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1. Introduction

An increasing number of authors have found the standard log-linearization procedure in

macroeconomics insufficient for solution of interesting problems. Kim and Kim (2002) and

Kollmann (2002a,b) note the importance of second-order approximations for measuring

welfare gains from trade and international monetary policy coordination. Gaspar and Judd

(1997), Judd (1999), and Woodford (2000) note the importance of second-order terms in

the law of motion of the economy for calculating optimal policy in many situations that

arise in practice.

In this paper, we present an algorithm and software that computes an nth order Taylor

series approximation to the solution of a dynamic, discrete-time set of rational expectations

equations around a nonstochastic steady state. Such approximate solutions are referred to

as “perturbation” methods by Judd (1999). Our routines represent an improvement over

other authors’ work in this area in that we can approximate the true solution to arbitrarily

high order.

We apply our routines to the calculation of optimal monetary policy for a practical

problem of interest: the optimal monetary policy, and welfare gains from such a policy, in

a closed economy with nominal price rigidities subject to a fiscal policy that is stochas-

tic, suboptimal, and exogenous to the central bank. We are interested, in particular, in

whether and to what extent the presence of suboptimal fiscal policy creates an incentive

for monetary policy to be “asymmetric” and to stimulate the economy if the monopolistic

and fiscal wedges in the model lead the economy to underproduce in steady state (relative

to the Pareto optimum).

2. The Algorithm

We consider a system of dynamic, discrete-time rational expectations equations of the

form:

Et F (xt−θ, . . . , xt−1, xt, xt+1, . . . , xt+θ ; εt, εt+1, . . . , εt+φ) = 0 (1)

where F , xt, and εt are vectors of dimensions nF , nx, and nε, respectively, Et denotes

the mathematical expectation conditional on all variables dated t and earlier, {εt} is an

exogenous stochastic process, and it is understood that the system of equations (1) is
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satisfied at each time t, t + 1, t + 2, etc. The parameters θ, θ, and φ denote the maximum

number of lags and leads required to describe the equations in system (1).1,2

We will assume that the stochastic shocks εt are i.i.d. across time and that the compo-

nents of εt (denoted εit, i = 1, . . . , nε) are mutually independent as well. In other words,

any cross-sectional or intertemporal correlation of the {εt} process must be explicitly spec-

ified by the modeler as sums of individual components εit. We assume that E[εit] = 0, and

we let Momn(εit) denote E[εn
it], the nth moment of εit. When an nth moment is specified,

we require that it exists. We require no other distributional assumptions regarding the εt,

and denote the distribution function for εt by Ψ(z).

We look for time-invariant, analytic, ergodic solutions to (1) of the form:3

xt = b(xt−θ, . . . , xt−1 ; εt) (2)

In other words, variables dated t−1 and earlier are regarded as having been observed, and

the vector xt is to be solved as a function of these lagged values and the observed stochastic

shock εt. In particular, we do not require the modeler to specify some components of xt

as being “state” or “predetermined” variables and the remaining components as being

“co-state” or “jump” variables.4 It should also be noted that the solution (2) depends as

well on the coefficients and parameters of the model (1), and in particular on the moments

of the stochastic disturbances εt.

Following Judd (1999), we let σ ∈ [0, 1] denote an auxiliary, “scaling” parameter for

the distribution of the stochastic shocks εt in (1). In particular, we consider a continuum

of auxiliary models (1)′, parameterized by σ ∈ [0, 1], each identical to (1) in every respect

1Lagged expectational terms can be incorporated into (1) by appropriate definition of auxiliary vari-
ables; e.g., by setting bt = Etat+1 and then considering bt−1.

2 In most macroeconomic models, φ is either 0 or 1—in other words, no shocks dated later than t+1 are
required to describe the system of equations (1). Stochastic shocks dated t− 1 and earlier can be regarded
as variables x—e.g., by setting at = εt, and considering at−1.

3The notation b generalizes Anderson and Moore (1985) and the AIM procedure, which produce a linear
solution matrix B to a linear system of equations. By time-invariant, the solution function b is understood
to yield xt+k = b(xt+k−θ, . . . , xt+k−1 ; εt+k) for all k >= 0. Because our solution algorithm relies on a
local dth-order Taylor approximation, we require b to have a d derivatives; for the algorithm to converge to
the true solution b as d → ∞, we require b to be analytic. The ergodicity requirement rules out “bubbles”
and solution functions b that are globally explosive.

4This is just as in the linear case: see Anderson and Moore (1985) and Sims (2000). Intuitively,
the computer can figure out what linear combinations of variables are “predetermined” from the fact
that variables dated t − 1 or earlier are known. For example, a clear “predetermined” variable, such as
Kt = (1 − δ)Kt−1 + It−1, falls out of the solution algorithm into the form (2) trivially.
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except that the distribution function for εt in these auxiliary models is given by Ψ(z/σ)

instead of by Ψ(z). Thus, σ = 1 corresponds to the original model (1), which is to be

solved, while small values of σ correspond to versions of the model with relatively little

uncertainty. The case σ = 0 is taken to mean εt = 0 with probability 1—i.e., a deterministic

version of the model.

Thus, we are considering a family of models of the form:

Et F (xt−θ, . . . , xt−1, xt, xt+1, . . . , xt+θ ; εt, εt+1, . . . , εt+φ ; σ) = 0

εs ∼ iid Ψ(z/σ), s > t

or, equivalently,

Et F (xt−θ, . . . , xt−1, xt, xt+1, . . . , xt+θ ; εt, σεt+1, . . . , σεt+φ ; σ) = 0 (1)′

εs ∼ iid Ψ(z), s > t

to which we are looking for a family of solutions indexed by σ:

xt = b(xt−θ, . . . , xt−1 ; εt ; σ) (2)′

We have recycled the letters F and b here, but there is no risk of confusion as we will

henceforth only refer to the generalized family of equations (1)′ and (2)′, and specify σ = 1

when we wish to refer to the original model (1) and solution (2).

Note in particular that we do not scale the value of the shock εt in (1)′ and (2)′ by σ,

because εt is known at time t and because it is often the case in practice that the modeler

wishes to shock a deterministic or “perfect foresight” model—i.e., a model for which σ = 0.

Specifications (1)′ and (2)′ are the proper parameterizations that allow the researcher to

perform this kind of “counterfactual” experiment in which agents are completely surprised

by a shock that they did not think could occur.5

2.1 Approximate Solutions to the Model

Finding the nonlinear solution function b is difficult in general. As is standard practice,

5There is an earlier literature on “perfect foresight” solutions of nonlinear rational expectations models
(e.g., Anderson (1993), Fuhrer and Madigan (1997), and the Troll software package), which solve the model
to numerical precision imposing the constraint that σ = 0. In these algorithms, the modeler can still see
how the perfect foresight solution reacts to a shock to the system, graph impulse responses to a shock,
and so on. Our perturbation approach nests this older literature very naturally.
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we assume that the modeler can solve (1)′ for a nonstochastic steady state x:

F (x, . . . , x, . . . , x ; 0, . . . , 0 ; 0) = 0 (3)

so that we have:

x = b(x, . . . , x ; 0 ; 0) (4)

We then assume that there exists a neighborhood of this steady state for which the solution

function b exists and is unique. Following the method described by Judd (1999), we can

proceed to calculate the second- and higher-order derivatives of the unknown function b

at the known point (x, . . . , x ; 0 ; 0) by repeatedly applying the implicit function theorem

to the known system (1)′ at the known point (x, . . . , x, . . . , x ; 0, . . . , 0 ; 0). In particular,

we substitute the relationships:

xt = b(xt−θ, . . . , xt−1 ; εt ; σ) (2)′

xt+1 = b
(
xt−θ+1, . . . , xt−1, b(xt−θ, . . . , xt−1; εt; σ) ; σεt+1 ; σ

)
(2)′′

etc.

into (1)′ and use the implicit function theorem to compute the derivatives of b with respect

to xt−θ, . . . , xt−1, εt, and σ at the point (x, . . . , x ; 0 ; 0).

In this sense, our solution to (1)′ is only valid when the lagged values xt−θ, . . . , xt−1

lie within a sufficiently small neighborhood of x, and εt and σ lie within a sufficiently

small neighborhood of 0. We also require F and b to be sufficiently smooth within these

neighborhoods.

It is important to emphasize, however, that so long as the solution function b is

analytic, then the algorithm above is guaranteed to converge to b everywhere within the

domain of convergence (the multidimensional analog of the radius of convergence) of the

Taylor series expansion of b around the point (x, . . . , x ; 0 ; 0).6 This domain is potentially

very large—in some models it can even be all of R
θnx+nε+1. Thus, there is a very rigorous

sense in which our algorithm is globally—and not just locally—valid. In the limit, as we

let the order of approximation d tend to infinity, we arrive at the true nonlinear solution

function b over the entire domain of convergence.

6Moreover, this convergence is uniform on compact subsets, no matter how large the subsets. This is
a standard result in complex analysis—see, e.g., Ahlfors (1979).
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In contrast to other researchers (e.g., Schmitt-Grohe and Uribe (2001), Kim et al.

(2002)), our algorithm and computer code allow for approximation of the function b to

arbitrary order d, as opposed to simply the second order. We are indebted to Judd (1999)

for making the essential point that, once the first derivatives of b have been calculated, one

needs only to solve a straightforward, recursive linear problem to calculate the derivatives

of b to each successive order. We use AIM, a generalization of the Blanchard-Kahn (1980)

algorithm developed by Anderson and Moore (1985), to arrive at the first derivatives of b.

This requires that the solution function b be first-order stable local to the nonstochastic

steady state, a standard assumption in the literature.7

2.2 Computer Implementation of the Algorithm

We implemented the solution procedure described above in Mathematica. While second-

order approximations can be done fairly easily in any computer language, generalization

to higher orders is dramatically simpler in Mathematica, and the large library of built-in

routines for symbolic differentiation and solving linear systems of equations in Mathematica

has the following advantages:

A. Allows for much simpler and intuitive code (less than 200 lines), making the
algorithm easy to understand and more likely to be free of bugs.

B. Eliminates the need for user-written differentiation or linear solution routines,
which are likely to be more amateur than built-in Mathematica routines and
hence more likely to suffer from bugs and numerical inaccuracies.

C. Allows for easy symbolic differentiation, improving numerical accuracy, par-
ticularly at higher orders.

D. Allows the algorithm to proceed in exacty the same way and produce exactly
the same output as if the user were performing it by hand, making the algorithm
and results simpler and more intuitive.

E. Allows the option of computing all coefficients to arbitrarily high precision (al-
though working with arbitrary-precision rather than machine-precision numbers
has a significant cost in terms of computation time).

7The AIM algorithm treats unit roots as stable, so unit roots in the first-order approximation satisfy
this stability requirement. Anderson (2001) shows that AIM is significantly faster and more numerically
robust than the numerous other alternatives available. An additional advantage of AIM is that it does not
require the modeler to designate some variables as being “predetermined” variables and the rest as being
“jump” variables, as discussed previously. Software implementations of AIM in a variety of languages can
be obtained from the Federal Reserve Board’s public web site.
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The specific implementation of the algorithm proceeds as follows:

1. Find the nonstochastic steady state solution (x, . . . , x, . . . , x ; 0, . . . , 0 ; 0) to
(1)′.

2. Compute the first-order solution: Differentiate the function F with respect
to each of its arguments and evaluate them at steady state. Write out the first-
order Taylor series approximation to F as a linear model in its arguments and
find the solution to this model using AIM. This yields the first derivatives of b

with respect to each of its arguments.

3. Define unknown solution function bxi for each element xi of x, i = 1, . . . , nx,
with arguments (xt−θ, . . . , xt−1 ; εt ; σ). Let b denote (bx1 , . . . , bxnx )′.

4. Substitute out for xt+k, k > 0, in (1)′ using the relationships (2)′, (2)′′, etc.
For notational simplicity, denote the result by:

Et (F ◦ b) = 0 (5)

Note that F ◦ b has arguments (xt−θ, . . . , xt−1 ; εt, . . . , εt+max(θ,φ) ; σ).

Now, for each order d > 1, calculate the dth derivatives of b as follows:

5. Calculate all the dth order derivatives of F ◦ b with respect to its arguments
and save the result for differentiation to higher orders. The derivatives of F

are known (and are symbolic), the derivatives of b up through degree d − 1 are
unknown in general (and are symbolic) but are known at the steady state (and
are numerical). The dth order derivatives of b are unknown (and are symbolic).

6. Evaluate the first derivatives of F ◦b at steady state (x, . . . , x; 0, . . . , 0; 0). This
yields numerical values for the (known) derivatives of F , and write out the result
as a first-order Taylor approximation to F ◦ b with undetermined coefficients.

7. Take the expectation implied by (5) for this approximation, which converts
terms involving εt+k, k > 0 into the (known) corresponding moments. Solve
for the undetermined dth order derivatives of b by setting each coefficient of the
Taylor series equal to zero (i.e., the method of undetermined coefficients) and
solving the resulting linear system of equations.

Repeat steps 5–7 for each successive order d, as desired.

The Mathematica code implementing this algorithm is quite succinct (less than 200

lines) and can be downloaded from http://www.mindspring.com/∼eswanson, or is available

from the authors upon request. All that is required of the modeler is to specify a “model

file” with the equations of F written out in standard Mathematica notation, using time
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indices t− 1, t, t + 1, etc. to convey to the software the correct intertemporal relationship

of the variables in the model. Simple examples of model files are downloadable along with

the algorithm.

2.3 Example: Stochastic Growth Model

A simple model that illustrates the timing conventions and convenience of the algorithm

is the standard stochastic growth model:

Yt = AtK
α
t (6)

log At = ρ log At−1 + εt (7)

Kt = (1 − δ)Kt−1 + It−1 (8)

Yt = Ct + It (9)

C−γ
t = βEt

[
(1 + rt+1) C−γ

t+1

]
(10)

rt = αAtK
α−1
t − δ (11)

Welft =
C1−γ

t

(1 − γ)
+ βEtWelft+1 (12)

We desire a solution to (6)–(12) for At, Ct, It, Kt, rt, Yt, and Welft as functions of

variables dated t − 1, εt, and σ. (In fact, the only time t − 1 variables in the solution will

be At−1, It−1, and Kt−1, as the algorithm recognizes that these are sufficient, along with

εt and the auxiliary parameter σ, to completely characterize the inherited economic state.)

Equations (6)–(12) can be entered into the model file essentially exactly as they are

written above (although the explicit appearance of Et should be dropped, because the algo-

rithm automatically takes the time-t expectation of each equation in step 7). In particular,

the researcher does not need to classify some variables as “predetermined” and others as

being “jump” variables—the computer does this automatically—the researcher does not

need to substitute out identities such as (9), and the researcher is free to tack on auxiliary

equations such as (12), which have no effect on the solution to the other variables of the

system, but nonetheless produce a result that is of interest. Moreover, the researcher can

specify that some variables should be transformed into logarithms so as to log-linearize

(and log-higher-order) rather than linearize the variables in question.

The explicit second-order solution to this model is provided in Appendix A.
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3. Application: Optimal Monetary Policy in an Optimizing-Agent

Model with Nominal Price Rigidity

We apply the above algorithm to the problem of optimal monetary policy. Before calculat-

ing the optimal policy, we must first specify a framework in which the monetary authority

operates. We take as our baseline an optimizing-agent, Calvo-style sticky price framework

along the lines of Yun (1996), taken from Erceg, Henderson, and Levin (2000) without the

sticky wage assumption. Generalization to the case of nominal wage rigidity is straight-

forward but adds several additional equations and first-order conditions, complicating the

presentation.

Readers are referred to Erceg, Henderson, and Levin (2000) for details of the model

and derivations of the pricing equations; we provide only the essential elements here. The

utility function of the representative agent is given by:

Welft = Et

∞∑
s=t

βs−t

[
C1−ϕ

s

1 − ϕ
− χ0L

1+χ
s

1 + χ
+

µ0(1 − Ms/Ps)1−µ

1 − µ

]

where Cs denotes consumption, Ls labor, Ms nominal money balances, and Ps the price

level. Like EHL, we regard the parameter µ0 as being arbitrarily small, so that we can

neglect it in calculations of utility, while still allowing the monetary authority to control

nominal interest rates by setting the money supply.

There is a continuum of producers on the unit interval with identical, constant-returns-

to-scale production functions, who set prices and produce to meet demand as in Calvo

(1983). If a firm is not allowed to reset its price, its price is indexed at gross rate Φ

(which could be 1, reducing to the standard Calvo model without indexation). Consumers

have demand that is CES across the continuum of varieties, and Pt is the corresponding

CES price index. We abstract away from capital accumulation and depreciation, hence

consumption Ct equals output Yt.

The equations of the model are as follows:

Pricing:
zn,t = Y 1−ϕ

t mcrt + ξβΦ−(1+θ)/θEtπ
(1+θ)/θ
t+1 zn,t+1 (13)

zd,t = (1 − τt)Yt(Yt − Gt)−ϕ + ξβΦ−1/θEtπ
1/θ
t+1 zd,t+1 (14)

p0t = (1 + θ)zn,t/zd,t (15)
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π
−1/θ
t = (1 − ξ)(p0tπt)−1/θ + ξΦ−1/θ (16)

Dispt = (1 − ξ)p−(1+θ)/θ
0t + ξ(πt/Φ)(1+θ)/θ Dispt−1 (17)

Production:
Yt = Disp−1

t K̄αL1−α
t (18)

mcrt =
Y ϕ

t χ0L
χ
t

(1 − α) K̄αL−α
t

(19)

Government:

log(Gt/Ḡ) = ρg log(Gt−1/Ḡ) + εG
t (20)

τt − τ̄ = ρτ (τt−1 − τ̄) + ετ
t (21)

Euler Equation & Welfare:

(Yt − Gt)−ϕ = β Intt Et(1/πt+1) (Yt+1 − Gt+1)−ϕ (22)

Welft =
(Yt − Gt)1−ϕ

1 − ϕ
− χ0

L1+χ
t

1 + χ
+ β EtWelft+1 (23)

where K̄ the given level of capital, Yt output, Intt the gross nominal interest rate, πt the

gross inflation rate, mcrt the marginal cost of a firm (which is the same across firms),

p0t the relative price set by firms who are allowed to set prices in period t, and z1t, z2t,

and Dispt are auxiliary variables that allow us to express infinite sums from the agents’

first-order conditions in a recursive form. Equation (23) similarly expresses agents’ welfare

in a recursive form. The parameter ξ is one minus the probability of receiving the Calvo

signal to change price, 1 + θ is the CES aggregator parameter (hence θ is the steady-state

markup of price over marginal cost), and τt is the tax on output (or subsidy if negative),

which is funded by a lump-sum tax (or rebate) on agents.

There are two sources of uncertainty in the model: government spending shocks and

tax shocks, denoted by the εG
t and ετ

t . The presence of fiscal policy shocks introduces a

tradeoff for the monetary authority between stabilizing prices and stabilizing output: On

one hand, the economy is most efficient when all producers are charging the same price,

so the central bank would like to focus policy on achieving this goal; on the other hand,

fluctuations in government spending and the output tax (or subsidy) create temporary

fluctuations in output and employment that the central bank would like to offset. The

monetary authority cannot in general achieve both goals.
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3.1 Optimal Monetary Policy

The optimal monetary policy with commitment chooses Intt (and a state-contingent plan

for Ints, s > t) so as to maximize the representative agent’s welfare subject to constraints

(13)–(22).8

Writing out the monetary policymakers’ Lagrangean and differentiating (Mathematica

can do this step automatically, increasing convenience and reducing human error) yields

first-order conditions:

λzn
t = λzn

t−1ξΦ−(1+θ)/θπ
(1+θ)/θ
t + λp

t (1 + θ)/zdt (24)

λ
zd
t = λ

zd
t−1ξΦ−1/θπ

1/θ
t − λp

t (1 + θ)znt/z2
dt (25)

λp
t = λπ

t (1 − ξ)(−1/θ)(p0tπt)
−(1+θ)/θπt + λDisp

t (1 − ξ)(−(1 + θ)/θ)p−(1+2θ)/θ
0t (26)

λDisp
t = λDisp

t+1 βξ(πt+1/Φ)(1+θ)/θ + λzn
t (−1/Disp2

t )χ0L1+χ
t /(1 − α) + λY

t (−1/Disp2
t )K̄

αL1−α
t (27)

0 = λEuler
t β (1/πt+1) (Yt+1 − Gt+1)

−ϕ (28)

−(λπ
t /θ)π

−(1+θ)/θ
t = λπ

t (1 − ξ)(−1/θ)π
−(1+θ)/θ
t p

−1/θ
0t + λEuler

t−1 (−1/π2
t ) Intt−1(Yt − Gt)

−ϕ

+ λzn
t−1((1 + θ)/θ)π

1/θ
t ξΦ−(1+θ)/θznt + λ

zd
t−1(1/θ)π

(1−θ)/θ
t ξΦ−1/θzdt

+ λDisp
t ((1 + θ)/θ))π1/θ

t ξΦ−(1+θ)/θDispt−1 (29)

0 = −χ0Lχ
t + λY

t (1 − α)L−α
t Disp−1

t K̄α + λzn
t

χ0(1 + χ)

(1 − α)Dispt

Lχ
t (30)

λY
t = (Yt − Gt)

−ϕ + λ
zd
t (1 − τt)((Yt − Gt)

−ϕ − ϕYt(Yt − Gt)
−ϕ−1)

+ λEuler
t ϕ (Yt − Gt)

−ϕ−1 − λEuler
t−1 ϕ (Yt − Gt)

−ϕ−1(Intt−1/πt) (31)

which can be simplified further. The optimal monetary policy under commitment is simply

the solution to equations (13)–(31), setting the initial values of the lagged Lagrance mul-

tipliers equal to zero. Applying the algorithm described above to this system of equations

yields the optimal monetary policy to arbitrarily high order.

8Equations (20) and (21) can either be treated as exogenous by the policymaker, or can be treated as
constraints and Gt and τt throughout the system treated as choice variables. The first-order conditions
below do the former since the resulting system of equations is a bit smaller. We have also substituted out
for marginal cost before computing the first-order conditions, also to reduce the size of the system.
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4. Results

5. Conclusions
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Appendix A: Solution to Stochastic Growth Model

The second-order solution to equations (6)–(12) in the text is provided below. “Inv” is used
instead of “I” to avoid confusion in Mathematica with the imaginary number i. The variables
At, Ct, and Yt are transformed to (natural) logarithms before the approximation is conducted.
Parameter values are taken to be: α = 0.3, β = 0.99, γ = 2, δ = 0.1, and ρ = 0.8. Note that
variables on the right-hand side denote deviations from steady state (and the logged variables
A, C, and Y are log-deviations from steady state). Variables on the left-hand side are in levels
(log-levels for A, C, and Y ). The term mom(ε, n) refers to the (known) nth moment of ε. The
format of the output below is exactly as it comes out of Mathematica (using the “TeXForm”
output option), with the exception of line breaks, which have been added.

At = 0.8At−1 + 1. εt,

Ct = 0.111483+

0.281837 At−1 + 0.0276019 At−1
2+

0.0906962 Invt−1 − 0.0227844 At−1 Invt−1 − 0.00992342 Invt−1
2+

0.341768 Kt−1 − 0.0858578 At−1 Kt−1 − 0.0747883 Invt−1 Kt−1 + 0.0299726 Kt−1
2−

0.625874 σ2 mom(ε, 2)+

0.352296 εt + 0.0690047 At−1 εt − 0.0284805 Invt−1 εt − 0.107322 Kt−1 εt + 0.0431279 εt
2,

Invt = 0.418697+

0.914231 At−1 + 0.416465 At−1
2+

0.00870854 Invt−1 + 0.0849762 At−1 Invt−1 − 0.00270785 Invt−1
2+

0.0328161 Kt−1 + 0.320213 At−1 Kt−1 − 0.0204078 Invt−1 Kt−1 − 0.022043 Kt−1
2+

0.699687 σ2 mom(ε, 2)+

1.14279 εt + 1.04116 At−1 εt + 0.10622 Invt−1 εt + 0.400267 Kt−1 εt + 0.650727 εt
2,

Kt = 1.43198+

0.238836 Invt−1 − 0.0285214 Invt−1
2+

0.9 Kt−1 − 0.214953 Invt−1 Kt−1 + 0.045 Kt−1
2,

rt = 0.010101+

0.0880808 At−1 + 0.0352323 At−1
2−

0.0184073 Invt−1 − 0.0147258 At−1 Invt−1 + 0.00373687 Invt−1
2−

0.0693636 Kt−1 − 0.0554909 At−1 Kt−1 + 0.0281631 Invt−1 Kt−1 + 0.0183814 Kt−1
2+

0.110101 εt + 0.0880808 At−1 εt − 0.0184073 Invt−1 εt − 0.0693636 Kt−1 εt + 0.0550505 εt
2,

Welft = −89.4506+

4.72893 At−1 − 0.0632947 At−1
2+

0.808223 Invt−1 − 0.385097 At−1 Invt−1 − 0.080667 Invt−1
2+

3.04561 Kt−1 − 1.45115 At−1 Kt−1 − 0.607951 Invt−1 Kt−1 + 0.377341 Kt−1
2−

9.79089 σ2 mom(ε, 2)+

5.91117 εt − 0.158237 At−1 εt − 0.481371 Invt−1 εt − 1.81394 Kt−1 εt − 0.0988979 εt
2,

Yt = 1.53663+

1.22931 At−1 + 0.491722 At−1
2+

0.110101 Invt−1 + 0.0880808 At−1 Invt−1 − 0.00920364 Invt−1
2+

0.414891 Kt−1 + 0.331913 At−1 Kt−1 − 0.0693636 Invt−1 Kt−1 + 0.0767548 Kt−1
2+

1.53663 εt + 1.22931 At−1 εt + 0.110101 Invt−1 εt + 0.414891 Kt−1 εt + 0.768316 εt
2
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