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We develop a general model of lending in the presence of endogenous borrowing constraints. 
Borrowing constraints arise because borrowers face limited liability and debt repayment cannot be 
perfectly enforced. In the model, the dynamics of debt are closely linked with the dynamics of borrowing 
constraints. In fact, borrowing constraints must satisfy a dynamic consistency requirement: the value of 
outstanding debt restricts current access to short-term capital, but is itself determined by future access to 
credit. This dynamic consistency is not guaranteed in models of exogenous borrowing constraints, where 
the ability to raise short-term capital is limited by some prespecified function of debt. We characterize 
the optimal default-free contract-which minimizes borrowing constraints at all histories-and derive 
implications for firm growth, survival, leverage and debt maturity. The model is qualitatively consistent 
with stylized facts on the growth and survival of firms. Comparative statics with respect to technology and 
default constraints are derived. 

1. INTRODUCTION 

Borrowing constraints are an important determinant of firm growth and survival.1 Such con- 
straints may arise in connection to the financing of investment opportunities faced by firms or 
temporary liquidity needs, such as those required to survive a recession. This paper develops a 
theory of endogenous borrowing constraints and studies its implications for firm dynamics. In 
our model, debt is constrained by the firm's limited liability and option to default. A lending 
contract specifies an initial loan size, future financing, and a repayment schedule. The choice 
of these variables in turn determines future growth, the firm's future borrowing capacity, and 
its ability and willingness to repay. Hence, borrowing constraints and firm dynamics are jointly 
determined. We study this dynamic design problem. 

Our model builds on Thomas and Worral's (1994) model of foreign direct investment. At 
time zero a risk neutral borrower (firm or entrepreneur) has a project which requires a fixed 
initial set-up cost. Every period the project yields revenues that increase with the amount of 

1. There is considerable evidence suggesting that financing constraints are important determinants of firm 
dynamics. Gertler and Gilchrist (1994) argue that liquidity constraints may explain why small manufacturing firms 
respond more to a tightening of monetary policy than do larger manufacturing firms. Perez-Quiros and Timmermann 
(2000) show that in recessions smaller firms are more sensitive to the worsening of credit market conditions as measured 
by higher interest rates and default premia. Evans and Jovanovic (1989) show that the liquidity constraints are essential in 
the decision to become an entrepreneur. Fazzari, Hubbard and Petersen (1988), among others, view financial constraints 
as an explanation for the dynamic behaviour of aggregate investment, and Cabral and Mata (1996) are able to fit 
reasonably well the size distribution of Portuguese manufacturing firms by estimating a simple model of financing 
constraints. For surveys see Hubbard (1998) and Stein (2003). 
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286 REVIEW OF ECONOMIC STUDIES 

capital input and a revenue shock, which follows a Markov process. A risk neutral lender (bank) 
finances the initial investment and provides liquidity to support the firm's growth process. At 
any point in time the project may be liquidated. A lending contract specifies transfers to and 
payments from the borrower and a liquidation decision, contingent on all past shocks. The firm, 
has limited commitment and can choose to default at any time. Default gives the firm an outside 
value which increases with the amount of capital financed and the current revenue shock. We 
study the contract that maximizes total firm value subject to the no-default and limited liability 
constraints. 

The optimal contract defines a Pareto frontier between the value for the lender (which we 
call long-term debt) and the value for the entrepreneur (which we call equity). By defaulting, 
the entrepreneur obtains an outside value but loses its equity. Thus, the firm's ability to expand 
is constrained by the entrepreneurs entitlement. Equity grows over time as the firm pays off 
the long-term debt. This weakens borrowing constraints, as the increased equity provides the 
bonding necessary to accumulate increasing amounts of capital. 

Competition by lenders determines an initial long-term debt equal to the initial set-up cost. 
The equilibrium contract maximizes the entrepreneur's equity value (and total firm value) subject 
to expected repayment of this set-up cost. A unique debt maturity structure attains this initial 
equity value. Any other debt maturity either leads to default or a lower initial firm value. 

In the optimal lending contract equity grows at the maximum possible rate (the interest 
rate), eventually reaching a level at which borrowing constraints are no longer binding. Along 
this path, dividends are zero. As equity grows, so does the size of the firm and its probability of 
survival. Our model is thus consistent with the firm age and size effects found in the literature on 
firm dynamics.2 In addition, it implies that the capital structure is an important determinant of the 
firm's growth and exit decisions, in accordance with the evidence presented in Zingales (1998). 
Moreover, we show that investment of a financially constrained firm responds to Tobin's Q as 
well as the current level of cash flows. Finally, we show that firms with higher market-to-book 
ratio of assets display a lower ratio of long-term debt to short-term debt, conditional on the 
revenue shock (e.g. Barclay and Smith, 1995). This property arises because conditional on the 
revenue shock, a firm with higher market-to-book value of assets is also a firm with higher equity 
entitlement, weaker borrowing constraints and lower long-term debt. 

The growth in the firm's equity is state contingent, as the optimal contract must trade-off 
borrowing constraints across different states. As a consequence, even though the process for firm 
shocks is first-order Markov, the resulting process for firm size, profits and value exhibits a more 
complex lag structure. As an example, even when shocks are i.i.d., firms with better histories of 
shocks will have higher equity and total value. This is not the result of lack of insurance, as the 
contract we consider is fully state contingent. The dependence of firm equity and size on its past 
history is analysed in this paper. 

The optimal lending contract has some appealing comparative statics. Projects with lower 
sunk costs, better prospects or growth opportunities can sustain a larger initial debt and size, 
exhibit higher survival probability, the repayment of long-term debt is faster and borrowing 
constraints are eliminated sooner. A lower value of default (e.g. better outside enforcement or 
credit rating) implies larger firm size, leverage, and, consistent with Barclay and Smith (1995), 
more long-term debt. Firms with higher revenues are also predicted to have more leverage and 
long-term debt. Consistent with this prediction, Titman and Wessels (1988) present evidence 
that firms with greater sales display higher debt to asset ratios. Higher interest rates lead to a 
smaller initial sustainable debt and firm size. Though the relationship between risk and borrowing 

2. See Evans (1987) and Hall (1987) for evidence on growth properties of firms by age and Dunne, Roberts and 
Samuelson (1989a,b) for evidence on entry and exit. 
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constraints is less clear, our analysis indicates that riskier projects could face tighter constraints. 
These and other comparative statics questions obviously cannot be addressed by existing models 
of firm dynamics which assume exogenous borrowing constraints. 

A theory of endogenous borrowing constraints must address the following dynamic 
consistency: equity restricts current access to capital, but is itself determined by future access 
to credit. This dynamic consistency is not guaranteed in models of exogenous borrowing 
constraints, where the ability to raise short-term capital is limited by some pre-specified 
function of equity. Of all dynamically consistent lending plans, the optimal contract is the 
one that maximizes access to short-term capital and the expected rate of decrease of long-term 
debt. 

Implementation of the optimal contract is straightforward in the deterministic version of 
our model and can be achieved by an initial long-term debt with a specific maturity structure. 
In every period the entrepreneur makes payments to the lender and expands its capacity with 
retained earnings. The outstanding long-term debt decreases over time. In the stochastic case the 
firm's earnings may not suffice to finance its expansion when confronted with highly productive 
states, so long-term debt is necessarily state contingent. In parallel to the deterministic case, 
average debt decreases over time. 

The paper that is most related to ours is Thomas and Worral (1994). In their model, 
shocks are i.i.d., there is no liquidation value and outside value is given by the firm's revenues. 
Our extensions are important for several reasons. As a framework for the analysis of firm 
dynamics, the possibility of liquidation/exit and persistent shocks are very relevant. Secondly, 
by considering a general outside value function, we are able to examine the robustness of the 
results. Finally, in contrast to their model, the lender has full commitment to the contract. This 
turns out to simplify the analysis considerably by allowing the use of dynamic programming 
methods and thus providing a more extensive characterization of the optimal contract. 

Our theory of debt is related to Hart and Moore (1994, 1998).3 In Hart and Moore (1994) 
the threat of repudiation by the entrepreneur sets a lower bound on the present value obtained 
by him, which is equivalent to an upper bound on the value of debt. In addition, debt payments 
are subject to a cash flow constraint. These are also our two main assumptions. While in their 
set-up debt is either raised or not to fund the project, we let leverage be state contingent and 
time varying. Furthermore, we let revenues be state dependent and we allow for liquidation of 
the firm. These features give us added margins to discuss the dynamics of real and financial 
choices of firms. In our set-up, financial constraints give rise to three types of inefficiencies: 
(i) projects may not be financially feasible initially, as in Hart and Moore; (ii) firms may be 
credit constrained and produce below the optimal level, as in Thomas and Worral (1994); (iii) 
projects may be terminated too soon. 

As in 
Fernmindez 

and Rosenthal (1990), our model implies a maximum sustainable long- 
term debt. In their paper, default constraints put a limit on repayment schedules and in some 
cases make it infeasible for the borrower to credibly commit to paying back the loans received. 
In such cases, the lender must forgive a certain fraction of the initial debt. Notice that if the 
initial investment exceeds this borrowing limit, the project will not be undertaken unless the 
entrepreneur contributes with its own funds. The feasibility of a project thus depends on the 
nature of default constraints. Bulow and Rogoff (1989b) show that if upon defaulting, the 
borrower cannot be excluded from saving at the market interest rate and has access to actuarially 
fair insurance, there is no financially feasible contract. Furthermore, in any feasible contract, total 
debt is limited by the costs borne by the borrower upon default. 

3. For a survey on the corporate capital structure literature see Harris and Raviv (1991). 
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This paper is also related to the literature on optimal debt financing with incomplete 
contracts.4 We briefly refer to the work that is most related to ours. A dynamic model of 
borrowing and lending with no default constraints was first introduced by Eaton and Gersovitz 
(1981), in the context of international lending. Kehoe and Levine (1993) present a general 
equilibrium theory under no default (or participation) constraints. These participation constraints 
generate endogenous debt limits. Alvarez and Jermann (2000) apply this framework to the 
analysis of risk sharing and asset pricing with limited commitment. Also related is the work 
by Marcet and Marimon (1992). Their simulations suggest that economic growth can be 
substantially impaired by the presence of limited enforcement. Bulow and Rogoff (1989a) study 
a model of international lending with imperfect commnitment, where the lender can punish the 
borrower by means of direct sanctions and contracts can be renegotiated. 

Imperfect enforcement is a source of contractual incompleteness that gives rise to a hold- 
up problem. An obvious way of dealing with this problem is through bonding. In our model, the 
hold-up problem is gradually resolved over time as the borrower builds up this bond by increasing 
its claims to future profits. A similar situation arises in the context of repeated insurance contracts 
when agents cannot commit not to take outside offers in the future. Harris and Holmstrom (1982) 
use this mechanism to explain an increasing wage profile, when the ability of workers becomes 
known over time. Another example is Phelan (1995), that considers a repeated moral hazard 
model where agents can recontract with outside principals, generating increasing profiles of 
consumption. 

Diamond (1989) studies reputation building in a model with both adverse selection (in 
project riskiness) and moral hazard (in project choice). There is a sequential equilibrium where 
interest rates decrease over time as the probability of default decreases. The fall in interest rate 
increases the value of maintaining a good reputation and thus reduces the incentives to take 
excessive risk, mitigating the conflict of interest between the borrower and the lender. 

This paper is organized as follows. Section 2 provides a simple example of our framework. 
Section 3 introduces the model. In Section 4 we characterize the optimal contract along several 
dimensions. We also discuss how to implement the optimal contract using more standard financial 
instruments. As an alternative formulation, Section 5 presents the problem under study as a 
constrained growth problem. Section 6 concludes. We leave the proofs and other technical results 
to the Appendix. 

2. AN EXAMPLE 

Consider a project that requires an initial investment Io and gives revenues R (kt) in every period, 
where kt is the working capital employed in period t. Cash flows are deterministic. Net profits 
are given by R(kt) - (1 + r)kt, which are maximized at the optimal level of working capital 
k*. Suppose that R(k*) - (1 + r)k* > rlo, so investing in this project is profitable. However, 
the entrepreneur has no wealth. In absence of enforcement problems, the entrepreneur would 
initially raise total debt of Do = I0 + k*, reinvesting every period k* from its revenues and 
making payments to the debt holder. The Modigliani-Miller theorem applies to this set-up, so 
the specific payments to be made are undetermined. The total value of the project is 

R (k*) - (1 + r)k* 
r 

which by the above condition exceeds the initial investment. 

4. Aghion and Bolton's (1992) seminal paper develops a theory of capital structure based on wealth constraints 
on the part of the entrepreneur and on the inability of the parties to write contingent contracts. For an excellent survey of 
the literature, see Hart (1995). 
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Now suppose that the entrepreneur has an alternative outside opportunity with value kt 
and unless the project grants him this value, he would choose to default. According to this 
outside opportunity the entrepreneur can steal the working capital. It is used here for simplicity 
of exposition and is a special case of the more general framework used throughout the rest of the 
paper. Suppose also that this outside option is not contractible and that 

rio < R(k*) - (1 + r)k* < r(lo + k*). (1) 
As we will now show, this condition implies that even though it is efficient to start the project at 
full scale, a default-free contract must necessarily involve borrowing constraints, i.e. Io < Do < 
Io + k*, so that ko < k*. To see this, notice that if the project were carried out in full scale from 
the start, the value to the entrepreneur would be 

Vo = W - o 
R (k*) - (1 + r)k* 

r 
which from equation (1) implies that Vo < k* and thus the entrepreneur would choose to default. 
This example also illustrates that borrowing constraints would arise even if Io = 0. 

We now derive the optimal no-default lending contract. Let { Dt } and {Vt } denote the debt 
and equity values in this contract. Given the outside opportunity, it follows that 

kt < Vti, 

with equality when Vt < k*, so as the equity of the firm increases over time, kt will also increase. 
It is obvious that while Vt < k*, no dividends will be distributed, so kt = Vt = (1 + r) Vt-1 
(1 + r)kt-1. This in turn implies that at time t the lender must receive a payment 

rt = R(kt-1) - kt = R(kt-1) - (1 + r)kt-1. (2) 

When k* is reached, the borrower receives rk* every period as dividends and the lender gets the 
remaining cash flows. Letting Do be the initial debt and ko = Do - 0o, it follows that kt will grow 
at rate r until the optimal level k* is reached. Letting W (ko) denote the total value of the project if 
the initial size is ko, it follows that the maximum initial debt satisfies Vo = W(ko) - lo = ko. The 
initial total debt Do = Io + ko together with the maturity structure defined by equation (2) define 
the optimal lending contract. Notice that the maturity structure and the initial debt are jointly 
determined: a different maturity structure violates the no-default constraint unless the initial debt 
is smaller. 

In an abstract sense, the optimal debt contract specifies a growth policy for the firm and a 
sequence of cash flows. One implementation of this contract was described above, involving a 
single initial loan Io + ko and a repayment plan. An alternative implementation is to consider an 
initial long-term debt Bo = 10, together with a sequence of short-term loans kt. Short-term loans 
are repaid in full at the end of the period. All remaining profits are applied to the long-term loan 
until equity reaches the point V = k*. At that point, the firm is able to raise the optimal amount 
of short-term capital. Section 4.5.1 in what follows discusses these implementations in greater 
detail and generality. 

Having reached k* does not imply that the entrepreneur gets rid of the bank. There could 
still be positive debt at this point. What is true is that beyond this level if equity keeps increasing, 
a point can be reached where the entrepreneur does not need the bank: when equity is sufficient 
to finance the project. When uncertainty is added later on, this statement needs to be qualified to 
say: under all contingencies. 

This example shows how borrowing constraints arise when the no-default constraint binds. 
It also points to an important difference between this theory and standard models on firm growth 
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with limited borrowing. The latter models consider the firm's dynamic capital accumulation 
problem subject to some exogenously given borrowing constraint. In our set-up, the forward 
looking nature of the no-default constraint establishes a link between current debt limits and the 
structure of future repayments. In this sense, our model considers the optimal design of long-term 
debt contracts and borrowing constraints. 

The growth in the equity value Vt occurs at the same time as the long-term debt decreases. 
This is no coincidence; as we establish later, the optimal contract defines a path along the Pareto 
frontier defined by the value entitlements of the lender and the firm, Bt, Vt respectively. Figure 1 
plots the Pareto frontier, V (Bt). In Figure 1, Bmax is the highest level of long-term debt that can 
be credibly repaid. Any investment project requiring more than Bmax cannot be financed. This 
implicitly defines a level of equity, Vmin, that is just enough to keep the firm from defaulting 
were Bmax granted. As B decreases, the borrowing constraint is loosened and V increases by 
more than one-for-one (more on this below). The intuition is that the increase in equity that 
results from reducing debt, improves entrepreneur's incentives thereby leading to an increase 
in firm value. As the unconstrained optimum is reached, i.e. V = k*, any further decreases in 
long-term debt result in one-for-one increases in equity, since the total value of the project is not 
changed. 

What are the implications of our contract to the maturity of debt? In our example, short- 
term capital is constrained by kt < Vt = V (Bt). This defines implicitly a negative relationship 
between short-term capital and long-term debt. Faced with this short-term borrowing constraint, 
the firm would choose to repay its long-term debt as fast as possible until this short-term 
borrowing constraint does not bind. 

The limit on total debt Dt = kt + Bt < V(Bt) + Bt is typically not independent of the 
composition between short and long term. Indeed, as we show later it is generally the case that 
V'(Bt) < -1 implying that total debt can be higher the lower its long term component is: debt 
structure matters. This is illustrated in the curved portion of the Pareto frontier in Figure 1. 
Clearly, in the region of the Pareto frontier where V'(B) = -1 the maturity structure no 
longer matters for firm value. This discussion suggests how special are models where firms are 
confronted with a fixed total borrowing limit. Moreover, it may not be desirable for firms to have 
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the freedom to choose how much to repay each period at will. Indeed, if given such freedom and 
maintaining the initial loan I0 + ko, the firm would choose not to repay, keep the revenues, and 
exit in the following period with an outside value R(ko) > (1 + r)ko = Vi. To avoid default, the 
initial loan would then have to be lower. 

In the rest of the paper, our example is generalized in two main dimensions. First, a general 
class of no-default constraints are considered. Second, we introduce persistent shocks to revenues 
and consider the possibility of liquidation as part of the lending contract. We derive optimal 
lending contracts and study their implications for firm growth and survival. 

3. THE MODEL 

Time is discrete and the time horizon is infinite. At time zero an entrepreneur may start a firm by 
pursuing a project which requires a fixed initial investment Io > 0. The project gives a random 
stream of revenues R(k, s) each period, where k is the capital input and s E S C 9 is a revenue 
shock. The revenue shock s follows a Markov process with conditional cumulative distribution 
function F(s', s). F(.) is jointly continuous. 

The timing of events within a period is as follows. First, the shock s is observed. After 
observing the revenue shock, the firm can either be liquidated, at a value L(s), or continue in 
operation. If the firm continues in operation, inputs are purchased, sales take place, and revenues 
R (k, s) are collected at the end of the period. These revenues are an increasing function of both, 
k and s. The revenue shock s is publicly known, so there is no asymmetry of information. 

The entrepreneur has limited liability. It starts with zero wealth and thus requires a lender to 
finance the initial investment and the advancements of capital every period.5 Both, entrepreneur 
and lender, discount flows using the same discount rate r > 0. 

Lenders commit to long-term contracts with the firm. However, contracts have limited 
enforceability as the borrower can choose to default. As in Hart and Moore (1994), only the 
borrower has the ability to run the firm. If the match is ended either voluntarily or not, the 
residual value for the borrower is given by a function O (k, s), which is discussed in more detail 
below. 

A long-term contract specifies a contingent liquidation policy et (et = 1 if exit is 
recommended and et = 0 otherwise), capital advancements kt from the lender to the firm that 
take place at the beginning of each period, and a cash flow distribution consisting of a dividend 
flow dt and payments to the lender R(kt, st) - dt which takes place at the end of the period. 
Because the firm has no additional funds dt O0. The capital advancement, dividends and 
liquidation policy at any time t, are contingent on the history ht = {kr-1, dr-1, er-1, Sr}r=l 
of previous transfers and all shocks, including st.6 Let H be the set of all possible histories. 

Definition 1. A feasible contract is a mapping C : H -+ 2 x {0, 1} such that for all 
ht E H and (kt, dt, et) = C(ht), dt > 0, and et = 1 if er-1 = 1, for some r < t. 

The timing of events is as follows. At time zero, a competitive set of lenders offer long-term 
contracts to the firm. If the firm accepts a contract, the lender pays for the initial investment Io 
and carries the contract as stipulated, provided the agent has not deviated from the corresponding 

5. If the firm starts with wealth w < Io, then the project only needs financing of I' = I0 - w. If w > 10, then 
there is no need for external lending. 

6. To clarify the notation, we shall use letters without subscripts to denote current period values and with a prime 
to denote next period's value, except when an explicit reference to longer horizons takes place in which case we shall use 
subscripts t, t + 1, .... 
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repayment plan or defaulted. If the agent deviates, the contract is terminated and the firm 
liquidated. Otherwise, the plan defined by the contract continues to be implemented. 

3.1. Contracts with perfect enforceability 
In the absence of enforcement problems, the lender and the firm can commit to the above contract 
without any additional constraints. Since flows are discounted at the same rate, the optimal 
contract maximizes total expected discounted profits for the match. 

Let 7r(s) = maxk R(k, s) - (1 + r)k denote the profit function. The following assumptions 
guarantee a solution to this profit maximization problem. 

Assumption 1. The function R has the following properties: 

(1) R(k, s) is continuous. 
(2) For each s, R(k, s) - (1 + r)k is quasiconcave in k and has a maximum. 
(3) There exists some b < oo such that for all s and k, -b < R(k, s) - (1 + r)k < b. 

The total surplus of the match W(s) satisfies the following dynamic programming equation: 

W,(s) 
= max L(s), 1 Ar [R(s) + W(s')F(ds', s) . (3) 

If W(s) = L(s) for all s E S, the firm would not be viable and would be immediately 
closed. The survival set, S = {s : W(s) > L(s)}, is the set of states at which the firm would 
continue in the industry. 

Assumption 2. The survival set S is non-empty. 

With perfect enforceability the Modigliani and Miller (1958) theorem applies and the capital 
structure of the firm is indeterminate. There are two implications from this. First, survival and 
growth of the firm are independent of its capital structure. Second, there is a multiplicity of 
optimal debt repayment plans for short- and long-run debt that have the same present values. 

3.2. Contracts with limited enforceability 

As illustrated in our example, when firms have the possibility of default, the long-term contract 
proposes a unique debt repayment plan. We now give details about the firm's ability to default 
and the construction of the long-term contract. 

3.2.1. Entrepreneur's outside opportunities. If the firm chooses to default it will do 
so prior to making any payments to the lender. We assume that by defaulting a firm obtains a 
total value given by a function O(k, s). This function is one of the primitives of the model and 
summarizes the value of the outside investment opportunities faced by the firm, which is common 
knowledge to both parties. For example, if the borrower can collect revenues and disappear, 
without being able to re-establish itself as a new firm, then O(k, s) = R(k, s), as in Thomas 
and Worral (1994). If the firm can continue operations but is excluded from borrowing, saving 
and insurance (as in Manuelli (1985), Marcet and Marimon (1992)), then O(k, s) is the value 
obtained by the firm through optimal self-financing. Alternatively, a firm may be excluded from 
borrowing but not from saving or purchasing insurance, as in Bulow and Rogoff (1989b). O (k, s) 
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will be the value function thus obtained. Another example is obtained if the firm can establish a 
new contract with a bank, after paying a cost for breach of contract. 

If at the beginning of some period the bank decides to liquidate the firm, then the latter 
obtains a value O (0, s). This value represents an inalienable component of the firm's capital; it is 
the residual value that cannot be taken away from the entrepreneur such as his opportunity cost. 
The difference L (s) - 0 (0, s) thus represents the component of the liquidation value that can 
be appropriated by the bank. As in Hart and Moore (1994) anything greater than L(s) - 0 (0, s) 
could be renegotiated down by the borrower. We assume that 0 (0, s) = 0, for all s. This is not 
without loss, but it greatly simplifies the exposition of the paper. In Appendix A we show what 
modifications are required to generalize the results. We make the following assumptions on O. 

Assumption 3. The function 0 has the following properties: 

(1) 0(0, s) = 0, for all s. 
(2) O(k, s) > 0. 
(3) O(k, s)- k < L(s). 
(4) O is a continuous function. 
(5) O is non-decreasing in both arguments. 

Part 2 is in line with our limited liability assumption. Part 3 says that involuntary separations 
are less efficient than liquidation. 

3.2.2. Long-term debt contracts. In this section we formulate the contract in an abstract 
form; alternative implementations are discussed in Section 5. A contract specifies a liquidation 
policy, history-dependent contingent advances of capital kt, and a dividend distribution dt. This 
contract implicitly defines an equity value for the firm Vt and the long-term debt level or value to 
the lender Bt. The equity value for the firm gives the discounted sum of future dividends whereas 
the long-term debt or value to the lender gives the discounted cash flows to the lender. Thus, the 
total asset value after history ht is defined by Wt = Vt + Bt. 

The total value of debt includes debt originated at possibly different periods of time. 
However, because there is only one lender, these different vintages of debt are all homogeneous 
and there are no seniority claims. In spite of this, we label kt as short-term debt and Bt as long- 
term debt. 

Letting Vt+1 (s') denote the continuation equity value at the beginning of period t + 1 after 
history ht+l = (ht, kt, dt, et, s'), the firm will choose not to default in period t provided that the 
value of outside opportunities is lower than the value of its entitlement by staying in the match: 

O(kt, st) < dt' + Vt+l (s')F(ds', st)). (4) 

Since the lender can always include in the contract a recommendation to liquidate the firm and 
since liquidation is more efficient than default, we require that the participation or enforcement 
constraint equation (4) be satisfied at all times. 

A feasible contract is enforceable if, after any history ht, the triplet (kt, dt, Vt+l(s')) 
satisfies equation (4). It is easy to see that after any history, the continuation contract is also 
an element of the set of enforceable contracts. Letting 2 (s) C t2 be the set of values (V, B) 
such that there exists an enforceable contract with initial values Vo = V and Bo = B and initial 
state s, it follows that (Vt, Bt) E -2(st) for all t. The set of optimal contracts gives values that are 
in the Pareto frontier of a2 (s). Moreover, as seen below optimal contracts have the property that 
for all t, (Vt, Bt) 

are in the Pareto frontier of ? (st). 
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The Pareto frontier was depicted in Figure 1 for an example without uncertainty. In that 
example the Pareto frontier solves the primal problem of maximizing firm value subject to total 
debt. An alternative to constructing the Pareto frontier is through the dual problem of maximizing 
the debt value subject to the firm's equity value.7 In the more general scenario of random 
productivity, this frontier can be characterized by a function B(V, s) which gives the maximum 
debt that is enforceable for a given level of equity V and state s and a domain restriction for V. 
Thus, underlying B(V, s) is the optimal long-term debt contract. In fact, any alternative contract 
will give a lower frontier, so that for the same level of V and shock s, the firm will be more 
financially constrained. 

3.2.3. Equilibrium contracts. We can now describe the maximum state contingent long- 
term debt that can be credibly repaid from time 0. The existence of many competitive lenders 
requires that borrowers receive the highest share value consistent with this initial long-term debt 
level. 

Definition 2. An equilibrium contract C(.) is feasible, enforceable, and gives the highest 
possible initial value to the borrower consistent with the lender breaking even: Vo = sup{ V : 
B(V, so) > Io} when the initial shock is so. 

Referring back to Figure 1, notice that financing of an initial investment Io requires that 
Bo < Bmax be raised. Any investment value requiring long-term debt in excess of Bmax 
cannot be financed. This is because, the project does not generate enough cash flows to repay 
the bondholders and still grant enough future dividends to the firm, that would keep it from 
defaulting. 

If Io cannot be financed, no contract is possible unless the firm has funds to contribute to 
this initial investment. More specifically, the firm must contribute at least Io - B(Vo, so). For 
example, a weaker enforcement structure, defined by higher values O (k, s), will reduce the total 
surplus of the project and thus require a higher initial investment by the firm. 

In general, financing of Io is feasible only whenever a credible contingent repayment 
schedule can be agreed upon by both parties. This depends critically on characteristics of the 
outside-value function. As an example, Bulow and Rogoff (1989b) consider the feasibility of 
long-term debt contracts between a lending and a borrowing country with one-sided commitment. 
They show that if the borrower cannot be excluded from contingent savings (what they call cash- 
in-advance contracts), then debt is restricted by the present discounted value of the penalties 
from breaching the contract. In this case, this present discounted value is given by Bmax, and 
when there are no penalties the frontier collapses and there is no feasible lending. 

4. THE OPTIMAL CONTRACT 

We now construct the dynamic programming problem that solves for the Pareto frontier. 
The values Vt+1(s') provide a summary statistic for the future contract and together with 

(kt, dt, et, st) are sufficient to verify this non-default or participation constraint. Using Vt as a 
state variable, following Spear and Srivastava (1987), the contract can be specified in recursive 
form. Every period, given initial values Vt = V and st = s and assuming liquidation is not 
recommended, the contract specifies a pair (k, d) and continuation values V(s'). In turn, the 
continuation values V (s') will dictate future investment and dividend actions. This formulation 

7. This alternative formulation simplifies the analysis considerably. 
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is consistent with real life bond contracts in which covenants are written establishing restrictions 
in the firm's investment, dividend and financing policies. 

Since the current value for the entrepreneur is the sum of the dividends paid out this period 
plus the discounted value of the stream of future dividends, the following equity cash flow 
condition must be satisfied if the firm is not liquidated: 

lV(= d 
+fV(s')F(ds',s). 

(5) 
1V +r 

, The continuation equity values V (s') must be supported by an enforceable continuation contract. 
By Assumption 3(1), any positive continuation value V(s') > 0 is feasible, since it can be 
obtained by giving the firm a transfer t < V(s') and liquidating the firm (or committing to 
no future advancements). Any continuation value V (s') < 0 is not feasible. Hence, an equity 
value V (s') can be supported by an enforceable contract if, and only if, V (s') > 0. This is the 
domain restriction indicated above. 

Using equation (5), the enforcement constraint equation (4) simplifies to 

O(k, s) < V. (6) 

Finally, the limited liability condition d > 0 and the equity cash flow equation simplify to8 

1 f V(s')F(ds', s) < V. (7) 

We now write the problem's Bellman equation. We assume that the lender has access 
to perfect capital markets; a negative period pay-off results in increased lending. The lender 
maximizes the debt level B(V, s) by choosing an enforceable contract that gives a current 
expected value V to the firm when the current revenue shock is s. Recalling that the total surplus 
of the match is given by W(V, s) = B(V, s) + V, and that the lender has full commitment to the 
contract, it is immediate to see that the optimal debt contract also maximizes W(V, s) given V. 
The function W(V, s) satisfies the following dynamic programming equation: 

W(V, s) = max{L(s), 

maxk, V(s')>o r R(k, s) -(1 + r)k + f W(V(s'), s')F(ds'; s) (8) 

subject to equations (6) and (7). Standard results in dynamic programming imply that there is a 
unique solution W(-) to this problem.9 

It is interesting to compare this programme with the one obtained for the case of perfect 
enforcement, equation (3). Notice that if the no-default constraint equation (6) were never 
binding, then k would be chosen so that R(k, s) -(1 +r)k = n7(s) and the solution to equation (8) 
would give W(V, s) = W(s). Also, if there was unlimited liability, V would grow without bound 
to achieve the efficient level of capital next period for all states in S. 

In the optimal contract, the lender decides to terminate the contract and liquidate the firm 
whenever its value reaches B(V, s) = L(s)- O (0, s) = L(s). In such a state, the lender gives the 
lowest feasible value of equity to the firm, O (0, s) = 0. Because of limited liability equation (7) 

8. Strictly speaking limited liability does not require that dt is non-negative at any point in time. In principle the 
entrepreneur could accumulate some form of precautionary saving and invest them at the market interest rate to cover 
future financial needs. In the optimal contract the lender is implicitly doing these savings for the entrepreneur. See the 
implementation of the contract discussed in Section 4.5.1 for an example. 

9. The possibility of liquidation introduces a non-convexity in the above decision problem. Though not explicitly 
stated in the above formulation, in our analysis we consider the possibility of randomization on the liquidation decision. 
This is explicitly addressed in Appendix C. 
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the lender does not "waste" equity assignments in these states. Since L(s) represents the highest 
value that can be appropriated by the lender upon liquidation, it can also be thought of as standard 
collateral. 

In the next subsections we will discuss in turn the properties of the debt contract for the 
design of optimal borrowing constraints, the efficient frontier-a state after which the borrowing 
constraint will never bind-the growth and survival patterns of firms, and the capital structure 
policy. 

4.1. Short-run borrowing constraint and equity 
As seen in the example, the level of long-term debt sets a limit on the short-term advancements 
of working capital. A direct consequence of this, is that a static problem determining short-run 
financing of k can be separated from the dynamic choice of V (s'). In particular, define the indirect 
profit function 

1(V, s) = maxk R(k, s) - (1 + r)k 
subject to O(k, s) < V. (9) 

The solution to this problem is simple. Let K(s) = inf{k : R(k, s) - (1 + r)k = 7r(s)}, and 
define VU (s) = O (K(s), s). This is the smallest continuation value for the firm that, once 
reached, is compatible with static profit maximization. Thus, if V > Vu (s), k is chosen so that 
R(k, s) - (1 + r)k = 7r(s). If V < VU(s), current profit maximization cannot be enforced and 
k is chosen so that O(k, s) = V. Hence, R(k, s) - (1 + r)k < 7r(s), if and only if V < VU(s). 
These results follow directly from Assumptions 1 and 3. 

The frictions between total debt, equity and financial constraints seen earlier in our example 
are already apparent here. From the short-run financing constraint equation (6), everything else 
constant, the higher the debt level B (lower V), the less capital the firm is able to borrow for 
production. This negative relationship between long-term debt and short-term capital is at the 
heart of the financing constraint. 

We make the following assumptions on the indirect profit function: 

Assumption 4. The function I has the following properties: 

(1) H is twice continuously differentiable, uniformly bounded, increasing in s, strictly increas- 
ing in V for V < Vu (s). 

(2) H is concave in V, and strictly concave if V < Vu (s). 
(3) There exists M < oc, such that Vu (s) < M for every s. 

Lemma 2 in Appendix B gives sufficient conditions for Assumptions 4(1) and 4(2) to hold. 
Loosely speaking, the assumption that 11 is increasing in s, requires that the revenue function 
increases by more than the outside-value function when shocks increase. Assumption 4(2) 
requires that the degree of concavity of the revenue function with respect to k be greater than 
the degree of concavity of the O function. One example that satisfies all of these requirements 
is O(k, s) = R(k, s) (this is the assumption made in Thomas and Worral (1994)). Another 
interesting example arises when shocks are project specific, i.e. the outside value does not 
respond to changes in shocks (O(k, s) = k). 

4.2. Firm value and the efficient frontier 
The deterministic example we constructed in Section 2 shows that there is a minimum V 
(maximum level of debt) that is consistent with efficiency. For higher debt levels, the total value 
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of the firm is lower. In this section we extend this result to the general case, where this upper 
bound on debt is defined for each state. For debt values above that limit, an increase in the 
equity of the firm raises total firm value, so capital structure matters. Provided debt is below this 
limit, capital structure is not relevant and the total value of the firm coincides with the perfect 
enforcement case. Thus, we call this limit-and its corresponding minimum level of equity-the 
efficient frontier. 

From (9) it follows that if the current equity level is sufficiently high, V > Vu (s), the period 
return will be identical to the one obtained in the unconstrained problem, i.e. 1-(V, s) = 7r(s). 
However, this may not ensure that the current total value W(V, s) = W(s), since the contract 
must also guarantee that the enforcement constraint will not bind in any future period. For 
example, if VU(s) < V < -i+r VU(s')F(ds', s), then it must be the case that V(s') < VU(s') 
with positive probability on a subset of the survival set S, and thus next period's unconstrained 
profit maximum cannot be guaranteed. However, if V is high enough, it may be possible 
to guarantee that the enforcement constraint will not bind in any future period and thus the 
unconstrained optimal solution will be attained. 

Abusing the notation, let Vn (s) be the minimum level of current initial value for the firm 
that is needed to guarantee that the enforcement constraint will not bind for at least n periods, 
including the current one, when the state is s. Then Vn (s), n > 1, can be defined recursively by 

V(s) = max(Vu(s),1 f Vn-1(s)F(ds', s) (10) 

for s E S, with Vo(s) = 0. Let 

V(s) = limn,, Vn(s). 
Since Vn(s) is an increasing sequence, which by Assumption 4(3) is uniformly bounded, this 
limit exists. Furthermore, using Lebesgue's dominated convergence theorem, it follows that V (s) 
is a solution to 

V(s) = max(V(s), V (s')F(ds', s) s S. (11) 

This solution is unique, as Blackwell's sufficient conditions can be immediately verified. 
The functions V'(s) and W*(s) define the maximum long-term debt B(s) = W (s) - Vf(s) 

consistent with unconstrained financing. We call the function V (s) the efficient frontier, since for 
equity values above V (s) (i.e. debt values below B(s)) the firm cannot improve the total surplus 
by manipulating-its debt level. This interpretation is derived from Lemma 1. 

Lemma 1. Let s be in the survival set S. Then: 

(1) W(V, s) is weakly increasing in V. 
(2) For all V > V(s), W(s) = W(V, s). 
(3) For all V < V(s), W(s) > W(V, s). 

Proof See Appendix D. I 

An immediate consequence of Lemma 1 is that firm growth and survival are a function of 
the capital structure below the efficient frontier only. These age and path effects are analysed 
extensively in what follows. 

Lemma 1 helps to identify financially constrained firms in the model. Short-run constrained 
firms are those that are unable to borrow enough capital to achieve static profit maximization. 
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FIGURE 2 
The value function for two revenue shocks 

These firms have current excess marginal returns. Are these the only constrained firms? No. 
As discussed above, firms with equity values VU(s) < V < V(s), face a positive probability 
of reaching states where the marginal return is positive. All these firms have total surplus 
W(V, s) < W(s) and future excess marginal returns. 

Figure 2 illustrates the function W for two possible revenue shocks st > s2. This figure 
depicts several properties of the value function. In particular, it strengthens the statement in 
Lemma 1 that the value function is weakly monotone in V for fixed s, to strictly monotone (see 
Appendix C for a technical discussion). We leave the discussion of other properties implied by 
Figure 2 for later. 

A direct implication of strict monotonicity of the value function W, is that the optimal 
contract recommends that no dividends be distributed below the efficient frontier and that all 
earnings be allocated to the repayment of long-term debt (i.e. constraint equation (7) holds 
as an equality). This is true despite the fact that the borrower and lender are risk neutral and 
discount flows at the same rate. The reason is that delaying dividend distribution allows for faster 
equity growth and repayment of long-term debt. More equity reduces the incentives to default 
and relaxes the short-term borrowing constraint. Thus, total firm value increases as does the 
maximum long-term debt at time zero that can be credibly repaid. Formally: 

Proposition 1. If V < 1r f V(s')F(ds', s) the optimal contract requires that V = 

l+r f V(s')F(ds', s), so no dividends are distributed. 

The relaxation of the borrowing constraint has a simple interpretation for the case of 
deterministic revenues. The contract gives the firm a certain value, equal to the discounted 
value of its share of profits. This value, i.e. the anticipation of the firm's share of future profits, 
is precisely what holds the firm from defaulting. Since incentives to default increase with the 
amount of capital advanced, the higher the equity share, the more capital can thus be advanced. 
As the outstanding equity grows over time through retained earnings and long-term debt is repaid, 
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the capital advances increase towards the unconstrained level. Clearly, the debt-equity mix is 
important in determining the borrowing capacity of the firm: the increased equity provides the 
bonding necessary to raise increasing quantities of capital. Once the efficient frontier is reached 
this role for equity disappears as the long-term contract becomes a function of the current revenue 
shock only. Also, only after the efficient frontier is reached will dividends be distributed. This 
feature of the optimal dividend policy is present in other papers as well. In Spence (1979), in 
order to meet a cash flow constraint, firms distribute dividends only once its capital reaches the 
long-run size. 

4.3. Firm growth and survival: age effects 

Many studies have documented that firms experience very large growth rates at their early stages 
of life coupled with dramatic turnover rates. In this section, we discuss the implications of the 
optimal debt contract for firm growth and survival. 

Thomas and Worral (1994) show that capital advancements-and thus firm size-grow 
monotonically over time. In this section we prove a similar result for our general set-up. We 
have already established that on average V increases (and thus, B decreases). However, given 
that revenues are stochastic and debt is contingent, a non-trivial choice of continuation values 
must be made, trading off borrowing constraints along different future paths. We provide an 
elementary characterization of the optimal state contingent debt. For any history, contingent debt 
decreases monotonically over time conditional on the revenue shock. 

The results presented in what follows and in the next section use strict concavity of the value 
function W(., s) for L(s) < W(V, s) < W (s). Allowing for random liquidation, Appendix C 
shows this holds under Assumption 4(2).10 

Take Vt < -41 f V(st+l)F(dst+l, st), so the constraint in equation (7) binds. It is easy 
to see that at an interior solution for the optimal contract, V(st+l) will be chosen so that 
W1i(V(st+l), st) is equalized for all those states were the firm is not liquidated.11 Notice that 
this derivative serves as an index for contingent equity and debt. By concavity, a lower derivative 
corresponds to lower values of contingent debt for all states. By the envelope theorem,12 

1 
Wi(Vt, st) = Ol,(Vt, st) + W1(V(st+l), st+l). (12) 

1+r 
Given that I1 > 0, this implies that the level of contingent debt decreases over time, conditional 
on the revenue shock. Moreover, it will strictly decrease if and only if 1- > 0, that is when 
short-run borrowing constraints bind. Notice that this implies that state contingent debt (for all 
states) will not change after a firm transits through a state where it faces no short-term borrowing 
constraints and it will strictly decrease otherwise. Interestingly, this implies that even if the firm 
transits through a period with negative cash flows its contingent debt will not grow and may 
indeed decrease. 

Given the negative relationship between k and long-term debt, the following property for 
firm size and profits follows: 

Proposition 2. Conditional on the revenue state of the firm s, firm size and profits 
increase with age. 

10. In particular, our conditions imply that the value function is concave when O (k, s) = R(k, s) and there is no 
liquidation value, as in Thomas and Worral (1994). 

11. Concavity guarantees that the value function is differentiable almost everywhere. 
12. Pointwise differentiation of the objective function with respect to V(s') yields the first-order condition 

W1 (V(st+l), st+1) = Xt where Xt is the Lagrangian multiplier on the limited liability constraint equation (7). The 
result now follows from using the envelope condition W1 (Vt, st) = -4L. 1(Vt, st) + xt. 
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Another important corollary of our discussion concerns firm growth. While the firm is in a 
set where V < V(s), firms will grow with age. Once a region is reached where V = V(s), age 
will have no further growth effect. This implies that: 

Proposition 3. Younger firms will, on average, grow faster. 

This result does not require mean reversion of productivity shocks or learning, as in models 
of pure stochastic evolution, like Jovanovic (1982) and Hopenhayn (1992). 

The fact that conditional on s, the equity value is an increasing sequence also has an 
important consequence concerning firm exit. Most industries exhibit very large turnover of firms, 
predominantly for small and young firms. Empirically, survival rates are lower for smaller and 
for younger firms. We address this evidence now. 

Let S*(V) be the set of values s for which a firm with equity V remains active. It is 
immediate to see that the optimal exit rule satisfies the following properties: (i) V2 > V1 
implies that S*(V2) Q S*(Vi) (follows from the monotonicity of W(.) with respect to V); 
(ii) S*(V) C S; (iii) if s e S, then s e S*(V(s)). This shows that the exit set is weakly 
decreasing in V. Intuitively, highly indebted (lower V) firms have lower option value of staying. 
Thus, the capital structure matters for the exit behaviour of firms in that it induces inefficient 
liquidation. Zingales (1998) presents evidence for the trucking industry that high debt levels 
affect the survival of firms by constraining their investment decisions. 

Because, Vt is increasing (conditional on s), if a firm does not exit at time t in state s, then 
it will not exit anytime in the future if it returns to the same state. Thus, according to our theory, 
limited enforcement contributes to a positive relationship between firm survival and age. 

Proposition 4. Conditional on the revenue state of the firm s, survival probability 
increases with age. 

These results are a reflection of financial constraints being relaxed with age. Fazzari et al. 
(1988) find that in addition to the firm's q-value cash flows are a significant variable to predict 
firms' investment. In our model, the q-value of a firm (as measured by the ratio of W to the book 
value of assets Io) is a sufficient statistic once the equity value of the firm has reached the efficient 
frontier. Prior to that point, the size and growth of a firm is determined both by its equity value 
V and revenue shock s. In this range, a high q-value may reflect either good revenue shocks or 
lower borrowing constraints. Moreover, since in this region there is a one-to-one map between 
the pairs (V, s) and (W, F), cash flows and the firm's q-value jointly determine its decisions and 
growth. Our model thus suggests that, in addition to the firm's q-value, cash flows are a relevant 
variable but only for young firms. 

4.4. Firm growth and survival: path effects 
In the previous subsection, we established the general principle of age and growth: conditional 
on a given shock s, Vt is a non-decreasing process, i.e. firm value tends to increase over time. In 
this subsection, we consider the effect of the history of productivity shocks. The main question 
we address is: do better histories lead to lower borrowing constraints, larger firm size and higher 
survival rates? The answer is a qualified yes. This question is particularly important because it 
implies that age alone does not explain financial constraints: history also matters. 

To make our statements precise, consider the following two sequences of shocks: 

{so, sl ..., ST-1, sT}, 
{SO, S ... ,_ST , sT, (13) 
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where both sequences start and end with the same shocks and st > s. Let { Vo, V1,..., VT) and 
{Vo, , . . ., VT } denote the corresponding value sequences. As we will see, in general V' # VT, 
so history matters. We say that the contract leads to positive persistence if Vt > Vt/, t = 1,..., T. 
Positive persistence implies that, controlling for the current productivity shock, firm size and 
value increase with past productivity shocks. Our original question can be restated as: When 
does the optimal lending contract lead to positive persistence? 

To motivate the mechanism for history dependence, consider the case of i.i.d. shocks. Under 
what conditions will the contract be path independent? Take two histories that are identical up 
to time t and differ only in period t, where st > s. Let Vt+l(st+l) and V/+1(st+l) denote the 
corresponding continuation values for the two histories at time t + 1. Using equation (12) it is 
easy to see that if Vt+1(st+l) = V'+1?(st+1) then 

Hnl(v, st,)= nl(v', s). 
This holds for all st and s only if IH12 = 0, i.e. when the marginal effect of V is independent 
of the shock s. This is obviously a very exceptional case. In general, path dependence will be 
affected by the sign of this cross partial effect. In the case of i.i.d. shocks, positive persistence 
arises when H12 > 0 while negative persistence arises in the opposite case. When shocks are 
not independent, positive correlation of shocks is a key condition for positive persistence, but not 
sufficient. Given these remarks, for the remaining analysis in this section we make the following 
two assumptions: 

Assumption 5. For all s', F(s', s) is non-increasing. 

Assumption 6. H12(V, s) > 0 whenever V < Vu(s). 

The first assumption requires that the conditional probability distribution increases with the 
current shock in the first-order stochastic dominance sense. This is a very standard assumption, 
which is satisfied by many stochastic processes, in particular by first-order auto-regressive 
processes with absolute persistence less than one. A sufficient condition on the functions R and 
O for the second assumption (of supermodularity of HI in (V, s)) is given in Appendix B. This 
condition relates the magnitudes of the cross partials of both R and 0. Consider the following 
extreme cases. If R12(k, s) > 0 and O(k, s) = O(k), then H12 > 0 for V < VU(s). However, 
if R(k, s) = R(k) and 012(k, s) > 0 then F12 < 0 for V < VU(s) and values of k such that 
R1 (k, s) > 1 + r. Thus F12 > 0 requires that the marginal revenue be more responsive to shocks 
than the marginal outside option. 

The following proposition states an important implication of these assumptions, namely that 
continuation equity values V(st+1) are increasing in st+1. 

Proposition 5. LetW(V, s) be strictly concave in V for V < V(s). At an interior 
solution W12(V, s) > 0 so any optimal continuation policy V(s') must be non-decreasing. 

Proof See Appendix D. II 

In words, Proposition 5 says that revenue states where marginal returns to capital are higher 
are assigned higher equity values. 

Does monotonicity in the equity value assignment imply positive persistence? For the case 
of i.i.d. shocks, this is easy to prove. Indeed, take st > 

st 
and let Vt > Vt' be the corresponding 

equity value assignments. Assume these values are such that at least for V'/the efficient frontier 
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is not reached in the following period. Now given that 

EVt+l = Vt(1 + r) > V(1 + r) = EVt+1 
it is straightforward to show that Vt+l > Vt+1. Thus, even when shocks are i.i.d. the model is 
able to deliver persistence. 

When shocks are serially correlated, positive persistence in equity values need not occur. 
The difficulty arises because higher shocks in one period increase the likelihood of high shocks 
in the following period. A higher initial equity value may not be enough to sustain significantly 
larger expected equity needs for the following period. Consider the following example. 

Example 1. There are three states: so < sl < s2. Profits are identical under so and si, 
i.e. F(V, so) = H(V, st). However, HI(V, si) < HI(V, s2). Moreover, suppose P(s2 I Sl)= 
P(so so) = 1 - e, P(so, Si) = P(so I s1) = P(s2, so) = E, for e small, where P(si, sj) = 

P(St+l = si, st = sj) and P(si I sj) = P(=t+l = si I st = sj). Now consider the paths 

{so, S1, s2), 

Iso, so, s21. 
From the optimal contract at time t = 0, derivatives are equated across states for period 1: 

W1(Vo, so) = Wi(VI, s1). 
For period 2 we get 

W1(Vo, so) = "I (Vo, so) + Wi (V02, S2), 

W1(VI, s1) 
= Hi(Vi, Sl) + W1(V12, S2). 

The values Vij are the optimal continuation values for a firm starting at si and moving into state 
sj. Suppose by way of a contradiction that V12 > V02, so that the better history leads to higher 
entitlement at period 2. Then, by concavity, the optimal contract must similarly assign V0o > Voo 
(because W1(V10, so) = W1(V12, S2) < W1(Vo2, s2) = W1(Voo, so)). Thus 

(1 + r)VI = rVIo + (1 - E)V12 

>e Voo + (1 - E)V02 
83 

= (1 +r)Vo- (1 -2r)Voo- -Vol+ 1 -- 8 V02 2 2 
> (1 + r)Vo, 

where the first inequality comes from the previous discussion and the last inequality comes 
from V02 > Vol > Voo which follows from supermodularity. But, VI > Vo, implies that 
Hi(V1, si) < n1(Vo, so). Together with W1(V12, S2) < W1(V02, s2) we obtain the contradic- 
tion that W1 (VI, sl) < W1(Vo, so). 

It is possible to restrict the nature of persistence in productivity shocks so that positive 
persistence in equity obtains. For that purpose we make the next assumption. 

Assumption 7. If HI (V(s), s) is non-decreasing in s, then H1 ( f V(s)F(ds, so), so) 
is non-decreasing in so. 

Proposition 6. Suppose that 1 and F satisfy Assumption 7. Then the optimal contract 
displays positive persistence. 

Proof See Appendix D. I 
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Remark 1. This result can be strengthened to strictly positive persistence if the R.H.S. of 
Assumption 7 is strictly increasing. 

The following example shows that Assumption 7 is verified in some usual parametrizations. 

Example 2. Let the revenue function be R(k, s) = sk', with 0 < a < 1, and the outside 
opportunity function be O (k, s) = k. It follows that 

HI(V, s) = sVa - (1 + r)V 
Vi(V, s) = asVa-1 - (1 + r), 

when V < Vu (s). It can be shown (see Appendix D) that if 1-1 (V(s), s) is non-decreasing in s 

Ids 
V (s) F(ds, so), so) f V(s) (s, so)s 2(s, so)so ds. 

dso 1 +r s 
What conditions make the last integral positive? A strong sufficient condition is that the term in 
curve brackets be positive. An alternative is to assume the term in curve brackets is increasing 
in s and has positive expectation. Two special cases are of interest. When s = pso + e and 8 is 
distributed with cdf G, then F(s, so) = G(s - pso). The term in brackets has the same sign as 

F. A sufficient condition in this case is that e has positive support. In the special case where 
ns = p In so + E and e is distributed with cdf G, then F(s, so) = G(ln s - p In so) and the term 
in brackets has the same sign as IS, which is always positive. 

Notice that Proposition 6 implies that marginal returns will be higher for higher productivity 
shocks. Using these marginal returns as a measure of borrowing constraints, it follows that 
borrowing constraints are tighter for higher shocks. 

Do good histories increase the probability of survival under positive persistence? The 
answer is again a qualified yes. As discussed above, the survival set S(V) increases with V. 
Consequently, good histories increase the survival set. However, a good history also changes the 
conditional distribution of shocks. It is conceivable-yet unlikely-that the latter effect could 
contribute negatively to survival. This could happen if the difference between the value of staying 
and the value of liquidation is not monotonic in s. The following proposition takes care of this 
anomaly. 

Proposition 7. (i) W(V, -) is weakly increasing in s. 
(ii) L(s) is constant.13 Then optimal liquidation is determined by an increasing threshold 

s*(V). 

Proof See Appendix D. II 

Given the assumptions for positive persistence, good histories imply both an increase in V 
and an increase in the conditional distribution for s. Under the assumptions of part (ii) of the 
above proposition, survival probabilities also increase. 

4.5. The structure and composition of debt 

In previous sections we focused on the real side, considering the implications of the optimal 
contract for firm-size dynamics. This section turns to the financial side and considers the financial 

13. The condition that L(s) is constant can be replaced by --TT[I-[(V, s) + f L(s')F(ds', s)] - L(s) is non- 
decreasing in s. Details are available from the authors upon request. 
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structure and its dynamics. As indicated before, total firm debt can be decomposed in a long-run 
component Bt = Wt - Vt and the short-term capital advancement kt. Most of our discussion is 
centred on the long-run component. 

4.5.1. Debt repayment schedule. Prior to reaching the efficient frontier, no dividends are 
distributed and all profits are paid to the lender. Since total profits increase with the value of the 
firm, for a fixed state s debt repayments increase over time. Moreover, if liquidation does not 
occur:14 

r 
Bt - EBt+i = lit - 1 EBt+1, 

and since Fit increases and EBt+I decreases over time, it follows that for a given s, debt falls 
in expectation of an increasing rate. In addition, as the equity of the firm grows, its debt matu- 
rity changes: short-term capital advancements increase while long-term debt decreases. These 
predictions are consistent with the findings in Barclay and Smith (1995). They show that, con- 
ditional on the revenue shock, firms with higher market-to-book ratio W/Io (or Tobin's Q, as 
previously defined) display a lower ratio of long-term debt to short-term debt B/k.'5 The intu- 
ition for this result in our setting is that conditional on s, a firm with higher market-to-book value 
of assets W/o10, is also a firm with higher equity entitlement to the entrepreneur V, and hence 
weaker short-term borrowing constraints and lower long-term debt. In Barclay and Smith (1995) 
this result is explained by appealing to Myers (1977). In Myers (1977) the existence of risky fixed 
claims creates an underinvestment problem according to which stockholders may reject positive 
net present value investment options. This underinvestment problem is eliminated if these fixed 
claims mature before any opportunity to exercise the real investment options. Because the value 
of these options can be measured by the firm's market-to-book ratio (Smith and Watts, 1992), a 
higher market-to-book ratio should be associated with shorter-maturity debt. 

A sharper characterization of the dynamics of long-term debt can be obtained for the 
deterministic case. Here we provide a generalization of the example in Section 2 by allowing 
for a general outside-value function O (kt). Let Vt be the continuation equity value for the firm 
at time t. The optimal contract implies that Vt+l = min((1 + r)Vt, VU). 

Since Bt = T1-[HI(Vt) 
+ Bt+1] decreases over time, it follows that I-I(Vt) > rBt. In 

particular at time 0, H (Vo) > r B0 = r Io > 0, with strict inequality if the lender contributes to 
an initial investment Io > 0. Since Vt increases over time, 11 (Vt) will be positive every period, so 
the cash flow of the contract will be positive every period. Each period the borrower pays back 
the capital advanced with interest and contributes the quantity H-(Vt) = R(kt) - (1 + r)kt to 
the repayment of long-term debt. Once the efficient frontier VU has been reached, the borrower 
keeps r Vu as dividends and pays the constant amount R(k*) - (1 + r)k* - r Vu, where k* is the 
profit maximizing amount of capital, as interest on the outstanding long-term loan. 

In the above implementation of the optimal contract, the cash flow is controlled by the 
lender. An alternative implementation is possible when R (kt) - kt+1 > 0. An initial loan Io + k0 
allows the entrepreneur to self-finance the capital accumulation without the need of short term 
advancements. At the end of every period t the borrower makes repayments R (kt) - kt + 1, keeping 
the quantity kt+1 for production. Once the efficient frontier is reached, the borrower pays every 
period to the lender R(k*) - k* - rVU.16 Any other long-term debt contract is either not default- 
proof or leads to a lower initial debt level. This is obvious, because any other repayment schedule 

14. When liquidation occurs Bt = L(st). 
15. Guedes and Opler (1996) and Stohs and Mauer (1996) also present similar evidence. In these papers however, 

debt maturity is measured as term-to-maturity of new debt issues or weighted average debt maturity of all debt, 
respectively. Both measures are in years, whereas our measure of long-term debt B is in dollars. 

16. It is straightforward to check that this contract gives the same value at time 0 to both lender and borrower as 
the contract that combines long-term and short-term debt. 
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results in a lower V0, and consequently a lower ko. Thus, the optimal contract is the one that at 
each point maximizes the total debt that can be sustained. 

4.5.2. State contingent debt. Let us now turn to a characterization of the state contingent 
nature of debt. The question we address in this section is whether the level of long-term debt is 
monotonic in the productivity shock. This would be the case, for instance, if the lending contract 
were implemented by an equity-share arrangement. At the efficient frontier, state contingent debt 
B(s) satisfies the following equation: 

1 r B (s)= I+ r(s) - d(s) + B (s)F(ds', s) . 

The first term b(s) = 7r(s) - d(s) corresponds to debt payments. Using standard dynamic 
programming arguments and first-order stochastic dominance of F(s', s), it is easy to show that 
if b(s) is non-decreasing in s, then B (s) will be a non-decreasing function. 

What happens before the efficient frontier is reached? On the one hand, more productive 
states can sustain more debt. On the other hand, it is advantageous to increase the equity stake 
in good states as well. Depending on what effect dominates B(V (s), s) may be increasing or 
decreasing on s. The following proposition presents sufficient conditions that imply that state 
contingent debt is monotone even outside the efficient frontier. 

Proposition 8. Let V(s') denote the optimal policy function starting from (V, s). Assume 
that FI (V (s), s) - (1 +r) V (s) is increasing in s whenever I-11 (V (s), s) is constant. Suppose also 
that the contract displays positive persistence. If s2 > Sl then B(V(s2), S2) > B(V(sl), st). 

Proof See Appendix D. II 

Let us return to debt payments at the efficient frontier and analyse the conditions under 
which b(s) is non-decreasing in s. At the efficient frontier, debt payments are obviously 
increasing in the range where dividends are not distributed, i.e. d(s) = 0. This occurs in those 
states where V(s) > VU(s). In contrast, for states where V(s) = VU(s), debt payments are 

b(s) = 7r(s) - (1 + r) V(s) + J V(s')F(ds', s). 

The last term is non-decreasing, by the assumption of stochastic dominance. The remaining term 
7r (s) - (1 + r)Vu (s), is determined by the revenue and outside-value function: 

d((s) - (1 + r)V(s))= R2(k(s),s) - (1 + r) [02(k(s) s) - 1(k(s), s) R12(k(s),s) 
ds RiI(k(s),s) 

If the outside-value function O is not very sensitive to changes in s and 02 is small, or R12 is 
small, debt payments will be increasing. As an example, if O (k, s) = Xk and R(k, s) = ska, this 
derivative will be positive if and only if 1 - a > Xa. This provides both an example where B (s) 
will be increasing as well as a counter-example.17 Furthermore, the condition that 1 - a > Xa 
also implies that n(V(s), s) - (1 +?r)V(s) is increasing in s whenever HI (V(s), s) is constant, 
which, if there is positive persistence, means that B(V(.), .) is increasing in s even outside the 
efficient frontier. 

17. For an example of monotonicity take 1 - a > ka. For the converse, consider the case where the 1 - a 
<, 

a 
and shocks are i.i.d. For another example, take O = XR and R = ska, where the derivative is positive if and only if 
1 - a > (1 + r)X. 
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4.5.3. A sequence of short-term contracts. It is easy to see that the optimal contingent 
debt and growth policy can also be implemented by a sequence of short-term contracts. This 
is accomplished by rolling over the debt from one lender to another while having all lenders 
coordinate on a short-term borrowing limit. Let k(B, s) be the short-term borrowing limit implicit 
in the optimal contract and let 17r(k(B, s), s) = maxk'<k(B,s)[R(k', s) - (1 + r)k'] be the maximal 
profit that can be achieved subject to the borrowing limit k(B, s). Then the entrepreneur's optimal 
borrowing policy can be derived from the following dynamic programming problem: 

V(B, s) = maxr,B(,') 
1 [r(k(B, s), s) - r + V(B(s'), s')F(ds', s) 

subject to: r < nr(k(B, s), s) 

f 
B(s')F(ds', s) = B(1 + r) - r. 

This is a standard dynamic investment problem for an entrepreneur facing an exogenously given 
borrowing constraint k(B, s). This borrowing constraint represents the maximal short-term debt 
the entrepreneur can raise. It is important to notice that implicit in this borrowing limit is the 
fact that current lenders anticipate that future lenders will also determine short-term financing 
using this rule. This equilibrium obviously requires coordination on the lenders' side regarding 
the borrowing limit. This is clearly not the only equilibrium with short-term contracts: if lenders 
anticipate that the entrepreneur will not be able to raise any short-term capital in the future, all 
financing breaks down. 

4.6. Some comparative statics 

4.6.1. The role of collateral. One interesting comparative statics exercise regards the 
role of collateral in the design of the optimal long-term debt contract and the dynamics of the 
borrowing constraints. Consider two firms with the same initial investment lo, one with a larger 
share of this investment being sunk. Otherwise the firms are identical. This can be modelled as a 
lower liquidation value for all revenue states, which means lower collateral. The firm with lower 
liquidation value has a larger set of survival states and thus, from equation (11), higher V (s). It 
also has lower total firm value for given s. Thus, lower collateral (or greater sunk costs) leads to 
lower debt and leverage for given s. 

Lower liquidation also reduces the total value W at any state. Since the initial long-term debt 
is the same, the starting equity entitlement V0 must be smaller. Interpreting lower liquidation as 
lower collateral, the model implies that projects with higher sunk costs will face stronger initial 
borrowing constraints and will start smaller, taking a longer time to mature. 

4.6.2. Firm size, better projects and better enforcement. A project with higher returns, 
i.e. higher R(k, s) values or better enforcement, i.e. lower O(k, s), will have a higher indirect 
profit function -I(V, s). This implies that total value W(V, s) will be higher. An immediate 
consequence is that the project can sustain a larger initial debt and size, exhibit higher survival 
probability, repayment of long-term debt is faster and borrowing constraints are eliminated 
sooner. Alternatively, a project can be more attractive if it faces a better initial distribution G 
or conditional distribution F for revenue shocks. In both cases, it is easy to show18 that the 
initial value of the project is higher and consequently initial equity and total debt will increase. 
Consequently, firms will start larger and face a higher probability of survival. In addition to 

18. The proof follows a similar argument as the one used for Proposition 7 and is available from the authors upon 
request. 
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these implications and as expected, a better enforcement technology allows firms to have greater 
leverage. 

The prediction that larger firms (with higher R(k, s)) have more debt is supported by Titman 
and Wessels (1988) who present evidence that firms with greater sales also display higher debt to 
asset ratios. Also, interpreting a low O (k, s) as high credit rating, the model predicts that firms 
with higher credit rating have more long-term debt. This is supported by evidence presented in 
Barclay and Smith (1995). 

4.6.3. More risky projects. We do not have any general results. However, the following 
example suggests that a mean preserving increase in the spread of a project's returns can lead to 
tighter initial borrowing constraints. 

Let R(k, s) = sl-aka for 0 < a < 1, O(k, s) = )k, the liquidation value L = 0, and 
shocks be i.i.d. It follows that 

7r(s)--s (1 
- 

a)I 
r 1+r 

VU(s)=X=s (jr 

Hence a mean preserving increase in spread of r (s) results also in a mean preserving increase in 
spread of Vu(s). Since V(s) = max(Vu(s), 1r V) where V is defined implicitly by 

V = Emax (VU(s), l , 

it follows immediately that V'(s) increases. Thus, once the project reaches maturity the 
entitlement to the lender must be smaller on average. Now suppose that under the initial 
distribution of returns, W(so) - V = I, where V(so) = V. This implies that the project starts 
unconstrained. Yet with a mean preserving increase in the spread of returns, V increases so the 
project is initially constrained. 

5. THE OPTIMAL DEBT CONTRACT AS A CONSTRAINED GROWTH PROBLEM 

It is possible to rewrite our model in such a way that it does not explicitly model the accumulation 
of financial assets (or the repayment of debt). The focus is on constrained capital accumulation. 
This is helpful to stress the connections between our model and other models of firm growth with 
exogenous borrowing constraints. Redefine: 

1-(k, s) = max{R(x, s) - (1 + r)x Ix < k}, 
and assume that for every s E S and V > 0 there exists a unique k such that O(k, s) = V. 
Given s, this establishes a one-one map between equity values V and capital advancements k. 
This allows us to rewrite problem equation (8) as: 

W(k, s) = max L(s); maxks') 1 + r[(k s)+ W(k(s'), s')F(ds', s) 

where the inner maximization is subject to 

O(k, s) r O(k(s'), s')F(ds', s). (14) -l+r 
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This set-up has the structure of a capital accumulation problem with a constraint on the 
investment rate. An equilibrium contract chooses ko so that W(ko, so) - O(ko, so) > o. This 
constraint is equivalent to setting the initial long-term debt and equity levels B(Vo, so) > lo from 
before. 

An interesting example satisfying our assumptions is the case O(k, s) = k, where 
equation (14) establishes that the expected growth of capital cannot exceed the interest rate. 
Another special case results when O(k, s) = R(k, s), where the entrepreneur can steal the 
revenues of the firm. In this case equation (14) represents an upper bound on the growth rate 
of revenues. 

We can use the deterministic case to show that our model specializes to Spence (1979). 
Interpret kt as the firm's capital stock and assume there is no depreciation. If O(k) = R(k), 
then the entrepreneur can keep the revenue, but not the capital. Every period the firm makes 
an investment decision. Following the notation in Spence, let mt be the investment at time t, 
so kt = mt + kt-1. Specialize to the case in which R is homogeneous, i.e. R(k) = k0. Then, 
kt = (1 + r)l/akt_l and mt = ((1 + r)1/a - l)kt-1, which is the constraint between investment 
and the firm's capital used in Spence. This coefficient, which in Spence's analysis is taken as an 
exogenous parameter is not independent of the interest rate. 

6. FINAL REMARKS 

In this paper we have developed a general model of endogenous borrowing constraints based on 
the assumptions of limited enforcement and limited liability. In our model, borrowing constraints 
arise as part of the optimal debt contract. Our model extends previous theories of borrowing and 
lending, such as Thomas and Worral (1994) and Hart and Moore (1994), allowing for a general 
specification for firm's shocks, capital accumulation and the possibility of exit. The model has 
implications for firm growth and survival, implying that younger firms tend to grow faster and 
have lower survival rates. Both properties are consistent with empirical regularities. The model 
also suggests that the capital structure is an important determinant of the firm's investment and 
exit decisions. Firms with higher long-term debt have higher market-to-book asset ratios, greater 
revenues, better credit ratings and collateral. 

We have kept our analysis at a fairly abstract level in order to describe the general properties 
of a class of models of borrowing and lending based on the idea of limited commitment and 
limited liability. We certainly believe that our structure is very flexible and could be used to 
develop more specialized models. For example, though we have identified the project as a new 
firm, there is no reason why to do so. An established firm may look for a long-term loan to 
finance a new investment. 

Our modelling approach highlights an important dynamic consistency feature of borrowing 
constraints: equity restricts current access to capital, but is itself limited by future access to credit. 
Of all dynamically consistent lending plans, the optimal contract is the one that maximizes access 
to short-term capital and the expected rate of decrease of long-term debt. But there are others, 
which can be suboptimal and thus lead to tighter borrowing constraints than are justified by the 
environment. This suggests the importance of our modelling approach. Models of exogenous 
borrowing constraints always leave open the question of whether there are better contracts that 
could imply weaker constraints. 

Some models of exogenous borrowing constraints assume that borrowing is limited by a 
firm's assets. Our model suggests that the relevant variable is not assets but equity. Kiyotaki and 
Moore (1997), study the macroeconomic implications of limited borrowing in a model where 
firms' collateral is subject to endogenous fluctuations. In the presence of sunk costs of investment 
or when some assets-such as human capital-are not fully appropriable, loans cannot be fully 
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collateralized with assets. In such cases, more lending can be sustained--as in our model-with 
the threat of depriving the borrower from its equity. 

There are several interesting extensions of the theory. One of them is to explore the general 
equilibrium implications of the type of borrowing constraints considered. In this paper we treat 
the value of default as exogenous, with fairly general properties to accommodate most existing 
models. In an equilibrium framework, the value of default will not be exogenous and should 
in turn be influenced by the optimal contract. There are many alternative ways of closing a 
model of the sort developed here, some of which have been already explored in the literature 
(see, for instance, Ghosh and Ray, 1996, 2001). As an example, consider a situation where, 
upon defaulting, borrowers can enter into new long-term contracts with other lenders, at some 
additional cost. An equilibrium contract would require taking into account this endogeneity. 
This is obviously a very interesting area of research. Though our paper does not address this 
equilibrium problem, the general results obtained here could still prove very useful in developing 
that research programme. 

There are obviously alternative ways of modelling borrowing constraints which are worth 
exploring. In particular, informational asymmetries, absent in this model, are an alternative 
source of frictions to generate credit constraints. Diamond (1989, 1991a,b) considers the relation- 
ship between the unobservable quality of the borrower's project and the maturity/seniority struc- 
ture of debt. Green (1987) analyses debt contracts in a repeated environment when agents have 
unobserved endowments. Atkeson (1991) and Marcet and Marimon (1992) study the effect of 
moral hazard on growth in the context of international lending. Developing models of firm growth 
and survival based on such foundations is also an important direction of research in this area. 
Some recent work include DeMarzo and Fishman (2001) and Clementi and Hopenhayn (2002). 

APPENDIX A. GENERALIZING THE OUTSIDE OPPORTUNITY FUNCTION 
This appendix shows how to modify the model to allow for 0(0, s) > 0. Since O (0, s) > 0 is the inalienable component 
of the entrepreneur's share, feasibility of future equity values must be adjusted so that V (s') > O (0, s'). This means that 
upon liquidation V = 0(0, s), and the lender's value is B(V, s) = L(s) - 0(0, s). It also means that in designing the 
efficient frontier the lender takes into account the payments made to the firm in the liquidation states. That is, the new 
efficient frontier is given by 

V(s) = max(Vu(s),1i' - 
f V(s')F(ds', s)) s i 

0(0, s), else. 

All proofs remain unchanged, except for the construction of the efficient frontier. 

APPENDIX B. PROPERTIES OF THE INDIRECT PROFIT FUNCTION 
Lemma 2 gives conditions under which the indirect profit function l (V, s) displays the properties listed in the text in 
Assumption 4. 

Lemma 2. (i) 1F is continuous, uniformly bounded, strictly increasing in V for V < Vu (s). 
(ii) If R and 0 are continuously differentiable and 01(k, s) > 0, then F1(V, s) = I (ks)-+r) 

(iii) If R and O are twice continuously difgerentiable and 

Rll (k, s)Ol (k, s) - Oll0(k, s)(R1 (k, s) - (1 + r)) < 0(< 0) 

fork < K(s), then Ill(V, s) < 0(< 0)for V < VU(s). 
(iv) If R and O are twice continuously differentiable and 

R12(k,s)01 (k,s) - 012(k,s)(Rl(k,s) - (1 + r)) > 0(> 012(k,s)) 

for allk < K(s), then H21(V, s) > 0(> O)for V < VU(s). 
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(v) If R and 0 are continuously differentiable, 01(k, s) > 0 and 

Rl(k, s) - (1 + r) R2(k, s) > 02(k, s), 
01(k,s) 

then I- is increasing in s. 

Proof (i) is an immediate consequence of the maximum theorem and the properties given for R and O in 
Assumptions 1 and 3, and; (ii) is a direct application of the implicit function theorem; (iii) and (iv) follow from 
differentiating the expression given in part (ii). Part (v) follows from differentiating the profit function. II 

APPENDIX C. CONCAVITY AND MONOTONICITY OF THE VALUE FUNCTION 
The next lemmas discuss concavity and strict monotonicity of the surplus function W. The possibility of exit introduces 
a potential non-concavity in the total surplus function W(., s). The first lemma gives conditions under which the function 
W is concave in V without using randomizations. 

Lemma 3. Suppose R(k, s) - (1 +r)k > L(s) is satisfied and Fl(V, s) is concave in V for each s. Then the total 
surplus function W(V, s) will be concave in V for all s. Furthermore, if n (V, s) is strictly concave for V < Vu (s), then 
W (., s) is strictly concave in V whenever V < V (s). 

Proof Concavity of W(., s) follows from the concavity of I (V, s) by Theorem 9.8 in Stokey, Lucas and Prescott 
(1989). Now suppose that V < V(s). Then there exists an n such that V < Vn (s). We will show by induction on n that 
this implies that W(., s) is strictly concave in a neighbourhood of V. For n = 1, V < VU(s). Since in this region the 
return function 1n is strictly concave, then the value function W(-, s) will also be strictly concave. Suppose now that the 
result is true for all s and V < Vn-1(s) and that Vu (s) < V < Vn (s). Letting V(s') be the optimal continuation values, 
then V(s') < Vn-1(s') on a subset of S with positive measure given s. Now, strict concavity follows by the induction 
hypothesis. II 

Assuming that R(k, s) - (1 +r)k > L(s) for all (k, s) eliminates the possibility of exit, making this assumption too 
strong for our purposes. An alternative is to allow for randomizations. In particular, randomizations on the exit decision 
for some values of (V, s) are to be expected. The second lemma shows that these randomizations are also sufficient. 

Suppose that at the beginning of the period, after observing a shock s and when the initial value is V, a 
randomization is used and define the new value function Wr by 

Wr (V, s) = maxxe[0,1], V21>0, V,1 >0 X W(V2, s) + (1 - k)L(s) 

subject to XV2 + (1 - X)V1 = V, 

where the function W is defined as in equation (8), but replacing Wr for W under the integral sign. 

Lemma 4. The value function Wr (., s) is concave for all s e S. 

Proof The proof follows the lines of the one given for Lemma 3. II 

Finally, it is an immediate consequence of concavity and Proposition 1 that the value function is strictly monotone. 

Lemma 5. Suppose W(V, s) is concave in V for all s. Then if W(V1, s) > L(s) and V1 < V(s) it follows that 
W(V2, s) < W(Vl , s) for all V2 < V1. 

Proof If W(V2, s) = W(Vl, s) for some V2 < V1 < V(s), then by concavity of the value function it follows that 
W(V2, s) = W(V(s), s), contradicting Lemma 1. II 

APPENDIX D. OTHER PROOFS 

Proof ofLemma 1. The weak monotonicity of W(., s) follows immediately from the monotonicity of (., s) 
applying standard dynamic programming arguments. We now establish 2. First notice that for s 4 S, W(V, s) = L(s), 
for any V. Now, if V = V (s), then it is possible to choose as continuation values V(s') = V(s'). We will show that the 
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dynamic programming equation given by problem equation (8) preserves the property defined by 2. Suppose then that 
W(V, s') = W(s') for V > V(s'). Then, letting V(s') = V(s'), it follows immediately from-equation (8) that 

W(V, s)= 
--r 

[(s) + W(F(s'), s')F(ds', s) 

=l+r 
[(s) + f (s')F(ds', s)] = W(s). 

Since the set of functions W(.) such that W(V, s) = W(s) for s E S is closed in the norm topology, the unique solution 
to the dynamic programming equation (8) also satisfies this property. 

We now establish 3. Note that W(s) > L(s), as s e S. Assume that W(V, s) > L(s), otherwise the result is 
trivial. If V < V (s), then there exists some n such that V < Vn (s). We now prove by induction that this implies 
W(V, s) < W(s). The result is immediate for n = 1, for in this case V < VU(s) and letting V(s') be the optimal 
continuation values starting from (V, s), 

W(V, s) < 7 
(s) 

+f W(V(s'), s')F(ds', s) 

< -+r (s) + WV(s')F(ds', s) = W(s). 

To continue with the induction argument, suppose that V < Vn-1 (s) implies that W(V, s) < Wf(s) for all s. Then if V < 
Vn(s), either V < VU(s) or V < 

1_ 
f Vn-1(s')F(ds', s). In the first case, using the same argument as for the case 

n = 1, it follows immediately that W(V, s) < W(s). In the latter case, V(s') < Vn-1(s') for a subset of S with positive 
measure. Using the induction hypothesis, it follows immediately that W(V, s) < ?r [nr(s) + f T(s')F(ds', s)] = 
W (s). II 

Proof of Proposition 5. We first prove that if W is strictly concave in V for V < V'(s) and W12 > 0, then any 
optimal continuation policy V (s') must be non-decreasing. Consider the problem 

g(V, s) = max f W(V(s'), s')F(ds', s) 

subject to f V(s')F(ds', s) < V. (D.1) 

Let s2 > sl. We now show that for any pair (V, s) the solution to equation (D.1) is V(s2) > V(sl). Since W is 
concave in V, it is almost everywhere differentiable. The first-order conditions of problem equation (D.1) imply that 
W1 (V(s2), s2) = W1 (V(sI), sl) at all points where the solution is interior. Otherwise, by strict concavity and because 
W12 > 0, it follows immediately that 

W1 (V(sl), s) < W1(V(s2), s1) 

_ W1(V(s2), s2). 
Since V(s') is an increasing function, f V(s')F(ds', s2) > f V(s')F(ds', sl). Letting V (s') obtained from initial 
values (V, si), it follows that V2(s') < V1 (s') for some set of positive measure. But then, by the strict concavity of W, 
this inequality must hold for all s'. 

We now prove that if W(V, s) is strictly concave in V for V < V(s) and FI12(V, s) > 0 and concave, then 
W12(V, s) > 0. We will show that the Bellman equation maps the set of functions with positive cross partial derivatives 
into itself. So suppose that we start with a function W12 > 0 and, as assumed, strictly concave for V < V(s'). It follows 
immediately that the function g will be strictly concave in V, for all V < V (s). Using the envelope theorem, it follows 
that g,(V, si) = -L- W1 (V (s'), s'), where Vi is the optimal solution starting from si. Let s2 > sl and assume that 
V < V(sl). By the result above it follows that Vl(s') > V2(s'), so gl(V, sl) < gl(V, s2), and thus g12 > 

0. The 
function W satisfies the following Bellman equation 

W(V,s) = max L(s), , +r [I(V, s) + g(V,s)] 

where function g is understood to depend on W as defined in equation (D.1). Since 112 > 0 and gl2 > 0 as was just 
proved, it follows that the function W12 > 0 as well. II 

Proof of Proposition 6. We prove this proposition in a sequence of claims. 
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Claim 1. Suppose that I and F satisfy Assumption 7. Then 

W1 (V (s) , s) constant in s ==n 1 +rr V (s) F (ds, so) , 
s is non-decreasing in so. 

Corollary 1. In the optimal contract, I 1 (V (s), s) is weakly increasing. 

Proof. Suppose, by way of contradiction, that s1 > so and I1(V(sl), sl) < l(V(so), so). Letting ci be the 
continuation derivative starting from si and since 

n1I1(V(s1), s1) + c1 = -I(V(so), so) + co, 

it follows that cl > co. Let V1 (s) denote the continuation values starting at sl and Vo(s) the continuation values starting 
from so. By concavity of W, it follows that V1 (s) < Vo(s). Hence 

1ll(V(sl),sl) 
= 1 +rj f V(s)F(ds,s)',Sl) 

> (I rf1 Vo(s)F(ds, sl), s . (D.2) 

Finally, since W1 (VO(s), s) is constant in s, by Claim 1 it follows that 

11 ( Vo(s)F(ds, sl), Sl >i l (l Vo(s)F(ds, so), so (D.3) 

= 1I (V (so), so). 
Combining equations (D.2) and (D.3), it follows that 

1Ii(V(sl),sl) 
> nl I(V(so), so), thus generating a contradic- 

tion. II 

Now we prove Claim 1. 

Proof of Claim 1. The proof follows the standard induction in dynamic programming. Suppose that we start with 
a function W that satisfies this property. Let T W represent the new value function. Then we need to show that T W 
satisfies this property. Take V(s) such that T W1(V(s), s) is constant in s. Consider s1 > so. Then T W1(V(sl), sl) = 
TW1 (V(so), so). Using the argument in the proof of Corollary 1, it follows that Il1 (V(s), s) is non-decreasing in s, so 
using Assumption 7 

1-I1 V(s)F(ds, sl),sl> T1 r1 V(s)F(ds, so), so II 1 1 
Claim 2. Take (V1, sl) and (Vo, so) such that sl > so, and W1 (V1, sl) < W1 (V0, so). Let V1 (s) denote the 

optimal continuation policy from (V1, sl) and Vo(s) the optimal continuation from (VO, so). Then V1 (s) > Vo(s) and 

W1(V1(s), s) 
< W1(Vo(s), s). 

Proof To prove this statement, let V1 satisfy W1 (V1, sl) = W1 (V0, so). By concavity of W in V it follows 
that V1 < V1. Let V1 (s) denote the optimal continuation starting from (VI, sl). From the monotonicity of the policy 
function, it follows that V1 (s) 

< 
V1 (s). From Claim 1 it follows that I1 (V1, sl) > l1 (Vo, so) and consequently 

W1 (V1 (s), s) < W1 (Vo(s), s). Using the concavity of W in V it follows that V1 (s) > Vo(s). Combining the inequalities, 
it follows that V1(s) > Vo(s) and thus W1(V1(s), s) < W1(VO(s), s). II 

Combining these results we can now prove Proposition 6. Consider two histories (so, sl, 
.... 

sT-1, sT) and 
(so, s 

.... 
ST-l, sT) where st > st 

with strict inequality for t = 1. Let ct and Et denote the corresponding derivatives 
of the value function at t. Obviously co = 0g. From Claim 1 it follows that cl i ~1. Applying inductively the claim, 
it follows that ct 

< 
ft for all t > 1. Letting VT(s) and VT(s) denote the corresponding policies at T following the 

respective histories, from the concavity of W in V it follows that VT (s) > VT (s). II 

Proof of Example 2. Since 1 (V(s), s) is non-decreasing in s, it follows that 

V(s) 
V'(s) (D.4) 

(1 - a)s 

This content downloaded from 129.105.215.146 on Mon, 18 Nov 2013 15:01:23 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ALBUQUERQUE & HOPENHAYN OPTIMAL LENDING CONTRACTS 313 

Now consider d 1 ) d 
1 f+r V(s)F (ds, so), so = as ro V(s) F(ds, so) 

dsoo 
+ r dso + r 

sf V(s)F(ds, so) - (1 
- a)so V (s)F(ds, so). 

Integrating by parts the second integral and rearranging we get: 

f V(s)F(ds, so) - (1- a)so Va( sV ) +/ V'(s)(1- F(s, so))ds 

= V(s)F(ds, so) + (1 - a)soJ V'(s)F2(s, s0)ds 

f s 
V(s)( Fi(s, so)s 

+ F2(s, so)so ds. 

The inequality follows from equation (D.4) and F2(s, so) < 0 (i.e. F(s', .) is non-increasing). II 

Proof of Proposition 7. In Lemma 5 we show that W is weakly increasing in V. Here it is shown that W(V, .) is 
also weakly increasing in s. 

Assume first that we start with a weakly increasing function W on the R.H.S. of the Bellman equation. Suppose 
s2 

> 
sl and let Vi (s) be the optimal continuation values from (V, si). Let ti, i = 1, 2 denote the probability distribu- 

tion corresponding to F(., si). By Assumption 5, A2 stochastically dominates t1, so there exists a transition function 
P(s, s') with support on the set {(s, s') e S x S : s' > s} such that #2 = Pjq. Let vl be a probability measure on 
S x 91+ with support on the graph of this function V1(.) such that vl (ds, V1 (ds)) = Al (ds). It follows by construction 
that f W(VI(s), s)F(ds, sj) = f W(V, s)vl (dV, ds). Define a measure v2 on S x 91+ by lifting vl with P, i.e. for 
any rectangle set A x B let v2(A x B) = f P(s, A)v1 (ds, B). It is easy to verify that since vl has first marginal /r1 
and A2 = 

PptI, 
then v2 will have first marginal I[2. By the Radon-Nikodym theorem, there exists a transition function 

Q : S x N+ - [0, 1] such that v2 = -Q2. Q(s, .) is a probability measure on 91+ for each s, which may be interpreted 
as a randomized strategy on continuation values V, given that state s. Since W is concave in V, the optimal continuation 
policy V2(s), given (s2, V) must give a pay-off no lower than the one obtained from this randomized strategy, i.e. 

f W(V2(s), s)F(ds, s2) f W(V, s)Q(s, V)F(ds, sl) 

=f W(V, s)v2(dV, ds). (D.5) 

Finally, comparing v2 and v1, 

f W(V, s)v2(dV, ds) = W(V, s)P(s',s)vl(dV,ds) 

Sf W(V, s')v (dV, ds'), (D.6) 

where the last inequality follows from the fact that P(s', .) has support on values s > s' and the induction assumption 
that W is weakly increasing in s. Combining equations (D.5) and (D.6), it follows that the Bellman equation maps the 
set of non-decreasing functions into itself, and thus W is non-decreasing. 

Now let e(V) = sup{s I -I [Fl(V, s) + g(V, s)] < L}, where function g is as defined in the proof of Lemma 5 
above, and if this set is empty set it equal to inf S. It is immediate to check that this function is weakly decreasing and 
gives the exit thresholds. II 

ProofofProposition 8. Let s2 > sl. Define V(s') as the optimal policy function starting from (V, s), and Vi (s') 
as the optimal policy starting from (V(si), si), for i = 1, 2. We want to show that B(V(s2), s2) > B(V(sl), sl). Using 
the first-order condition for V (s'): 

B1 (V(s2), s2) = 7l1 (V(s2), s2) + B1 (V2(s'), s') 1+r 
1 

-- 
i l(V(sl), sl) + B1 (VI (s'), s') l+r 

= Bl(V(sl), sl). 
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Positive persistence and concavity imply that B1(V2(s'), s') < B1(V1(s'), s'). Thus, 111(V(s2), s2) > F1(V(sl), sl). 
By concavity of FI(., s) there exists V2 > V (s2) such that 11 '(V2, s2) = 1 (V(s1), s1). Positive persistence also implies 
that 

f W(V2(s'), s')F(ds', s2) > 
W(VI(s'), 

s')F(ds', 
sl). 

Hence, B(V(s), s) is increasing in s if 

FlT(V(s2), s2) - (1 + r)V(s2) > FI(V(sl), si) - (1 + r)V(sl). 

The assumption on the proposition implies that 

fl(V(sl), s1) - (1 + r)V(sl) 
< 
<I(V2, s2) - (1 + r)V2 
< Fl(V(s2), s2) - (1 + r)V(s2), 

where the second inequality follows from I-(V, s) - (1 + r) V being decreasing in V, for fixed s. II 
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