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We solve a model with two i.i.d. Lucas trees. Although the corresponding one-tree model
produces a constant price-dividend ratio and i.i.d. returns, the two-tree model produces inter-
esting asset-pricing dynamics. Investors want to rebalance their portfolios after any change
in value. Because the size of the trees is fixed, prices must adjust to offset this desire. As a
result, expected returns, excess returns, and return volatility all vary through time. Returns
display serial correlation and are predictable from price-dividend ratios. Return volatility
differs from cash-flow volatility, and return shocks can occur without news about cash flows.

Returns that are independent over time are the standard benchmark for
theory and empirical work in asset pricing. Yet, on reflection, i.i.d. returns seem
impossible with multiple positive net supply assets. If a stock or a sector rises in
value, investors will try to rebalance away from it. But we cannot all rebalance,
as the average investor must hold the market portfolio. It seems that the suc-
cessful asset’s expected returns must rise, or some other return moment must
change, in order to induce investors to hold more of the successful securities.

We characterize the asset price and return dynamics that result from this
market-clearing mechanism in a simple context. We solve an asset-pricing
model with two Lucas (1978) trees. Each tree’s dividend stream follows a
geometric Brownian motion. The representative investor has log utility and
consumes the sum of the two trees’ dividends. Prices adjust so that investors
are happy to consume the dividends. We obtain closed-form solutions for
prices, expected returns, volatilities, correlations, and so forth. Despite its
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simple ingredients, and although the corresponding one-tree model produces
a constant price-dividend ratio and i.i.d. returns, the two-tree model displays
interesting dynamics.

The two trees can represent industries or other characteristic-based group-
ings. The two trees can represent broad asset classes such as stocks versus
bonds, or stocks and bonds versus human capital and real estate. The two trees
can represent two countries’ asset markets, providing a natural benchmark for
asset market dynamics in international finance.1 Valuation ratios and market
values of the two trees vary over time, so portfolio strategies that hold assets
based on value/growth, small/large, momentum, or related characteristics give
different average returns. Many interesting results continue to hold as one tree
becomes vanishingly small relative to the other, so the model has implications
for expected returns and dynamics of one asset relative to a much larger market.

Underlying the dynamics, we find that expected returns typically rise with
a tree’s share of dividends, to attract investors to hold that larger share. As a
result, a positive dividend shock, which increases current prices and returns,
also typically raises subsequent expected returns. Thus, returns tend to display
positive autocorrelation or “momentum,” prices typically seem to “underreact”
or not to “fully adjust” to dividend news, and to “drift” upward for some time
after that news. However, there are also parameters and regions of the state
space in which expected returns decline as functions of the dividend share,
leading to “mean reversion,” price “overreaction,” and “downward drift,” with
corresponding “excess volatility” of prices and returns.

When one asset has a positive dividend shock, this shock lowers the share
of the other asset, so the expected return of the other asset typically declines.
We see negative cross-serial correlation. We see movements in the other asset’s
price even with no news about that asset’s dividends, a “discount rate effect,”
and another source and form of apparent “excess volatility.” Finally, we see that
asset returns can be positively contemporaneously correlated with each other
even when their underlying dividends are independent. The lower expected
return raises the price of the other asset. A “common factor” or “contagion”
emerges in asset returns even though there is no common factor in cash flows.

Because price-dividend ratios vary despite i.i.d. dividend growth, price-
dividend ratios forecast returns in the time series and in the cross section. Thus,
we see “value” and “growth” effects: high price-dividend ratio assets have low
expected returns and vice versa. We see that times in which a given asset has a
high price-dividend ratio are times when that asset has a low expected return.
Thinking of the “two trees” as stocks versus all other assets (bonds, real estate,
human capital), price-dividend ratios forecast stock index returns. These effects
coexist with the positive short-run autocorrelation of returns described above.

1 Hau and Rey (2004), Guibaud and Coeurdacier (2006), and Pavlova and Rigobon (2007) are some recent articles
that use multiple-tree frameworks to model countries.
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However, although these dynamics are superficially reminiscent of those in
the empirical asset pricing literature, and although we have used the terminology
of that literature to help describe the model’s dynamics, we do not claim that our
model quantitatively matches the empirical literature. Our ingredients—the log
utility function, the pure-endowment production structure, and especially the
geometric Brownian motion dividend processes—are simple but empirically
unrealistic.

Our model is simple because our goal is purely theoretical: to understand
the dynamics induced by the market-clearing mechanism. Other papers in the
emerging literature that price multiple cash-flow processes, including Bansal
et al. (2002), Menzly et al. (2004), and Santos and Veronesi (2006), include
non-i.i.d. dividend processes and temporally nonseparable preferences in order
to better fit some aspects of the data. Other papers in the emerging general-
equilibrium literature such as Gomes et al. (2003) and Gala (2006) add an
interesting investment and production side to endogenize cash-flow dynamics.

For our aim, less is more. If we were to add these kinds of ingredients, we
would no longer see what dynamics result from market clearing alone versus
what dynamics come from the temporal structure of preferences, cash flows,
or technology. We also would be forced to more complex and less transparent
solution methods. As the standard one-tree model, though unrealistic, delivers
useful insights into key asset-pricing issues, this simple two-tree model can
isolate market-clearing effects that will be part of the story in more complex
models, and allows us a clearer economic intuition for those effects.

Higher risk aversion and greater numbers of trees are desirable extensions
that would not by themselves introduce dynamics. The first might raise the
magnitudes of market-clearing dynamics, providing a better fit to the data, and
the second is clearly important in its own right. However, our solution method
works only for log utility and two trees.

Was it a mistake to believe in the logical possibility if not the reality of
i.i.d. returns for all these years, given that our world does contain multiple
nonzero net supply assets? The answer is no; it is possible to construct multiple
nonzero net supply asset models with i.i.d. returns. For example, this can occur
if the supply of assets changes instantly to accommodate changes in demand.
If a price rise is instantly matched by a share repurchase, and a price decline is
instantly matched by a share issuance, then the market value of each security can
remain constant despite any variation in prices. No change in return moments
is necessary, because no change in the market portfolio occurs. In this situation,
investors can and do collectively rebalance.

In economics language, this situation is equivalent to the assumption of linear
technologies. Output is a linear function of capital with no adjustment costs,
diminishing returns, or irreversibilities, in contrast to our assumption of fixed
endowments (trees, share supply). Investors can then instantly and costlessly
transfer physical capital from successful projects to unsuccessful ones or to
consumption, keeping all market weights constant. Such a linear technology
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assumption is explicit, for example, in Cox et al. (1985). Most simply put,
we can just write the i.i.d. rate of return processes or “technologies,” and ask
investors how much they want to hold, allowing them collectively to hold as
much or as little as they want at any time. The resulting model will of course
have i.i.d. returns.

Although such models are possible, these clearly unrealistic supply or tech-
nological underpinnings of i.i.d. returns are perhaps not often appreciated. It is
a mistake to think that i.i.d. returns emerge from a multiperiod version of the
usual market-equilibrium derivation of the CAPM, in which demand adjusts to
a fixed supply of shares. And as the last example makes clear, we should really
think of models that deliver i.i.d. returns in this way as “asset quantity” models,
not “asset pricing” models. They are models of the composition of the market
portfolio, because the asset prices and expected returns are given exogenously.

Which is the right assumption? In reality, market portfolio weights do change
over time. Thus, a realistic model should have at least some short-run adjust-
ment costs, irreversibilities, and other impediments to aggregate rebalancing.
It will therefore contain some market-clearing dynamics of the sort we isolate
and study in our simple two-tree exchange economy. On the other hand, new
investment is made, new shares are issued, and some old capital is allowed to
depreciate or is reallocated to new uses. Thus, a realistic model cannot specify
a pure endowment structure. It needs some mechanism that allows aggregate
rebalancing in the long run. The dynamics of the sort we study will apply less
and less at longer horizons. In any case, this discussion and the examples of this
paper make clear that the technological underpinnings of asset pricing mod-
els are more important to asset-price dynamics than is commonly recognized.
Dynamics do not depend on preferences alone.

1. Model and Results

1.1 Model setup
The representative investor has log utility,

Ut = Et

[∫ ∞

0
e−δτ ln (Ct+τ) dτ

]
. (1)

There are two trees. Each tree generates a dividend stream Di dt . The dividends
follow geometric Brownian motions with identical parameters,

d Di

Di
= µ dt + σ d Zi , (2)

where i = 1, 2, and d Zi are standard Brownian motions, uncorrelated with
each other.

To make the notation more transparent, we suppress time indices, for ex-
ample, d Di/Di ≡ d Dit/Dit , etc., unless needed for clarity. Also, we focus on
the first asset and suppress its index, for example, d D/D = d D1/D1. Finally,
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since instantaneous moments are of order dt , we will typically omit the dt term
in expressions for moments.

This is an endowment economy, so prices adjust until consumption equals
the sum of the dividends, C = D1 + D2.

This economy is a straightforward generalization of the well-known one-tree
model, and the one-tree model is the limit of our two-tree model as either tree
becomes dominant. In the one-tree model, the price-dividend ratio is a constant,
P/D = 1/δ, and returns are i.i.d.

1.2 Dividend share dynamics
The relative sizes of the two trees give a single state variable for this economy.
We find it convenient to capture that state by the dividend share,

s = D1

D1 + D2
. (3)

Expected returns and other variables are functions of state, so we can understand
their dynamics by understanding those functions of state and understanding how
the state variable s evolves.

Applying Itô’s Lemma to the definition in Equation (3), we obtain the dy-
namics for the dividend share process,

ds = −2σ2 s(1 − s) (s − 1/2) dt + σs(1 − s)(d Z1 − d Z2). (4)

The drift of the dividend share process is an S-shaped function. The drift is
zero when s equals 0, 1/2, or 1. The drift is positive for s between 0 and 1/2
and is negative for s between 1/2 and 1. Thus, there is a tendency for the
dividend share to mean revert toward a value of 1/2. The two dividend-growth
rates are independent, and there is no force raising an asset’s dividend-growth
rate if its share becomes small. Mean reversion in the share results from the
nonlinear nature of the share definition in Equation (3) through second-order
Itô’s Lemma effects—the drift is zero when σ2 = 0. In general, however, the
drift is small so the dividend share is a highly persistent state variable—the
path of its conditional means tends only slowly back to 1/2. For example, at
s = 1/4, the drift is 3/32 × σ2, and with σ = 0.20 that implies a drift of only
0.375 percentage points per year.

Share volatility is a quadratic function of the share, largest when the trees are
of equal size, s = 1/2, and declining to zero at s = 0 or s = 1. Share volatility is
substantial. For example, at s = 1/2, and with σ = 0.20, share volatility is five
percentage points per year. In turn, this means that if expected returns are func-
tions of the share, then they have the potential to vary significantly over time.

The dispersing effects of volatility overwhelm the mean-reverting effects
of the drift, so this share process does not have a stationary distribution. A
share process with a stationary distribution might be more appealing, but that
would require putting dynamics in the dividend processes, so that small assets
catch up. We want to make it clear that all dynamics in this model come from
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market-clearing, not from dynamics of the inputs. We return to the issue of the
nonstationary share and its effects on asset pricing below, after we see how
asset prices behave in the model.

1.3 Consumption dynamics
In the one-tree model, consumption equals the dividend, so consumption growth
is i.i.d. with constant mean E[dC/C] = µ and variance Var[dC/C] = σ2.

In the two-tree model, aggregate consumption C = D1 + D2 follows

dC
C

= µ dt + σ s d Z1 + σ (1 − s) d Z2. (5)

Consumption growth is no longer i.i.d. Mean consumption growth is still con-
stant, but consumption volatility is a convex quadratic function of the share,

Vart

[
dC
C

]
= σ2 [

s2 + (1 − s)2] . (6)

Consumption-growth volatility is still σ2 at the limits s = 0 and s = 1, but
declines to one-half that value at s = 1/2. Volatility is lower for intermediate
values of the dividend share as consumption is then diversified between the two
dividends.

1.4 The riskless rate
The investor’s first-order conditions imply that marginal utility is a discount
factor that prices assets, i.e.,

Mt = e−δt

Ct
. (7)

The instantaneous interest rate is given from the discount factor by

r dt = −Et

[
d Mt

Mt

]
= δ dt + Et

[
dC
C

]
− Vart

[
dC
C

]
. (8)

In the one-tree model, consumption equals the dividend so we have

r = δ + µ − σ2. (9)

We see the standard discount rate (δ), consumption growth (µ), and precaution-
ary savings (σ2) effects. Because the riskless rate is constant, the entire term
structure is constant and flat. (We can compute a riskless rate, even though the
riskless asset is in zero net supply.)

Substituting the moments of the consumption dynamics, Equation (5), into
Equation (8), the interest rate in the two-tree model is

r = δ + µ − σ2 [
s2 + (1 − s)2] . (10)
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Thus, the riskless rate varies over time as a quadratic function of the dividend
share. The riskless rate is higher for intermediate values of the dividend share
because dividend diversification lowers consumption volatility, which lowers
the precautionary savings motive. Because the interest rate is not constant, the
term structure is not flat.

1.5 Market portfolio price and return
As is usual in log utility models, the price-dividend ratio VM for the market
portfolio or claim to consumption stream is a constant

VMt ≡ PMt

Ct
= 1

Ct
Et

[∫ ∞

0

Mt+τ

Mt
Ct+τ dτ

]

= Et

[∫ ∞

0
e−δτ Ct+τ

Ct+τ

dτ

]
= 1

δ
. (11)

This calculation is the same for the one-tree and two-tree models, and it is valid
for all consumption dynamics.

The total instantaneous return RM on the market equals price appreciation
plus the dividend yield,

RM = d PM

PM
+ C

PM
dt = dC

C
+ δ dt. (12)

[In the second equality, we use the fact from Equation (11) that PM = C/δ.]
Substituting in consumption dynamics, we find for the one-tree model that the
market return is i.i.d.

RM = (µ + δ) dt + σ d Z , (13)

with constant expected return and variance:

Et [RM ] = (µ + δ), (14)

Vart [RM ] = σ2. (15)

For the two-tree model, the consumption dynamics in Equation (5) imply

RM = (µ + δ) dt + σ s d Z1 + σ (1 − s) d Z2. (16)

The expected market return and variance are now

Et [RM ] = (µ + δ), (17)

Vart [RM ] = σ2[s2 + (1 − s)2]. (18)

The expected return on the market is the same as in the one-tree case, but the
variance of the market return equals the variance of consumption growth, which
is now a quadratic function of the dividend share, declining for intermediate
shares.
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Subtracting the riskless rate in Equation (10) from the expected market
return in Equation (17) shows that the equity premium equals the variance of
the market return:

Et [RM ] − r = Vart [RM ], (19)

as is usual in log utility models. From Equation (18), the variance of the market
is a convex quadratic function of the dividend share. This fact means that the
equity premium and market Sharpe ratios are also time varying, and increase
as the market becomes more polarized.

1.6 The price-dividend ratio
The price P of the first asset is given by

Pt = Et

[∫ ∞

0
e−δτ Ct

Ct+τ

Dt+τ dτ

]
. (20)

Again, we suppress asset and time subscripts unless necessary for clarity, and
we focus on the first asset because the second follows by symmetry.

For the remainder of this section, we impose the parameter restriction δ =
σ2. This restriction, in conjunction with the symmetry of the assets, gives
much simpler formulas and more transparent intuition than the general case.
This restriction is not unreasonable: with σ = 0.20, δ = 0.04. In the following
section, we treat the general case that breaks this restriction, allows the trees
to have different values of µ and σ, and allows correlated shocks. We present
formulas using whichever of δ or σ2 gives a more intuitive appearance.

Using the definition of the dividend share in Equation (3), Equation (20) can
be rewritten to give the price-consumption ratio for the first asset:

P
C

= Et

[∫ ∞

0
e−δτ st+τ dτ

]
. (21)

Valuing the asset is formally identical to risk-neutral pricing (using the discount
rate δ) of an asset that pays a cash flow equal to the dividend share. The dividend
share plays a similar role in many tractable models of long-lived cash flows,
including Bansal et al. (2002), Menzly et al. (2004), Longstaff and Piazzesi
(2004), and Santos and Veronesi (2006).

Solving Equation (21) with share dynamics from Equation (4), the price-
dividend ratio of the first asset is

V ≡ P
D

= 1
s

P
C

= 1
2δs

[
1 +

(
1 − s

s

)
ln(1 − s) −

(
s

1 − s

)
ln(s)

]
. (22)

The Appendix gives a short proof, along the following lines. First, because s
follows a Markov process, Equation (21) implies that P/C is a function of s.
Using Itô’s Lemma and the dynamics for s from Equation (4), we obtain an
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expression for E[d(P/C)] in terms of the first and second derivatives of P/C .
Second, from Equation (21), the price-consumption ratio satisfies

E
[

d
(

P
C

)]
= δ

P
C

− s. (23)

Equating these two expressions for E[d(P/C)], we obtain a differential equa-
tion for P/C . We then verify that Equation (22) solves this differential equation.

The formula in Equation (22) and subsequent ones are all given in terms
of elementary functions, and thus they can be characterized straightforwardly.
However, it is easier and makes for better reading simply to plot the functions,
so we follow that route in our analysis. For comparability, we use the parameter
values δ = 0.04, µ = 0.02, and σ = 0.20 throughout all the plots presented in
this section.

Figure 1 plots the price-consumption and price-dividend ratios for δ = 0.04.
The price-consumption ratio lies close to a linear function of the dividend share.
This behavior is largely a scale effect; larger dividends command higher prices.
The slightly S-shaped deviations from linearity are thus the most interesting
features of this graph. The price-consumption ratio initially is higher than the
share and then falls below the share. We anticipate that the first asset will have
a “high” price at low shares and a “low” price at high shares.

The price-dividend ratio varies greatly from the constant value P/D =
1/δ = 25 of the one-tree model. This variation of the price-dividend ratio
as a function of the dividend share drives the return dynamics that follow.
The price-dividend ratio is equal to the price-consumption ratio divided by
share s, so its behavior is driven by the small deviations from linearity in the
price-consumption ratio function.

The price-dividend ratio in Figure 1 is largest for small shares, declines until
its value is less than the price-dividend ratio of the market portfolio starting at
s = 0.5, and then increases to equal the market price-dividend ratio of 25 when
s = 1. This initially surprising nonmonotonic behavior is necessary, because
the constant price-dividend ratio of the market portfolio must equal the share-
weighted mean of the price-dividend ratios of the individual assets. If the
price-dividend ratio of the first asset is greater than that of the market at a share
of, say, 0.25, then by symmetry, it must be less than that of the market at a share
of 0.75. It must then recover to equal the market price-dividend ratio when it
is the market at s = 1. The S-shape of the price-consumption ratio about the
45-degree line is exactly symmetric in this way, reflecting the symmetry of
Equation (22).

The price-dividend ratio increases rapidly as the dividend share decreases
toward zero. The basic mechanism for this behavior is a decline in risk premium.
As the first asset share declines, its dividends become less correlated with
aggregate consumption. This fact lowers their risk premium and discount rate,
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Figure 1
Price-consumption ratio and price-dividend ratio
The top panel presents the price-consumption ratio of the first asset, in the simple case, using parameters
µ = 0.02, δ = σ2 = 0.04. The bottom panel presents the price-dividend ratio. The dashed line in the top panel
gives the 45-degree line; the dashed line in the bottom panel gives the price-dividend ratio of the market portfolio
and of the one-tree model, 1/δ = 25.

raising their valuations. An asset with a small share is more valuable from a
diversification perspective.

As s → 0, the price-dividend ratio rises to infinity. As s → 0, the first
tree’s dividend becomes completely uncorrelated with consumption, because
consumption consists entirely of the second tree’s dividend. As a result, the first
tree is valued as a risk-free security. In this parameterization, the s = 0 limit of
the interest rate equals the dividend-growth rate r = µ, so the price-dividend
ratio of the growing dividend stream explodes. Although the rise in the price-
dividend ratio as s → 0 is generic, because the asset becomes less risky, the
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left limit is finite for other parameterizations in which the interest rate exceeds
the mean dividend-growth rate.

1.7 Asset returns and moments
Returns follow now that we know prices. Again suppressing asset and time
subscripts, the instantaneous return R of the first asset is

R ≡ D
P

dt + d P
P

. (24)

For both calculations and intuition, it is convenient to express this return in
terms of the price-dividend or valuation ratio,

R = 1
V

dt + d D
D

+ dV
V

+ d D
D

dV
V

. (25)

The return equals the dividend yield, the dividend growth, the change in valu-
ation or growth in the price-dividend ratio, and an Itô term.

Although the price-dividend ratio is constant in the one-tree model, the last
two terms in Equation (25) are zero and the asset return is just the dividend
yield plus dividend (consumption) growth. With two assets, as we have seen,
the price-dividend ratio is no longer constant and varies through time as the
relative weights of the assets evolve, so the latter two terms matter. Both the
mean and variance of returns vary over time as functions of the state variable s.

Now we can find return moments. Taking the expectation of Equation (25),
the expected return of the first asset is

Et [R] = 1
V

dt + Et

[
d D
D

]
+ Et

[
dV
V

]
+ Covt

[
d D
D

,
dV
V

]
. (26)

The instantaneous variance of the first asset’s return is

Vart [R] = Vart

[
d D
D

+ dV
V

]

= Vart

[
d D
D

]
+ Vart

[
dV
V

]
+ 2 Covt

[
d D
D

,
dV
V

]
. (27)

In the single-asset model with a constant valuation ratio, the variance of returns
is equal to the variance of dividend growth, the first term in Equation (27). In the
two-asset model, variation in the price-dividend ratio can provide additional
return volatility through the second term in Equation (27). However, if the
price-dividend ratio is strongly negatively correlated with dividend growth—
if an increase in dividends and thus share strongly reduces the price-dividend
ratio—then return volatility can be less than dividend-growth volatility through
the third term in Equation (27).

Applying Itô’s Lemma to the price-dividend ratio V in Equation (22) and
using the share process in Equation (4) gives the following expressions for
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moments of dV/V in Equations (26) and (27):

Et

[
dV
V

]
= δ (1 + 3(1 − s)) − 1

V
(1 − 2 ln(s)) , (28)

Vart

[
dV
V

]
= 2

δ

[
δ(1 + (1 − s)) + 1

1 − s
ln(s)

V

]2

, (29)

Covt

[
d D
D

,
dV
V

]
= −

[
δ(1 + (1 − s)) + 1

1 − s
ln(s)

V

]
. (30)

Substituting the expected dividend-growth rate Et [d D/D] = µ and Equa-
tions (28) and (30) into Equation (26) and rearranging gives us the expected
return as a function of state,

Et [R] = µ + 2δ(1 − s) +
(

1 − s
1 − s

)
ln(s)

V
. (31)

Subtracting the riskless rate in Equation (10) from the expected return in
Equation (31) gives the expected excess return

Et [R] − r = 2δ(1 − s)2 +
(

1 − s
1 − s

)
ln(s)

V
. (32)

Similarly, substituting from Equations (29) and (30) into Equation (27) gives
the return variance

Vart [R] = δ

2
+ 2δ

[
1
2

+ (1 − s) + 1
δ

1
1 − s

ln(s)
V

]2

. (33)

Figure 2 plots the expected return given in Equation (31) as a function of the
dividend share. Expected returns rise with the share, reach an interior maximum,
and then decline slightly. This behavior of expected returns in Figure 2 mirrors
the behavior of the price-dividend ratio in Figure 1. With constant expected
dividend growth, expected returns are the only reason price-dividend ratios
vary at all, so low expected returns must correspond to high price-dividend
ratios. One way to understand the nonmonotonic behavior of expected returns,
then, is as the mirror image of the nonmonotonic behavior of the price-dividend
ratio studied above. Expected returns must be higher than the market expected
return for high shares (near s = 0.8) so that expected returns can be lower than
the market expected return for small shares.

The behavior of expected returns as a function of state in Figure 2 drives
asset return dynamics. A positive shock to the first asset’s dividends increases
the dividend share. For share values below about 0.80, this event increases
expected returns. In this range, then, a positive dividend shock leads to a string
of expected price increases. Prices will seem to “underreact” and “slowly”
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Figure 2
Expected return and components
E[R] gives the expected return of the first asset as a function of the share of the first asset. The remaining lines
give components of this expected return. 1/V gives the dividend-price ratio. E[dD/D] gives the expected dividend-
growth rate. E[dV/V] gives the expected change in the price-dividend ratio. Cov[D,V] gives Cov[dV/V,dD/D],
the covariance of dividend growth with price-dividend ratio shocks.

incorporate dividend news. To the extent that own-dividend shocks dominate
other-dividend shocks as a source of price movement, we expect to see here
positive autocorrelation and “momentum” of returns.

For share values above about 0.80, however, expected returns decline in the
dividend share. Here, a positive own-dividend shock leads to lower subsequent
expected returns; we see “overreaction” to or “mean reversion” after the divi-
dend shock, and we expect to see negative autocorrelation, mean reversion, and
“excess volatility” of returns.

Equation (26) expresses the expected return as a sum of four components.
The individual components are also plotted in Figure 2. As illustrated, the
dividend yield 1/V is generally the largest component of expected returns,
followed closely by the expected growth rate of dividends E[d D/D]. For small
dividend shares, the negative covariance between dividends and the valuation
ratio reduces the expected return substantially. The negative covariance appears
because a positive shock to dividends increases the share, and this has a strong
negative effect on the valuation ratio as per Figure 1. The expected change in
the valuation ratio is small, generally positive, and has its largest effect on the
expected return for small to intermediate values of the dividend ratio. All three
of these components change sign or slope at the point where the price-dividend
ratio starts rising as a function of share, for high share values.
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Expected excess returns represent risk premia, reflecting the covariance of
returns with consumption growth,

Et [R] − r = Covt

[
R,

dC
C

]
. (34)

We can express this risk premium as the sum of a “cash-flow beta,” cor-
responding to the covariance of dividend growth with consumption growth,
and a “valuation beta,” corresponding to the covariance of valuation shocks
with consumption growth. Substituting Equation (25) into Equation (34),
we have

Et [R] − r = Covt

[
d D
D

,
dC
C

]
+ Covt

[
dV
V

,
dC
C

]
. (35)

We can evaluate the terms on the right-hand side using the dividend-growth
and consumption processes in Equations (2) and (5),

Covt

[
d D
D

,
dC
C

]
= σ2 s = δs, (36)

Covt

[
dV
V

,
dC
C

]
= Covt

[
d D
D

,
dV
V

]
(2s − 1)

= (1 − 2s)
[
δ(1 + (1 − s)) + 1

1 − s
ln(s)

V

]
. (37)

In the last equality, we have substituted from Equation (30).
The “cash-flow beta” expresses what would happen if price-dividend ratios

were constant. Then, the covariance of returns with consumption growth would
be exactly proportional to the covariance of dividend growth with consumption
growth. This covariance would of course be larger precisely as the first tree’s
dividend provides a larger share of consumption. Thus, the “cash-flow beta” is
linear in the share.

The “valuation beta” is more interesting, as it captures the fact that price-
dividend ratios change as well, and changes in valuation that covary with the
consumption growth generate a risk premium. Valuation betas capture the fact
that return dynamics—changes in expected return, which change valuations—
spill over to the level of the expected return, as in Merton (1973).

Figure 3 plots expected excess returns from Equation (35), the risk-free rate
from Equation (10), and the “cash-flow” and “valuation betas” from Equations
(36) and (37), respectively. As shown, the expected excess return starts at zero,
but then increases rapidly as the dividend share increases. Expected excess
returns rise uniformly following a positive dividend shock, so we expect to
see the positive autocorrelation dynamics throughout the share range using this
measure (of course, expected excess returns remain positive as s → 0 if one
allows correlated cash flows).
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Figure 3
Expected excess return and components
E[R] − r gives the expected excess return of the first asset as a function of its share. Cov[D,C] gives the covariance
of dividend and consumption-growth shocks, Cov[dD/D,dC/C]. Cov[V,C] gives the covariance of price-dividend
ratio and consumption-growth shocks, Cov[dV/V,dC/C]. The latter two components add up to the expected excess
return. The riskless rate is given by r.

The “valuation beta” can have either sign. It is slightly negative for dividend
share values between about 0.50 and 0.80. For small shares, the “valuation beta”
is dominant. For small shares, the risk premium is due primarily to changes
in valuations correlated with the market “discount rate” effect—rather than
changes in dividends or cash flows correlated with the market. An observer
might be puzzled why there is so much return correlation, beta, and expected
return in the face of so little correlation of cash flows.

In the limit as s → 0, the expected excess return collapses to zero. (One
can show this fact analytically by taking limits of the above expressions.) In
that limit, the first tree’s dividends are completely uncorrelated with consump-
tion. However, as Figure 3 demonstrates, the expected excess return rises very
quickly from zero and is substantial even for very small shares. For example, the
expected excess return is already 1/2% at s = 0.1%. Formally, the derivative of
expected excess return with respect to share rises to infinity as s → 0. There-
fore, the market-clearing-induced risk premium and return dynamics remain
important for “small” assets.

Figure 4 plots the return volatility given in Equation (33) along with
the components of that volatility from Equation (27). Dividend-growth
Var[d D/D] gives a constant contribution of 20% volatility. Changes in val-
uation Var[dV/V ] add a small amount of volatility at small share values,
where the valuation in Figure 1 is a strong function of the share. The negative
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Figure 4
Return volatility and components
The solid line with symbols labeled Var[R] gives the variance of the first asset’s return as a function of the first
asset’s share. (The vertical axis labels give percent standard deviation. However, the vertical axis plots variance,
so that the variance components add up.) The horizontal solid line labeled Var[dD/D] gives the dividend-growth
component of return variance. The dashed line labeled Var[dD/D]+Var[dV/V] adds the dividend-growth variance
and the variance of the price-dividend ratio. Adding the third, usually negative, component Cov[dD/D,dV/V]
gives the overall return variance.

value of the covariance term in Equation (33) is a larger effect and pushes over-
all variance below dividend-growth variance for s < 0.80. The price-dividend
ratio is a declining function of share here, so a positive dividend shock lowers
the price-dividend ratio (Figure 1). As a result, returns (price plus dividend)
move less than dividends themselves. As the share increases, however, the
covariance term eventually becomes positive, where the price-dividend ratio
rises with the share, and adds to the total return variance. Thus, there is a small
region of “excess volatility” in which the volatility of the asset’s return exceeds
the volatility of the underlying cash flows or dividends. Again, the derivative of
volatility with respect to share becomes infinite as s → 0, so market-clearing
effects apply to very small assets.

Because the price-dividend ratio, expected return, and expected excess return
are all functions of the share, we can substitute out the share and plot expected
returns and excess returns as functions of the dividend yield. Figure 5 presents
the results.

Both expected returns and expected excess returns are increasing functions
of the dividend yield. Therefore, dividend yields (or price-dividend ratios)
forecast returns in the time series and in the cross section. Expected returns
show a nicely linear relation to dividend yields through most of the relevant
range. Expected excess returns show an intriguing nonlinear relation. The slope

362



Two Trees

Figure 5
Dividend yields and expected returns
The solid line plots the first asset’s expected return versus its dividend yield. The dashed line plots the first asset’s
expected excess return versus its dividend yield. Symbols mark the points s = 0, s = 0.1, s = 0.2, etc., starting
from the left.

of the return line is about 1.6 through the linear portion. A slope of one means
that higher dividend yields translate to higher expected returns one-for-one.
Higher slopes mean that a high dividend yield forecasts valuation increases as
well.

1.8 Market betas
With log utility, expected returns follow a conditional CAPM and consumption
CAPM. Thus, we can also understand expected excess returns by reference to
the asset’s beta and the market expected excess return.

In the single-tree model, the asset is the market, and its beta equals one. In the
two-tree model, the beta of each asset varies over time with the dividend share.
Using the fact from Equation (12) that the market return equals consumption
growth plus the discount rate, we have

β = Covt [R, RM ]
Vart [RM ]

= Covt [R, dC/C]
Vart [RM ]

. (38)

Substituting the covariances from Equations (36) and (37), and using the market
return variance in Equation (18), we obtain

β =
2σ2(1 − s)2 + 1 − s

1−s
ln(s)

V

σ2
[
s2 + (1 − s)2

] . (39)
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Figure 6
Market betas and market risk premium
The solid line labeled β gives the beta on the market portfolio of the first asset return. Its values are plotted on the
left vertical axis. The dashed line labeled E[RM ] − r gives the expected excess return of the market portfolio.
Its values are plotted on the right vertical axis.

(We present Equation (39) in terms of σ2, which is more intuitive for a second
moment, but this formula is only valid under the restriction σ2 = δ of this
section.)

Figure 6 plots beta as a function of the dividend share, revealing interesting
dynamics. As shown, the beta is zero when the share is zero. As the share
increases, the beta rises quickly, in fact infinitely quickly as s → 0. As we can
see in Figure 3, this rise is due to the large “valuation beta” for small assets.
As the share rises, the beta continues to rise almost linearly. Here, the nearly
linear “cash-flow beta” of Figure 3 is at work: the first asset contributes more
to the total market return and its beta begins to increase correspondingly.

At a share s = 0.5, the beta becomes greater than one, and then declines until
it becomes one again when the first asset is the entire market. As before, we
can start to understand this nonmonotonic behavior by aggregation: the share-
weighted average beta must be one, so if the small asset has a beta less than
one, the larger asset must have a beta larger than one. As the share approaches
one, however, the beta begins to decrease and converges to one because the first
asset becomes the market as s → 1.

The expected excess return of Figure 3 is equal to the beta of Figure 6
times the market expected excess return; Et [RM ] − r = σ2

[
s2 + (1 − s)2

]

from Equations (18) and (19) and is also included in Figure 6. The decline
in the market expected excess return from s = 0 to s = 1/2 accounts for the
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slightly lower rise in expected excess return in Figure 3 compared to the rise in
market beta in Figure 6 in this region. The rise in market expected excess return
from s = 1/2 to s = 1 offsets the decline in beta shown in Figure 6, allowing
the nearly linear rise in expected excess return shown in Figure 3.

In sum, although a conditional CAPM and consumption CAPM hold in
this model, one must make reference to time-varying expected excess returns,
expected excess market returns, and market betas in order to see the relations
predicted by the CAPM or consumption CAPM.

1.9 Return correlations
The returns of the two assets can be correlated even though their dividends are
independent. To see this fact, we can write from Equation (25),

Covt [R1, R2] = Covt

[
d D1

D1
,

d D2

D2

]
+ Covt

[
d D1

D1
,

dV2

V2

]

+ Covt

[
d D2

D2
,

dV1

V1

]
+ Covt

[
dV1

V1
,

dV2

V2

]
. (40)

Because the dividends are independent, the first term on the right-hand side
is zero. If the price-dividend ratios Vi for the two assets were constants, the
remaining three terms on the right-hand side would also be zero and the returns
of the two assets would be uncorrelated. However, the price-dividend ratios
vary over time and are correlated with each other and with the dividends. Thus,
the correlation of the assets’ returns is generally not equal to zero.

Figure 7 plots the correlation between the assets’ returns as a function of the
dividend share. As shown, the returns have a correlation above 25% for most
of the range of dividend shares, even though the underlying cash flows are not
correlated.

The mechanisms are straightforward. If tree two enjoys a positive divi-
dend shock, that event raises asset two’s return. However, it also lowers
asset one’s share. Lowering the share typically raises the price-dividend
ratio—i.e., gives rise to a positive return for asset one. This story under-
lies the Covt [d D2/D2, dV1/V1] component of Equation (40), graphed as
the “[V1, D2]” line of Figure 7. As expected it gives a positive contribution
to correlation for shares below s = 0.8, in which the price-dividend ratio in
Figure 1 is rising in the share. Adding the symmetrical contribution to corre-
lation from the effect of asset one’s dividends on asset two’s valuations gives
the dashed line marked [V1, D2] + [V2, D1] in Figure 7, and we see that these
two effects are most of the story for the overall correlation, marked [R1, R2] in
Figure 7.

Again, the correlations are zero in the limit as s → 0 or s → 1, but the deriva-
tive becomes infinite at these limits so market-clearing-induced correlations are
large for vanishingly small assets.
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Figure 7
Return correlation
The solid line with triangles labeled [R1, R2] gives the conditional correlation between the two assets’ returns,
given the dividend share s of the first asset. The remaining lines give components of that correlation, using the
decomposition of Equation (40). For example, [V1, D2] gives the component of correlation corresponding to

Cov
[

dV1
V1

,
dD2
D2

]
.

1.10 Autocorrelation
How important are the return dynamics in the two-tree model? How much do
expected returns vary over time? Do market-clearing return dynamics vanish
for small assets?

As one way to answer these questions, Figure 8 presents the instantaneous
autocorrelation of returns. In discrete time, the autocorrelation is the regres-
sion coefficient of future returns on current returns, Cov[Rt+1, Rt ]/Var[Rt ] =
Cov[Et (Rt+1), Rt ]/Var[Rt ]. We compute a continuous-time conditional coun-
terpart to the second expression, Covt [d E Rt , Rt ]/Vart [Rt ]. Rt denotes the
instantaneous expected return. E Rt denotes the expected return that is a func-
tion of the state as plotted in Figure 2. Thus, we can apply Itô’s Lemma to
find d E Rt and the covariance follows. The result expresses how much a return
shock raises subsequent expected returns.

The pattern of autocorrelation shown in Figure 8 is consistent with the
patterns of expected returns and excess returns illustrated in Figures 2 and 3.
The autocorrelation of returns is positive where the expected return in Figure 2
rises with the share, and the autocorrelation is negative where expected returns
in Figure 2 decline with share. Expected excess returns in Figure 3 rise with
share throughout, and we see a positive autocorrelation throughout. This result
is not automatic, as a positive return can also be caused by an increase in the
other asset’s dividend, which typically lowers the expected return. Figure 8
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Figure 8
Return autocorrelation
The “return” line is calculated as Cov[dE Rt , Rt ]/Var[Rt ] where Rt is the instantaneous return, and E Rt = Et [Rt ]
is the expected value of the instantaneous return. It measures how much a unit instantaneous return raises the
subsequent expected return. The “excess” line does the same calculation for expected excess returns.

shows that this effect is dominated by the own-dividend shock, allowing a
positive autocorrelation to emerge. The magnitude of the autocorrelation is
small, reaching only one percentage point.2

In the limit s → 0, both autocorrelations vanish. However, the slope of the
autocorrelation tends to infinity as s → 0, so again market-clearing effects
remain important for vanishingly small assets.

2. The General Model

This section presents the general case of the two-asset model. Dividends still
follow geometric Brownian motions, but we allow different parameters,

d Di

Di
= µi dt + σi d Zi . (41)

The correlation between d Z1 and d Z2 is ρ, not necessarily zero. We also allow
the discount rate and the volatility of dividend growth to differ, σ2 (= δ.

2 Autocorrelation is a common and intuitive measure of return predictability. However, lagged returns do not
contain all information that is available at time t . It is possible for returns to be predictable—for example,
by dividend yields—while not autocorrelated. The variance of expected returns, which is the variance of the
numerator of R2 in a multivariate return-forecasting regression, is a more comprehensive measure. However, our
computation of the continuous-time counterpart to this quantity Var[d E Rt ] does not differ enough from Figure 8
to warrant presentation.
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2.1 Consumption dynamics
Applying Itô’s Lemma to C = D1 + D2 implies

dC
C

=
[
µ1s + µ2(1 − s)

]
dt + σ1s d Z1 + σ2(1 − s) d Z2. (42)

As before, consumption growth is no longer i.i.d. through time. The mean
consumption growth,

Et

[
dC
C

]
= µ1s + µ2(1 − s), (43)

is the share-weighted mean of the dividend-growth rates and so is no longer
constant. Consumption volatility,

Vart

[
dC
C

]
= σ2

1s2 + σ2
2(1 − s)2 + 2ρσ1σ2s(1 − s), (44)

is again a convex quadratic function of the share, lower where consumption is
diversified across the two trees.

2.2 The riskless rate
Substituting the consumption moments in Equations (43) and (44) into the
expression for the riskless rate in Equation (8) gives the riskless rate in the
general two-asset model,

r = δ + µ1s + µ2(1 − s) − σ2
1s2 − σ2

2(1 − s)2 − 2ρσ1σ2s(1 − s). (45)

The riskless rate is again a quadratic function of the dividend share. If the
means or volatilities of the dividend streams differ, it is no longer symmetric,
however.

2.3 Market price and dynamics
The market price and its dynamics are virtually the same as in the simple case.
The price-dividend ratio VM for the market is still 1/δ, and the instantaneous
return RM on the market equals the percent change in aggregate consumption
plus the dividend yield as in Equation (12). Thus, the expected return and
variance of the market differ only in that the moments of the consumption
process differ in the general model,

Et [RM ] = δ + µ1 s + µ2 (1 − s), (46)

Vart [RM ] = σ2
1 s2 + σ2

2 (1 − s)2 + 2ρσ1σ2 s (1 − s). (47)

The equity premium again equals the variance of the market as in
Equation (19).
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2.4 Dividend share dynamics
An application of Itô’s Lemma gives the dynamics of the dividend share,3

ds = s(1 − s)
[
µ1 − µ2 − sσ2

1 + (1 − s)σ2
2 + 2 (s − 1/2) ρσ1σ2

]
dt

+ s(1 − s)(σ1 d Z1 − σ2 d Z2). (48)

The drift of this dividend share process is zero when s = 0, κ, or 1, where

κ = µ1 − µ2 + σ2
2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2
. (49)

When κ lies between zero and one, the drift is positive from zero to κ, bringing
the share up toward κ, and negative from κ to one, bringing the share down
toward κ. We see a more general version of the same S-shaped mean reversion
that characterizes our simple case. The diffusion coefficient in Equation (48) is
again quadratic, implying that changes in the dividend share are most volatile
when s = 1/2. As in the simple case, one tree eventually will dominate the
other so this model does not possess a stationary share distribution.4

2.5 Asset prices
The first asset’s price-dividend ratio is still derived as a discounted “present
value” of future shares as in Equation (21). The share process has changed to
Equation (48), however, so the form of the solution changes. The Appendix
shows that in this general case, the price-dividend ratio of the first asset V can
be expressed as

V = 1
ψ(1 − γ)(1 − s)

F
(

1, 1 − γ; 2 − γ;
s

s − 1

)

+ 1
ψθs

F
(

1, θ; 1 + θ;
s − 1

s

)
, (50)

where

ψ =
√

ν2 + 2δη2, γ = ν − ψ

η2
, θ = ν + ψ

η2
,

and

ν = µ2 − µ1 − σ2
2/2 + σ2

1/2, η2 = σ2
1 + σ2

2 − 2ρσ1σ2.

3 The share process is a member of the Wright-Fisher class of diffusions. These types of diffusions are often
applied in genetic theory to characterize the evolution of genes in a population of two genetic types. For example,
Karlin and Taylor (1981, ch. 15, pp. 184–88) present an example in which population shares follow a diffusion
similar to Equation (48). Also see Crow and Kimura (1970) for examples and a discussion of the asymptotic
properties of these models. The cubic drift of our share process is also closely related to that of the stochastic
Ginzburg-Landau diffusion used in superconductivity physics to model phase transitions. See Kloeden and Platen
(1992) and Katsoulakis and Kho (2001).

4 This feature parallels the asymptotic properties of Wright-Fisher gene frequency models in which one of the two
gene types ultimately becomes fixed in the population.
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F(a, b; c; z) is the standard hypergeometric function (see Abramowitz and
Stegun, (1970), Chapter 15). The hypergeometric function is defined by the
power series

F(a, b; c; z) = 1 + a · b
c · 1

z + a(a + 1) · b(b + 1)
c(c + 1) · 1 · 2

z2

+ a(a + 1)(a + 2) · b(b + 1)(b + 2)
c(c + 1)(c + 2) · 1 · 2 · 3

z3 + · · · (51)

The hypergeometric function has an integral representation, which can be used
for numerical evaluation and as an analytic continuation beyond ‖z‖ < 1,

F(a, b; c; z) = !(c)
!(b)!(c − b)

∫ 1

0
wb−1(1 − w)c−b−1(1 − wz)−a dw, (52)

where Re(c) > Re(b) > 0. The derivative of the hypergeometric function,
needed for Itô’s Lemma calculations, has the simple form

d
dz

F(a, b; c; z) = ab
c

F(a + 1, b + 1; c + 1; z). (53)

This formula can be derived by differentiating the terms of the power series in
Equation (51) (see also Gradshteyn and Ryzhik, 2000, 9.100, 9.111). Though
the hypergeometric function may be unfamiliar to many readers, it has appeared
in a number of important asset-pricing contexts, including Merton (1973),
Ingersoll (1977), Ingersoll and Ross (1992), Albanese et al. (2001), Longstaff
(2005), and many others.

2.6 Asset returns
Given the explicit price function in Equation (50) and the functional form of
its derivatives from Equation (53), the Appendix shows that the instantaneous
return on the first asset R can be given by a direct application of Itô’s Lemma:

R =
[
δ + µ1s + µ2(1 − s) + (ρσ1σ2 − σ2

2 + η2s) "(s)
]

dt
+ σ1[s + "(s)] d Z1 − σ2[s − 1 + "(s)] d Z2, (54)

where

"(s) = A(s)
B(s)

,

A(s) = 1
1 − γ

(
s

1 − s

)
F

(
1, 1 − γ; 2 − γ;

s
s − 1

)

− 1
2 − γ

(
s

1 − s

)2

F
(

2, 2 − γ; 3 − γ;
s

s − 1

)

+ 1
1 + θ

(
1 − s

s

)
F

(
2, 1 + θ; 2 + θ;

s − 1
s

)
,
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B(s) = 1
1 − γ

(
s

1 − s

)
F

(
1, 1 − γ; 2 − γ,

s
s − 1

)

+ 1
θ

F
(

1, θ; 1 + θ;
s − 1

s

)
.

Taking moments, we can now express how the expected return, expected
excess return, and return volatility vary with the state variable s:

Et [R] = δ + µ1s + µ2(1 − s) +
(
ρσ1σ2 − σ2

2 + η2s
)
"(s), (55)

Et [R] − r = σ2
1s2 + σ2

2(1 − s)2 + 2ρσ1σ2s(1 − s)

+
(
ρσ1σ2 − σ2

2 + η2s
)
"(s), (56)

Vart [R] = σ2
1[s + "(s)]2 + σ2

2[s − 1 + "(s)]2

− 2ρσ1σ2[s + "(s)][s − 1 + "(s)]. (57)

2.7 Limits
In evaluating these formulas, it is useful to have exact expressions for limits as
s → 0. These limits also allow us to make some general statements about the
behavior of “small” assets in this model. The Appendix shows that if θ ≤ 1, we
have

lim
s→0

V = ∞, (58)

lim
s→0

"(s) = θ, (59)

and hence,

lim
s→0

Et [R] = δ + µ2 +
(
ρσ1σ2 − σ2

2

)
θ, (60)

lim
s→0

Et [R] − r =
(
ρσ1σ2 − σ2

2

)
θ + σ2

2. (61)

If θ > 1, we instead have

lim
s→0

V = (δ + ν − η2/2)−1, (62)

lim
s→0

"(s) = 1, (63)

and hence,

lim
s→0

Et [R] = δ + µ2 + ρσ1σ2 − σ2
2, (64)

lim
s→0

Et [R] − r = ρσ1σ2. (65)

The limit as s → 1 is the one-tree model, of course.
The risk premium (expected excess return) of the first asset can be greater

than zero even in the limit s → 0, in two ways. First of all, it can obviously
be greater than zero if the cash flows are correlated. If ρ > 0 in Equation (65),
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there still is a risk premium, but one that comes entirely from the covariance
of the first asset’s dividend growth with the dividend growth of the second
asset, which is now the market. Second, though, the limiting risk premium can
be positive even with ρ = 0 per Equation (61). In this case, “valuation betas”
are positive and lead to a positive risk premium even in the limit. However,
the price-dividend limits show us that this result holds exactly when the price-
dividend ratio, though finite for all nonzero s, tends to an infinite limit as
s → 0. The special case studied in the previous section has θ = 1. In that
case, the price-dividend ratio (just) tends to infinity, the risk premium of the
first asset approaches zero at s → 0, but its derivative with respect to s is
infinite.

2.8 An example
Both as an example of the general case and for its own interest, we model one
asset as a real perpetuity with µ1 = 0, σ1 = 0. In an economy in which the
second asset has µ2 = 0.04, σ2 = 0.20, and δ = 0.04, the top panel of Figure 9
presents the risk premium (expected excess return) of this perpetuity. In this
case, all risk premium comes from “valuation betas” or discount-rate changes,
because the dividend is constant. Nonetheless, there is interesting variation in
the risk premium as a function of share, and the risk premium takes on both
signs, as do bond risk premia in the data.

We can trace much of the behavior of the risk premium back to the valuation
ratio, as usual. The bottom panel of Figure 9 presents the dividend yield—
the inverse of the valuation ratio—along with the risk-free rate. Befitting a
perpetuity, its dividend (coupon) yield moves with the risk-free rate. However,
it does not move one-for-one, as the yield curve is not flat in this model. The
region of positive risk premium corresponds to the region of rising dividend
yield or declining price-dividend ratio. All returns here are due to shocks to the
second asset’s dividends. If that dividend increases, the share of the first asset
decreases, raising the price and hence return of the first asset. Hence, the first
asset return is positively correlated with consumption growth, and generates
a positive risk premium. The converse logic holds in the region s > 1/2 with
a rising price-dividend ratio, declining dividend-price ratio, and negative risk
premium.

3. Concluding Remarks

We extend the classic single-asset Lucas-tree pure-exchange framework to the
case of two assets and solve the model in closed form. Our two-tree model has
the simplest ingredients, log utility, and i.i.d. normal dividend growth. Nonethe-
less, market-clearing logic and a fixed-share supply generate interesting and
complex patterns of time-varying asset prices, expected returns, risk premia,
variances, covariances, and correlations.
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Figure 9
Expected excess returns and dividend yield for a perpetuity
The first asset is a perpetuity that pays a constant dividend stream. Its parameters are µ1 = 0, σ1 = 0. The second,
risky, asset has parameters µ2 = 0.04, σ2 = 0.20. The discount factor is δ = 0.04. The top panel displays the
expected excess return of the perpetuity as a function of its dividend share. The bottom panel plots the dividend-
price ratio of the perpetuity, along with the instantaneous interest rate.

3.1 Summary and intuition
With the results in hand, we can restate the intuition more clearly, emphasizing
the quantitatively important channels. Start at the left-hand side of the plots,
for small dividend shares. As the dividend share of the first tree increases from
zero, the first tree becomes a larger part of the total, so its beta and risk premium
naturally increase. Its expected excess return therefore rises from zero as shown
in Figure 3. Also, as the first tree becomes a larger part of the total, that total
becomes less risky by diversifying across the two trees. This change raises
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interest rates by lowering the precautionary savings motive, again shown in
Figure 3. The expected return is the sum of the expected excess return and
the interest rate, and therefore rises even more steeply with share as shown in
Figure 2. With a constant dividend-growth rate, higher expected returns mean
lower price-dividend ratios, which is why the price-dividend ratio falls with the
share in Figure 1.

The rise of the expected return with share and the decline of the price-
dividend ratio with share underlie many of the dynamics we find. They also
express the underlying market-clearing intuition. If there is a shock to the
first tree’s dividend, investors want to rebalance. Equivalently, they want to
spread some of their larger wealth across both trees. They cannot collectively
rebalance, so prices and expected returns must adjust. The expected return
of the first tree must rise, making it more attractive to hold the larger share,
and thus its valuation must fall. The expected return of the second tree falls
(or, if you wish, the expected return of the first tree when there is a shock
to the second tree) and its price rises. Investors want to buy more of the
second tree but cannot, forcing its price to rise. Equivalently, the expected
return of the second tree must fall so investors will hold it in its now smaller
proportions.

However, overall betas that drive risk premia, as shown in Figure 6, depend
not only on this “cash-flow beta” intuition, shown as Cov[D, C] in Figure 3, but
also on valuation betas, the tendency of the price-dividend ratio to rise or fall
when the market and total consumption rise or fall. When the first tree’s share
is small, most increases in aggregate consumption come from increases in the
second tree’s dividend. Such an increase decreases the first tree’s share, which
increases the first tree’s price-dividend ratio (Figure 1). Therefore, valuation
betas are positive and large in the region of small shares, and they are a
large component of risk premia. We see this in the large increase of expected
excess returns in the left-hand side of Figure 3, and its decomposition into
compensation for cash-flow risk labeled Cov[D, C] and valuation risk labeled
Cov[V, C]. The same nonlinearity is apparent in the beta of Figure 6. Figure 9
treats the case that the first tree is a perpetuity with a constant dividend stream.
Here, the entire risk premium shown in the top panel derives from this valuation-
beta mechanism.

Now let us move to the middle and right-hand parts of the graphs, where the
first tree becomes a larger and larger share of the total. When the share reaches
one, the first tree is the market, so it must have the market price-dividend
ratio, as shown in Figure 1. However, there must be a region as shown in the
right half of Figure 1 in which the first tree’s price-dividend ratio is less than
that of the market, because here the second tree’s price-dividend ratio, with a
small share, is greater than that of the market. Thus, the price-dividend ratio
is not monotonic with the share, as shown in Figure 1. In terms of risk premia,
this behavior is driven by interest rates (Figure 3) for our canonical example.
The expected excess return is driven almost entirely by cash-flow betas at this
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point, but interest rates fall with the share because the market becomes less
diversified and more volatile as the share rises past 1/2. The lower interest rates
eventually overcome the higher expected excess returns and cause a slight rise
in the price-dividend ratio for shares above 0.9 (Figure 1) and a slight decline
in the expected return (Figure 2).

The “valuation beta” is not always positive—it is possible that a rise in
the market dividend lowers the price-dividend ratio of the first tree. Though
quantitatively small, this effect can be seen in Figure 3 for shares between
about 0.5 and 0.8. In this region, the first tree is more than half the mar-
ket, so a rise in the market typically means a rise in the first tree’s dividend
and its share. The price-dividend ratio is still downward sloping in this re-
gion (Figure 1), so a rise in the share means a decline in the price-dividend
ratio.

The possibility of a negative “valuation beta” is quantitatively more in-
teresting in the bond-stock case of Figure 9. Here, all movements in total
consumption come from movements in the second dividend. When the share is
above one half, the dividend yield shown in the bottom of Figure 9 declines, so
the U-shaped price-dividend ratio of the first tree rises. Thus, an increase in the
market, which lowers the first tree’s share, will also lower the first tree’s price—
a negative valuation beta. This negative beta generates the negative expected
excess return shown in the right half of the top panel of Figure 9. Intuitively,
when the second (small) tree’s share rises under this circumstance it is still
true that agents want to spread their increase in wealth across both trees, which
should raise the price of the first tree. However, the interest rate also changes,
because both mean and variance of consumption growth have changed, and this
change more than offsets the rebalancing desire.

The remaining graphs draw out the dynamic implications of these effects.
Because expected returns (Figure 2) and excess returns (Figure 3) vary with
the share, and because the dividend yield (Figure 1) varies with the share,
dividend yields forecast stock returns and excess returns as shown in Figure
5. Returns are cross-correlated despite no correlation in dividend growth, as
shown in Figure 7. When the first tree’s share is small, an increase in the
second tree’s dividend lowers the first tree’s share, which (Figure 1) substan-
tially raises its price-dividend ratio and thus gives a shock to the first tree’s
return, shown in the [V1, D2] line of Figure 7. The symmetric effect gen-
erates a positive correlation when the first asset has a large share. Returns
are correlated over time as shown in Figure 8. An increase in dividends in-
creases today’s return. This also increases the share, which increases expected
returns (Figure 2) and excess returns (Figure 3), leading to positive autocor-
relation. The small region in which expected returns (Figure 2) decline with
share, driven by the decline in interest rates with share (Figure 3), generates a
small, but theoretically interesting, region of negative return autocorrelation in
Figure 8.
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3.2 Discussion
A natural question is: Are the effects generated by the model quantitatively
important and empirically relevant, and if not, what conclusions should one
come to?

Our first answer is that this is the wrong question. Our aim is theory, to under-
stand and characterize the dynamics induced by the market-clearing mechanism
with the simplest possible preference and technology structure. Our aim is not
to provide a calibrated model that replicates the full range of asset-pricing facts
and puzzles. If the predictions of this model are counter to fact, one cannot con-
clude that we should ignore market-clearing dynamics. As a matter of logic,
market-clearing dynamics will be present in any model that does not allow
instantaneous aggregate rebalancing. If the model’s predictions are false, one
can only conclude that other ingredients are present in the real-world economy,
which is obviously true.

That said, however, the realism or unrealism of the model’s predictions
should be addressed to some extent. If the model gives unrealistic predictions,
it is worth speculating whether more general versions of market-clearing dy-
namics might address them, including more trees and higher risk aversion, or
at what point preferences or technologies with dynamic elements will have to
be part of the story.

The magnitudes are small. The relation between price-dividend ratios and
subsequent returns in our model is about the same as that found in empirical
time-series or cross-sectional (value-growth) return forecasts, but other effects
such as the autocorrelation of returns are smaller in our model than many claims
in the empirical literature.

However, we only use log utility, because we are not able to solve the model
for higher risk aversion. It is natural to speculate that risk premia will be larger
with higher risk aversion. Similarly, with log utility, our model is obviously
inconsistent with the observed equity premium and low consumption volatility,
but all the familiar equity-premium-boosting ingredients are likely to change
that with two trees, as they do with one tree.

More seriously than magnitudes, some of the patterns in our model seem at
odds with the data. For example, “small” firms are also “growth” firms in the
simple parameterization of our model, with high valuations and low expected
returns. Clearly, a “small firm effect” requires some other mechanism, such as
a larger covariance of the underlying cash flows with the aggregate.

More generally, our model has only one state variable, the dividend share,
which is both the only aggregate state variable and the only variable describing
cross-sectional variation. Our model also has only two shocks. Taken literally to
the data, it is as easy to reject these predictions as it is to reject the “prediction”
that there are only two assets.

One deep question is whether market-clearing effects apply to individual
assets, i.e., for very small share values, or whether they only apply to large

376



Two Trees

aggregates that are substantial shares of aggregate wealth. If the latter conclu-
sion holds, then market-clearing dynamics may not be an important part of the
story for many empirical findings that are concentrated in the very smallest of
firms. One must recognize, however, that the question is not well posed. How
can aggregates show effects that are not present in the individual constituents
of those aggregates? If they matter for aggregates, ipso facto, in some sense
they must matter for individual firms that compose those aggregates. Also,
much empirical work on “individual firm” behavior in fact studies the behavior
of portfolios of such firms, which constitute an aggregate with non-negligible
share. Thus, the question is not easy to answer in the abstract. A full answer
must await the analysis of an N -tree model, and must be specific about which
fact one wants to address.

We address some of this issue in our study of the limits as s → 0. In our
simple model, though expected returns, risk premia, and autocorrelations do
go to zero as s → 0, the derivatives go to infinity at that point for many sets
of parameters, so vanishingly small assets can have substantial risk premia and
return dynamics induced by market clearing.

The dividend process and consequent share process in our model are obvi-
ously chosen for transparency, not realism. First of all, as in all endowment
economies, it is unrealistic that there is no investment or share issue and re-
purchase at all. Our model is clearly best applied to thinking about dynamics
that occur in the short run before share issuance/repurchase or investment and
disinvestment can take place. For this reason, we do not think it too trou-
bling that plots of price-dividend ratios or average returns versus shares in
the data do not look like those of our model.5 It seems likely that a model
with, say, adjustment costs that slow down investment and disinvestment will
generate market-clearing dynamics in the short run, meaning that changes in
shares are associated with changes in valuations and average returns, while
reverting in the long run to an i.i.d. economy in which there is no associa-
tion between the level of the share and the level of valuations and average
returns.

Finally, it may seem a little unsettling that the share in our model does
not have a stationary distribution. This result is an inescapable implication
of the geometric Brownian motion for dividends: one of two random walks
will eventually end up dominating the other one. It is not obvious what the
“right” assumption is here. In the end the car industry did dominate the
horse buggy industry, so perhaps birth of new industries rather than mean
reversion of dividends is the right way to generate long-run nondegenerate
shares.

The question for us is: To what extent does the fact that the distribution
of shares tends to two points (zero and one) have on the short-run asset pric-
ing dynamics we have characterized, such as autocorrelation, predictability,

5 We thank Ravi Bansal for pointing this out.

377



The Review of Financial Studies/ v 21 n 1 2008

price-underreaction, and so forth? Is this model a good parable for what would
happen with, say, a very long-run mean reversion in the shares? The basic asset
pricing, Equation (21), reproduced here,

P
C

= Et

[∫ ∞

0
e−δτ st+τ dτ

]
, (66)

gives some comfort on this point. What matters for asset pricing is the condi-
tional mean of the share, which always tends to 1/2. The fact that the distribution
underlying that mean tends to two points, 0 and 1, does not have any effect
on asset prices. We can also document that the share tends to its endpoints
very slowly. For example, when the initial dividend share is 0.50, there is only
about a 15% chance of the dividend share being below 0.05 or being above
0.95 after 100 years. Even when the initial share is 0.05, there is only about
a 52% chance of the share being below 0.05 after 100 years, and less than a
1% chance of being above 0.95 after 100 years. Because the present value of
cash flows beyond 100 years has only a negligible effect on asset values, these
simulations indicate clearly that the asymptotic nonstationarity property of the
dividend share is not driving the results. We have also repeated the analysis
by simulation with cash flows truncated at 100 years, and find no differences
worth reporting. As a result, we suspect that our core analysis would be very
little affected if one changed to a dividend process with long-run mean rever-
sion, though of course until the alternative model is solved one cannot say for
sure.

Appendix A

A1 Derivation of asset prices, simplified case
Here we prove Equation (22) for the price-dividend ratio of the first asset in the simplified (δ = σ2)
two-tree economy. From Equation (21), the price-consumption ratio Y for the first asset is

Yt ≡ Pt

Ct
= Et

[∫ ∞

0
e−δτ st+τ dτ

]
. (A1)

This ratio solves

E [dY ] = (δY − s) dt. (A2)

From Equation (A1), Y depends only on the current value and future distribution of s. Thus,
because s follows a Markov process (from Equation (4)), Y must be a function Y (s) of the state
variable. Using Itô’s Lemma,

E [dY (s)] = Y ′(s) E [ds] + 1
2

Y ′′(s) E
[
ds2

]
. (A3)

Putting together the last two equations, Y solves the differential equation

Y ′(s) E [ds] + 1
2

Y ′′(s) E[ds2] = (δY − s) dt. (A4)
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Now we add the share process,

ds = s(1 − s)(1 − 2s)σ2dt + σs(1 − s)(d Z1 − d Z2). (A5)

Specializing to δ = σ2, the differential equation becomes

s(1 − s)(1 − 2s)Y ′(s) + s2(1 − s)2Y ′′(s) = Y (s) − s
δ
. (A6)

We conjecture a solution and take derivatives:

Y (s) = 1
2δ

(
1 + 1 − s

s
ln(1 − s) − s

1 − s
ln(s)

)
, (A7)

Y ′(s) = − 1
2δ

1
s (1 − s)

(
1 + 1 − s

s
ln (1 − s) + s

1 − s
ln (s)

)
, (A8)

Y ′′(s) = − 1
δ

1

s2 (1 − s)2

(

(2s − 1) − (1 − s)2

s
ln (1 − s) + s2

1 − s
ln (s)

)

.

(A9)

Substituting into the differential equation and multiplying by 2δ,

0 = −(1 − 2s)
(

1 + 1 − s
s

ln (1 − s) + s
1 − s

ln (s)
)

− 2

(

(2s − 1) − (1 − s)2

s
ln (1 − s) + s2

1 − s
ln (s)

)

−
(

1 + 1 − s
s

ln(1 − s) − s
1 − s

ln(s)
)

+ 2s. (A10)

Grouping terms,

0 = −(1 − 2s) − 2 (2s − 1) − 1 + 2s

−
(

(1 − 2s)
1 − s

s
− 2

(1 − s)2

s
+ 1 − s

s

)

ln(1 − s)

−
(

(1 − 2s)
s

1 − s
+ 2

s2

1 − s
− s

1 − s

)
ln(s). (A11)

Each term is zero, verifying the conjectured solution. Dividing the price-consumption ratio by s
gives the price-dividend ratio in Equation (22).

A2 Derivation of asset prices, general case
The price-consumption ratio of the first asset is given by

P
C

= Et

[∫ ∞

0
e−δτ Dt+τ

Ct+τ
dτ

]
= Et




∫ ∞

0
e−δτ 1

1 + D2,t+τ

D1,t+τ

dτ





= Et

[∫ ∞

0
e−δτ 1

1 + qeu dτ

]
, (A12)
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where q is the initial dividend ratio D2,t /D1,t and u is a normally distributed random variate with
mean ντ and variance η2τ, and where

ν = µ2 − µ1 − σ2
2/2 + σ2

1/2,

η2 = σ2
1 + σ2

2 − 2ρσ1σ2.

Note that ν dt = E[ln(D2/D1)] and η2 dt = Var[ln(D2/D1)]. Introducing the density for u into
the last integral gives

P
C

=
∫ ∞

0

∫ ∞

−∞
e−δτ 1

√
2πη2τ

1
1 + qeu exp

(−(u − ντ)2

2η2τ

)
du dτ. (A13)

Interchanging the order of integration and collecting terms in τ gives

P
C

=
∫ ∞

−∞

1
√

2πη2

1
1 + qeu exp

(
νu
η2

)

×
∫ ∞

0
τ−1/2 exp

(
− u2

2η2

1
τ

− ν2 + 2δη2

2η2 τ

)
dτ du. (A14)

From Equation (3.471.9) of Gradshteyn and Ryzhik (2000), this expression becomes

P
C

=
∫ ∞

−∞

2
√

2πη2

1
1 + qeu exp

(
νu
η2

) (
u2

ν2 + 2δη2

)1/4

× K1/2



2

√
u2(ν2 + 2δη2)

4η4



 du, (A15)

where K1/2(·) is the modified Bessel function of order 1/2 (see Abramowitz and Stegun, 1970, ch.
9). From the identity relations for Bessel functions of order equal to an integer plus one half given
in Gradshteyn and Ryzhik Equation (8.469.3), however, the above expression can be expressed as

P
C

= 1
ψ

∫ ∞

−∞

1
1 + qeu exp

(
νu
η2

)
exp

(
− ψ

η2 |u|
)

du, (A16)

where

ψ =
√

ν2 + 2δη2.

In turn, Equation (A16) can be written as

P
C

= 1
ψ

∫ ∞

0

1
1 + qeu exp (γu) du + 1

ψ

∫ 0

−∞

1
1 + qeu exp (θu) du, (A17)

where

γ = ν − ψ

η2 ,

θ = ν + ψ

η2 .
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Define w = e−u . By a change of variables, Equation (A17) can be written as

P
C

= 1
qψ

∫ 1

0

1
1 + w/q

w−γ dw + 1
ψ

∫ 1

0

1
1 + qw

wθ−1 dw. (A18)

From Abramowitz and Stegun Equation (15.3.1), this expression becomes

P
C

= 1
qψ(1 − γ)

F(1, 1 − γ; 2 − γ; −1/q) + 1
ψθ

F(1, θ; 1 + θ; −q).

(A19)

Finally, substituting q = (1 − s)/s into Equation (A19) and dividing by s gives the price-dividend
ratio of the first asset,

V = 1
ψ(1 − γ)(1 − s)

F
(

1, 1 − γ, 2 − γ;
s

s − 1

)

+ 1
ψθs

F
(

1, θ; 1 + θ;
s − 1

s

)
, (A20)

which is Equation (50).
The special case solution for V given in Equation (22) can also be obtained directly from the

general solution above. To see this, note that the parameter restrictions in the special case imply
that θ = 1 and γ = −1. Substituting these values into Equation (A20) results in hypergeometric
functions of the form F(1, 2; 3; · ) and F(1, 1; 2; · ). A repeated application of the relations for
contiguous hypergeometric functions described in Abramowitz and Stegun (1970) to F(1, 2; 3; · )
allows V to be expressed entirely in terms of F(1, 1; 2; · ). From Abramowitz and Stegun Equation
(15.1.3), however, F(1, 1; 2; z) = − ln(1 − z)/z. Substituting this into the expression for V leads
immediately to Equation (22).

By symmetry, the price-dividend ratio of the second asset is given by

V2 = 1
ψ(1 + θ)s

F
(

1, 1 + θ; 2 + θ;
s − 1

s

)

− 1
ψγ(1 − s)

F
(

1, −γ; 1 − γ;
s

s − 1

)
. (A21)

Applying the recurrence relations for contiguous hypergeometric functions presented in
Abramowitz and Stegun (1970), Equations (15.2.18) and (15.2.20) give the result

P1 + P2 = C
δ

= D1 + D2

δ
= PM . (A22)

To solve for the returns on the first asset, it is convenient to define Y = P/C and to define
an alternative state variable x = D1/D2. Note that s = (1 + x)/x . An application of Itô’s Lemma
gives

dx =
(
µ1 − µ2 + σ2

2 − ρσ1σ2

)
x dt + σ1 x d Z1 − σ2 x d Z2. (A23)

Now applying Itô’s Lemma to Y gives

dY =
((

µ1 − µ2 + σ2
2 − ρσ1σ2

)
x Yx +

(
σ2

1 + σ2
2 − 2ρσ1σ2

)
x2Yxx/2)

)
dt

+ σ1 x Yx d Z1 − σ2 x Yx d Z2. (A24)
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Because P = CY , the above dynamics imply

d P
P

=
(

µ1s + µ2(1 − s) +
(
µ1 − µ2 +

(
σ2

1 + σ2
2 − 2ρσ1σ2

)
s
)

xYx/Y

+
(
σ2

1 + σ2
2 − 2ρσ1σ2

)
x2Yxx/(2Y )

)

dt + σ1 (xYx/Y + s) d Z1

− σ2 (xYx/Y + s − 1) d Z2. (A25)

An argument similar to that in Section A1 of the Appendix can be used to show that Y satisfies the
differential equation

(
σ2

1 + σ2
2 − 2ρσ1σ2

)
x2Yxx/2 = −

(
µ1 − µ2 − ρσ1σ2 + σ2

2

)
xYx

+ δY − x/(1 + x). (A26)

Substituting out for Yxx using the above expression allows us to rewrite
Equation (A25) as

d P
P

=
(
δ + µ1s + µ2(1 − s) +

(
ρσ1σ2 − σ2

2

+
(
σ2

1 + σ2
2 − 2ρσ1σ2

)
s
)

xYx/Y
)

dt + σ1 (xYx/Y + s) d Z1

− σ2 (xYx/Y + s − 1) d Z2. (A27)

Applying the expression for the derivative of the hypergeometric function repeatedly to the equation
for Y given in Equation (A19), and then substituting out for x using x = s/(1 − s), shows that
xYX /Y is simply "(s) as given in Equation (54). Substituting "(s) into Equation (A27) and using
the definition for η2 gives the result.

Finally, while many numerical software programs calculate the hypergeometric function, it
is very simple to evaluate the function by numerically integrating the integral representation in
Equation (52). In doing so, however, it is important to use a numerical integration algorithm
that provides robust results for functions with endpoint singularities. As one example of such an
algorithm, see Piessens et al. (1983).

A3 Limits
In this section, we derive limits for price-dividend ratios as s → 0 and s → 1. Also, we derive
limits for the function "(s) that figures prominently in the asset-price dynamics in Equation (54).
We focus on the first asset, as the second is symmetric.

From the power series expression for the hypergeometric function, F(a, b; c; 0) = 1. Because
of this result, it is useful to apply the linear transformation formula given in Abramowitz and
Stegun Equation (15.3.7) so that the argument of the hypergeometric function goes to zero at the
limit being evaluated:

F(a, b; c; z) = !(c)!(b − a)
!(b)!(c − a)

(−z)−a F(a, 1 − c + a; 1 − b + a; 1/z)

+ !(c)!(a − b)
!(a)!(c − b)

(−z)−b F(b, 1 − c + b; 1 − a + b; 1/z).

(A28)
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To obtain the limit of the price-dividend ratio V as s → 0, we use the linear transformation
formula to rewrite Equation (A20) as

V = 1
ψ(1 − γ)

(
1

1 − s

)
F

(
1, 1 − γ, 2 − γ;

s
s − 1

)

+ 1
ψθ

(
θ

θ − 1

) (
1

1 − s

)
F

(
1, 1 − θ; 2 − θ;

s
s − 1

)

+ 1
ψθ

(
1
s

)
!(θ + 1) !(1 − θ)

(
s

1 − s

)θ

F
(

θ, 0; θ;
s

s − 1

)
.

(A29)

From this expression, it is readily seen that

lim
s→0

V =






∞, if θ ≤ 1;

1
δ+ν−η2/2

, if θ > 1.
(A30)

To obtain the limit of the price-dividend ratio as s → 1, we again use the linear transformation
formula and rewrite Equation (A20) as

V = − 1
ψ(1 − γ)

(
1 − γ

γ

) (
1
s

)
F

(
1, γ; 1 − γ;

s − 1
s

)

+ 1
ψ(1 − γ)

(
1

1 − s

)
!(2 − γ) !(γ)

(
1 − s

s

)1−γ

× F
(

1 − γ, 0; 1 − γ;
s − 1

s

)

+ 1
ψθ

(
1
s

)
F

(
1, θ; 1 + θ;

s − 1
s

)
. (A31)

From this, it immediately follows that

lim
s→1

V = 1
δ
. (A32)

A similar approach can be used to show that

lim
s→0

V2 = 1
δ
, (A33)

and that

lim
s→1

V2 =






1
δ−ν−η2/2

, if γ < −1;

∞, if γ ≥ −1.
(A34)

Finally, the use of l’Hopital’s rule and the repeated application of the linear transformation
formula gives

lim
s→0

"(s) =
{ θ, if θ ≤ 1;

1, if θ > 1,
(A35)
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and

lim
s→1

"(s) = 0. (A36)

Substituting the limiting values of "(s) into the asset-price dynamics in
Equation (54) allows us to fully characterize the properties of these price dynamics as s → 0
and s → 1.
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