions instead on the process generatingν , but
to stay in this simple framework we need an explicit form for the process. In the notation
of (54), (56) has

Γ0 =




1 0 0 α
0 1 0 0
0 0 1 0
0 0 0 1


 , Γ1 =




.3 −.3 −.3 .3α
0 0 0 0
.3 0 −.3 0
0 0 γ −θ


 ,

C =



−.3αun

0
0
µ


 , Ψ =




1 0
1 0
0 0
0 1


 , Π =




1
0
0
0


 .

We can proceed as before to do a QZ decomposition ofΓ0 andΓ1 using the notation of
(32), arriving at the analogue of (8)

Λẇ = Ωw+QC +QΠη +QΨz . (57)

Again we want to partition the system to arrive at an analogue to (34), but now instead of
putting the roots largest in absolute value in the lower right corner ofΩ, we want to put
there the roots with algebraically largest (most positive) real parts.

Cases whereΛ has zeros on the diagonal present somewhat different problems here than
in the discrete case. In the discrete case, we can think of the ratio of a non-zeroΩii to a
zeroΛii as infinite, which is surely very large in absolute value, and then treat these pairs
as corresponding to explosive roots. Here, on the other hand, we are not concerned with
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the absolute values of roots, only with their real parts. The ratio of a non- zero value to
zero cannot be treated as having a well-defined sign on its real part. Nonetheless, it turns
out that we want to treat zeros on the diagonal ofΛ as producing “unstable" roots.

If λii is close to zero andωii
/

λii has positive real part, there is no doubt that we classify
the corresponding generalized eigenvalue as unstable. Ifωii

/
λii has negative, extremely

large real part, or a negative real part of any size combined with an extremely large imag-
inary part, we may still be justified in treating it as an unstable root. This is true as a
matter of numerical analysis because extremely smallλii values may differ from zero only
by accumulated rounding error. But also as a matter of economic interpretation, extremely
large generalized eigenvalues correspond to components ofy that, though they are tech-
nically defined as random variables at each date, behave so erratically that they approach
white-noise like behavior.

We now proceed with our plan to partition (57) to obtain an analogue to (34). In the
lower right we place all cases ofλii extremely close to zero, then just above that all cases
of ωii

/
λii positive and exceeding some boundary levelξ̄ � 0. The resulting system is

Λ11 Λ12 Λ13

0 Λ22 Λ23

0 0 Λ33


 ·


ẇ1

ẇ2

ẇ3


 =


Ω11 Ω12 Ω13

0 Ω22 Ω23

0 0 Ω33


 ·


w1

w2

w3


+


Q1·

Q2·
Q3·


(C +Ψz+Πη) . (58)

The last block of equations in (58) can be written as

w3 = Ω−1
33

(
Λ33ẇ3−Q3·(C +Ψz+Πη)

)
. (59)

Because we require thatw3 be a random variable observable att, Etw3(t) = w3(t). For
white-noisez andη , Etz(t) = Etη (t) = 0. SinceΛ33 is upper triangular with zeros on the
diagonal, its bottom row is zero. Thus we can see from (59) that the bottom element in the
w vector,w3n, satisfiesw3n = −ω−1

nn Q3n·C, whereωnn is the lower right diagonal element
of Ω. But now we can proceed recursively up to the second-to-last row of (59), etc. to
conclude that in fact

w3 = −Ω−1
33 Q3·C

Q3· (Ψz+Πη) = 0.
(60)

Proceeding to the second block of equations in (58), we see it is purely explosive at a
growth rate exceedinḡξ , so that as in the case of the explosive component in the discrete
time model, we must insist that it follows its unique non-explosive solution, which is simply
a constant.

Thus the full set of stability conditions is[
w2

w3

]
= −

[
Ω22 Ω12

0 Ω33

]−1[
Q2·C
Q3·C

]
(61)
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[
Q2·
Q3·

]
(Ψz+Πη) = 0. (62)

Just as in the discrete case, we can now translate the equations and stability conditions in
terms ofw back in to a stable equation iny, here taking the form

ẏ = Θ1y+Θc +Θ0z . (63)

As in the discrete case also, (62) will allow us, when conditions for existence are met, to
write

Q1·Πη = Φ ·
[

Q2·Π
Q3·Π

]
(64)

for someΦ. Letting the subscriptu (for “unstable") refer to the range of indexes in blocks 2
and 3 of (58), and then letting theu subscript play the role of the 2 subscript in the formulas
of (45), we get the correct answers for the coefficients of (63). The conditions for existence
and uniqueness are exactly the same as in the discrete case without serial correlation inz,
i.e. A′ and B.

8. CONTINUOUS TIME, UNRESTRICTEDz

In discrete time, a first-order polynomial of the formΛ + ΩL, in which Λ and Ω are
upper triangular and for eachi either |ωii/λii| > 1 or λii = 0, ωii �= 0, always has a con-
vergent “forward" inverse, in the form of the sum that appears in the right-hand side of
(44). In continuous time, the operation analogous to inverting such an “unstable"Λ + ΩL
is inverting a polynomial in the differential operatorD of the formΛD + Ω in which for
everyi, either the real part ofωii/λii is negative orλii = 0. If there are 0’s on the diagonal
of Λ in this case, the resulting inverse is not simply a “forward" operator in continuous
time, with integrals replacing sums, but is a convolution of such operators with finite-order
polynomials in the differential operatorD. To be specific, ifΛ is upper triangular and has
zeros on its main diagonal, then

(I −ΛD)−1 =
n−1

∑
s=0

ΛsDs , (65)

wheren is the order of theΛ matrix. This can be checked easily, and follows from the fact
that for aΛ of this form it is guaranteed thatΛn = 0. Unless the upper triangle ofΛ is
dense, it is likely that terms in (65) for largers turn out to be zero.

If as before we group blocks 2 and 3 of (34) into au block, still using 1 to label the other
block, we can write that equation, using the differential operatorD, as([

Λ11 Λ1u

0 Λuu

]
D−

[
Ω11Ω1u

0Ωuu

])[
w1

wu

]
=

[
Q1·
Q2·

]
(C +Ψz+Πη) . (66)
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Using the fact we observed in (65), we can see that the differential operator on the left-
hand side of this equation, in the lower block,ΛuD−Ωuu, has a stable inverse that is a
convolution of a finite-order matrix polynomial inD with exponentially weighted averages
of future values. While it is not worthwhile to write out the whole inverse explicitly, we
can observe that the lower block can be solved recursively as

w3 = −(I −Ω−1
33 Λ33D)−1Ω−1

33 Q3·(C +Ψz(t)) (67)

w2(t) = −
∫ ∞

0
e−Λ−1

22 Ω22sλ−1
22 ·(

Q2· (C +Ψz(t + s)+ Πη(t + s))−Λ23Dw3(t + s)+Ω23w3(t + s)
)

ds .
(68)

The inverted polynomial in (67) becomes a finite order polynomial inD according to (65),
and theD operators appearing on right of (68) are interpreted as applying toEtz(t + s),
considered as a function ofs and (ats = 0) taken as right-derivatives.

Existence and uniqueness questions are determined by exactly the same conditions as
in conditions A and B for the discrete case, with theu subscript playing the role of the
2 subscript in those conditions. To get a complete solution, we combine the recursive
solution forwu in (68) and (67) with the stable equation inw1, free of occurrences ofη ,
that is obtained by multiplying (58) by[I −Φ], whereΦ has been computed to solve
(42).

The continuous time version of the matlab software,gensysct, does not attempt to
provide an explicit complete solution for this general case. It checks existence and unique-
ness and provides the matrices needed to write out an explicit solution for the case of pure
white noisez in the form (63), and it provides the QZ decomposition ordered as in (58).

Note that if one wants the two-sided (on future and past) projection ofy on z, and if
one is confident (perhaps because of having rungensys) that there are no existence or
uniqueness problems, one can find the projection by Fourier methods directly. That is, one
can formΞ̃(ω) = iωΓ0−Γ1 and form the projection as the inverse Fourier transform of
Ξ̃−1Ψ, where the inverse in this expression is frequency-by-frequency matrix inversion. Of
course this only produces stable results if the projection does not involve delta functions or
derivative operators.
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