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Dynamic Contracts in the Absence of Commitment

1 Introduction

We describe a simple model of financial frictions. There is an entrepreneur who has access to a
project which uses capital, kt, to produce output. However, the entrepreneur has no resources of
her own and must borrow the funds needed to acquire capital. In period t = 0, the entrepreneur
agrees to a contract with a lender, with terms that specify an amount of consumption, capital,
debt, and interest payments in each of periods t =1, 2, 3, ... . The problem is that the borrower
cannot commit to her future actions. At the start of each period t, the borrower has two options: to
continue to abide by the terms of the contract, or renege on the contract and run away (‘abscond’)
with a fraction, θ, of the capital that she has at that time.1 The remaining fraction of capital, 1−θ,
is destroyed. The fraction, θ, is an exogenously fixed parameter of the model. The consequence
for the borrower of absconding is that in addition to destroying a quantity, (1 − θ)kt, of capital,
she forever loses the ability to exploit her project. Still, in principle there are contract terms that
she is willing to agree to ex ante, but would in fact renege on ex post. Of course, the lender
wishes to ensure that these circumstances do not arise. As a result, the menu of lending contracts
available to entrepreneurs only includes those contracts with terms that are ‘self enforcing’. That
is, the contracts have the property that ex post, the borrower has an incentive to abide by the
terms and not run away. Throughout, we assume that the lender is fully able to commit to future
actions.
We study the properties of the optimal, self enforcing contract. Under certain model parameter

values, enforceability is not a problem and in this case, the option to run away ex post is not an
issue. To make the analysis interesting, we only consider model parameter values in which there
are enforceability problems. Under these circumstances, in the initial periods of the contract the
lender advances fewer funds to the borrower than he would if the borrower had the ability to
commit to her future actions. We assume there is curvature in the investment project. So, the
fact that relatively little is invested in the early phases of the project implies that the project has
a high return. This high return on the project helps to reduce the entrepreneur’s temptation to
run away, for to do so means losing the ability to exploit a valuable project.
In the early phase of the project, all revenues received by the entrepreneur that exceed current

loan servicing costs are used to purchase more capital. The entrepreneur has an incentive to plow
all extra funds back into the project because the project has high returns in the early phases. If
there were no risk of the entrepreneur absconding, then outside lenders would extend enough funds
to the entrepreneur in the initial period so that the return on the project would not be higher
than those available generally in financial markets. But, outsiders are afraid to lend so much to
the entrepreneur out of a concern that the entrepreneur would renege on her loan commitment
and run away with the funds.
An important principle emerges in the model analysis. In the initial phase of the contract,

when the entrepreneur has no resources of her own, she is nevertheless able to borrow. This stands
in contrast to models where borrowing is limited by the quantity of tangible capital owned by
the entrepreneur. In those models, the tangible capital is something that the lenders can seize in

1For an important early paper on these ideas, see Jonathan Thomas and Tim Worrall, 1994, ‘Foreign Direct
Investment and the Risk of Expropriation,’ Review of Economic Studies, vol. 61, pp. 81-108. For related work,
see Rui Albuquerque and Hugo A. Hopenhayn, 2004, ‘Optimal Lending Contracts and Firm Dynamics,’ Review of
Economic Studies, Vol. 71, No. 2, April, pp. 285-315.
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the event that the borrower reneges on the contract terms.2 In the model below, lending occurs
even though the lenders do not have the option to seize the assets of the borrower. Lenders are
nevertheless willing to extend loans to the borrower because lenders understand that borrowers
su§er a loss in the event that they renege.3 In the early phases of a project, the capital operated by
the borrower is primarily financed by the lender. As a result, a large share of the current earnings
of capital are earmarked for interest payments to the lender. It follows that the destruction of
physical capital which occurs when a borrower reneges provides little incentive in the early phase
of a loan contract for the borrower to abide by the terms. But, the borrower in the early phase
of a loan contract has something else to lose in the case of default: contact with a project that
has the potential to generate valuable returns in the future. In later phases of a loan project,
the borrower is in a position to borrow even more because at that point she has more to lose
by reneging. As time evolves, a larger portion of the capital operated by entrepreneurs has been
financed by their own savings. As a result the destruction of capital that occurs in the later phases
of a project provides another reason for the entrepreneur to abide by contract terms.4

The assumptions of the model are designed in part to convey some wisdom about financial
markets and in part with an eye on tractability. To ensure tractability, assumptions have been
made that are in some cases hard to recognize in the data. For example, there are many ways a
real-world borrower can in e§ect renege on a loan contract. She can, for example, be chronically
late in making the required interest payments. Or she can attempt to renegotiate terms with the
lender ex post. All these options and others are summarized here in the simple, blunt assumption
that the borrower can ‘run away’. Also, the model leaves out many real world factors. For
example, lenders are assumed to not be able to seize the borrower’s capital.5 Although the model
is unrealistic in many of its details, there is nevertheless much that is familiar in it. For example,
when a real-world bank extends a mortgage contract, it takes into consideration the borrower’s
income. This information is useful to the bank because it wants to understand the incentives of
a household to actually stick to the terms of the loan contract ex post. A given set of contract
terms extended to a borrower with low income implies low consumption. But, contract terms
that imply low consumption for the borrower raise concerns to a banker that the household has
an incentive to renege later on.

2 Model

Consider an entrepreneur who has access to a technology for accumulating capital, kt+1:

kt+1 ≤ It + (1− δ) kt, 0 < δ < 1 (1)

where It denotes investment and δ denotes the rate of depreciation. The entrepreneur also has
access to a technology whereby capital can be used to produced output as follows:

AF (kt), F (k) = k
α, 0 < α < 1, A > 0. (2)

2See, e.g., Kiyotaki and Moore, 1997, ‘Credit Cycles’ Journal of Political Economy, 105, 211-248
3Think of passengers in an airplane. They are comfortable with the idea that the pilot will pay close attention

to the task of flying the plane because they understand the pilot has a lot to lose by not paying attention. In
particular, the passengers’ peace of mind has nothing to do with any perception that the pilot will make some sort
of transfer to them in the event of a crash.

4The ideas in this paragraph are an important theme of the paper by Albuquerque and Hopenhayn that is cited
in a previous footnote.

5This assumption is thought to make the model particularly relevant for thinking about international capital
markets, where there are often severe restrictions against seizing tangible assets.
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We assume that the problem starts in period 0 when the entrepreneur has no capital (i.e., k0 = 0)
and no other resources. The entrepreneur has access to a financial firm which extends a sequence
of one-period loans. If the entrepreneur borrows Bt+1 in period t, then she must repay RBt+1
in t + 1, where R > 1 denotes the gross rate of interest and t = 0, 1, 2, ... . For example, if the
entrepreneur wishes to operate capital, k1, in period 1, then (1) implies that she must build it in
period 0 using investment goods acquired with a loan, B1:

k1 ≤ B1. (3)

The entrepreneur has linear preferences:

1X

t=1

βtct, 0 < β < 1. (4)

The entrepreneur seeks to maximize (4) subject to kt, ct ≥ 0 for t ≥ 1 and to her budget constraints
(no consumption occurs in period 0). The budget constraints are composed of (1), (3), a debt
limit defined below and a sequence of flow budget constraints:

kt+1 − (1− δ) kt + ct ≤ AF (kt) +Bt+1 −RBt, (5)

for t = 1, 2, .... . Here, It has been substituted out using (1) and R denotes the gross, one period
rate of interest. Also, Bt+1 corresponds to borrowing in period t. In principle, Bt+1 could be
positive or negative. Throughout, assume6

R =
1

β
.

We assume that the entrepreneur is required to respect the following borrowing limit:

lim
j!1

βjBj+1 ≤ 0. (6)

3 Properties of the intertemporal budget constraint

In studying the nature of the loan contract, it is convenient to consider an alternative representa-
tion of the budget constraint. The alternative, in which intertemporal decisions are restricted by
a single equation, is identical to (3), (5) and (6). The present value representation of the budget
constraint is:

k1 ≤
1X

t=1

βt [AF (kt) + (1− δ) kt − ct − kt+1] . (7)

Notice that this equation has no debt in it. The object on the left of (7) is the initial stock
of capital, which must be fully financed by borrowing, B1. That is, (7) says that the amount
borrowed in the first period must be no greater than the present discounted value of the future
surpluses generated by the entrepreneur. Expression (7) is equivalent to (3), (5) and (6). That is
to say, any sequence of c’s, k’s and B’s that satisfy (3), (5) and (6) satisfy (7). Moreover, for any
sequence of c’s and k’s that satisfy (7), a sequence of B’s may be found such that the c’s, k’s and
B’s satisfy (3), (5) and (6). To establish these results it is required that various infinite sums like

6We do not explicitly describe the general macroeconomic framework in which the borrowers and lenders that
we study are situated. Still, with the assumption of linear utility in consumption, it is very likely that the interest
rate would be 1/β in a general equilibrium. If the interest rate were greater than 1/β, then the suppliers of funds
to the lender would supply an infinite amount. If the interest rate were less than 1/β they would supply nothing.
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(7) are well defined. All these things are established rigorously in the Appendix. The discussion
in the appendix clarifies the role played by (6). Without that restriction, the ‘budget constraint’,
(3) and (5), is no constraint at all because it does not rule out setting B unboundedly large.
The implication of the equivalence of (7) and (3), (5), (6) is that the original problem of the

entrepreneur can be recast as one of choosing {kt, ct}
1
t=1 to maximize utility, (4), subject to (7),

without regard to debt. After the problem with the present discounted value budget constraint
has been solved, the underlying sequence of debts can be backed out using (3) and (5).

4 Model properties in absence of financial frictions

Suppose the entrepreneur selects sequences, {kt, ct}
1
t=1 , to maximize utility subject her budget

constraint, (7), and non-negativity of consumption and capital. We:

• show that there is a unique sequence of capital stocks, k1, k2, ... that solves the entrepreneur’s
problem.

• derive a simple function relating the optimal sequence of k’s to the model parameters.

• show that although the sequence of k’s that solve the problem is unique, the sequence of c’s
is not unique.

• show that the non-negativity constraints on consumption are never binding.

As discussed in the previous section, we can replace the flow budget constraint with the single
intertemporal budget constraint, which involves only c’s and k’s. The Lagrangian representation
of the resulting problem is:

max
{ct,kt+1}

1X

t=1

βt (1 + γt) ct + !

0

BBB@

1X

t=1

βt [AF (kt)− (kt+1 − (1− δ) kt)]−

≡Cz }| {
1X

t=1

βtct − k1

1

CCCA
,

where ! ≥ 0 denotes the multiplier on the intertemporal budget constraint and C denotes the
present discounted value of consumption. Also, γt ≥ 0 is the multiplier on the period t non-
negativity constraint on consumption. Collect terms in ct :

max
{ct,kt+1}

1X

t=1

βt (1− ! + γt) ct + !

 
1X

t=1

βt [AF (kt)− (kt+1 − (1− δ) kt)]− k1

!

The first order conditions are:

ct : 1 + γt = !,

complementary slacknessz }| {
γtct = 0, γt ≥ 0, ct ≥ 0, t > 0 (8)

kt+1 : 1 = β [AF
0 (kt+1) + (1− δ)] , t ≥ 0 (9)

≥0z}|{
!

≥0

×

z }| { 
1X

t=1

βt [AF (kt)− (kt+1 − (1− δ) kt)]− C − k1

!
= 0 (10)

From (9), we see that the optimal sequence of k’s is a sequence of constants, k∗, k∗, ... , where

k∗ =

"
1
β
− (1− δ)
αA

# 1
α−1

. (11)
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From (8), we see that γ is constant. We conjecture, and subsequently verify, that γ = 0. As a
result, (8) implies ! = 1. The Lagrangian representation of the problem simplifies to:

max
{kt+1}

1X

t=1

βt [AF (kt)− (kt+1 − (1− δ) kt)]− k1, (12)

and the complementary slackness condition, (10), on the intertemporal budget constraint (given
! > 0):

C =

1X

t=1

βt [AF (kt)− (kt+1 − (1− δ) kt)]− k1.

The solution to (12) is given by (11), so that the unique solution for C, denoted C∗, is:

C∗ =
β

1− β
[AF (k∗)− (k∗ − (1− δ) k∗)]− k∗,

where k∗ is defined in (11).
We now verify that for each A > 0 and δ 2 (0, 1) , C∗ > 0. Since the optimal kt, t = 1, 2, 3, ...

satisfies the restriction that the k’s are all constant, we can - without restricting the optimum -
impose this restriction on the entrepreneur’s problem. That is,

k∗ = argmax
k

{
β

1− β
[AF (k)− (k − (1− δ) k)]− k

}
(13)

= argmax
k

{
β

1− β
[AF (k) + (1− δ) k]−

β

1− β
k − k

}

=
1

1− β
argmax

k
{β [AF (k) + (1− δ) k]− k} .

It is feasible to make the object in braces positive because the slope of the object in square
brackets goes to 1 as k ! 0. This establishes that C∗ > 0. This in turn means that we can
always find a sequence, ct ≥ 0, that supports the optimum. This verifies our assumption that the
non-negativity constraint on ct is non-binding for each t, i.e., γ = 0.
In sum, the problem may be solved by first computing the (unique) optimal k’s and C, and

then finding a sequence of ct’s that is compatible with C. Obviously, there is a very large set of ct’s
that solves the problem, even though the optimal C is unique. Corresponding to each sequence
of ct’s that is compatible with C∗, a sequence of Bt’s that satisfy the flow budget constraints and
debt limit can be found.

5 Model with financial frictions: General Observations

Now suppose that the entrepreneur lacks the ability to commit to an arbitrary set of contract
terms that are consistent with the budget constraint. In particular, in period t the entrepreneur
can choose to abscond with a fraction, θ 2 (0, 1) , of the capital, kt, that is then in her possession.
After running away, the agent forever loses access to the capital accumulation and production
technologies. She retains full access to credit markets at the interest rate, R = 1/β. Thus, she
can sell θkt and - possibly by using credit markets - use the proceeds to finance a sequence of
consumptions,

{
cdt+j

}1
j=0

subject to:

θkt =

1X

j=0

βjcdt+j.
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Here, the superscript, ‘d’, indicates consumption after deviating from a loan agreement.
In this section we discuss the lending arrangement that emerges under lack of commitment.

The subsequent subsections contain the following results.

1. In the first subsection below, we describe the additional constraints that lenders impose on
the loan contract, beyond the budget constraint. The constraints (‘Incentive Constraints’,
IC) limit the entrepreneur to contracts whose terms will not give her the incentive to abscond
at some point in the future. That is, the terms guarantee that the contract is self enforcing.

2. if the IC is binding in period t+ 1, then the optimally chosen ct is equal to zero.

3. if the IC is non-binding for period t, then it is also non-binding for periods t, t+1, t+2, ... .

4. if the IC ceases to bind in period t, then the non-negativity constraint on consumption
ceases to bind in period t− 1, t, t+ 1, ... .

5. if the non-negativity constraint on ct is strictly binding, then the IC constraint is less binding
in t+ 1 than it is in t. A related observation is that the capital stock rises smoothly up to
its unconstrained value of k∗ in (11).

5.1 The Incentive Constraints (IC)

A lender will not extend just any budget-feasible contract to a borrower. The lender will only
consider a contract that has the property that the borrower will not ex post find it optimal to
abscond. Denote the utility enjoyed by the lender who absconds in period t by V a (kt) :

V a (kt) = θkt.

That this is the correct representation of the utility value of absconding reflects two considerations.
First, we assume that an absconder continues to have access to financial markets at interest rate,
R = 1/β. Through the use of financial markets, the period t absconder can obtain any sequence
of consumptions, cdt+j, j ≥ 0, that satisfy

θkt =
1X

j=0

βjcdt+j. (14)

The second consideration is our assumption that the object on the right of (14) is the utility of
the sequence, cdt . The utility value of not absconding in period t and abiding by the terms of the
contract is:

ct + βct+1 + β
2ct+2 + · · · .

Here, ct denotes the period t level of consumption implied by honoring the lending contract.
Lenders will only extend loan contracts to borrowers which provide no incentive to abscond in
any period. That is, the contract must satisfy:

ct + βct+1 + β
2ct+2 + · · ·− θkt ≥ 0, (15)

for t = 1, 2, ... .
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5.2 If the incentive constraint is binding in t + 1 then internal funds
are used to the maximum possible extent in t

Let βtΛt ≥ 0 denote the multiplier on the period t incentive constraint, (15). The Lagrangian
representation of the entrepreneur’s problem is:

1X

t=1

βt{ct + γtct + Λt
[
ct + βct+1 + β

2ct+2 + · · ·− θkt
]
} (16)

+!

 
1X

t=1

βt [AF (kt)− (kt+1 − (1− δ) kt)]−
1X

t=1

βtct − k1

!
.

To collect terms on ct, note that these terms come in two parts: one involving the incentive
constraint and the other, not. The second part is:

βt (1 + γt − !) .

Now consider the contribution of the incentive constraints to the coe¢cient on ct in (16). Note
that ct appears in the date t incentive constraint with coe¢cient β

tΛt; in the date t−1 constraint
with coe¢cient βt−1Λt−1β; in the date t−2 constraint with coe¢cient βt−2Λt−2β2; and so on, until
the period 1 incentive constraint, where it appears with coe¢cient βΛ1β

t−1. That is, ct enters (16)
due to the incentive constraint with coe¢cient

βtΛt + β
t−1Λt−1β + β

t−2Λt−2β
2 + ...+ βΛ1β

t−1,

or,
βt [Λt + Λt−1 + Λt−2 + ...+ Λ1] .

Collecting terms in ct in the entrepreneur’s Lagrangian problem,

1X

t=1

βt{[1 + γt + Λt + Λt−1 + Λt−2 + ...+ Λ1 − !] ct − Λtθkt}

+!

 
1X

t=1

βt [AF (kt)− (kt+1 − (1− δ) kt)]− k1

!
.

If the coe¢cient on ct for some t in the Lagrangian were positive, the entrepreneur would set
ct = 1, which violates the intertemporal budget constraint. If the coe¢cient were negative for
some t the entrepreneur would set ct = −1, which violates non-negativity. So, for the solution
to the Lagrangian problem to be the solution to the constrained problem of the entrepreneur, it
must be that the multipliers have the property that the coe¢cient on ct is zero. That is,

ct : 1 + γt + Λt + Λt−1 + Λt−2 + ...+ Λ1 = !.

In this way, the Lagrangian representation of the entrepreneur’s problem reduces to:

max
{kt}

"
−

1X

t=1

βtΛtθkt + !

 
1X

t=1

βt [AF (kt)− (kt+1 − (1− δ) kt)]− k1

!#
. (17)

There are two interesting features of the Lagrangian representation of the entrepreneur’s problem.
First, ct does not appear explicitly, only kt does. Thus, to solve for ct using this representation of
the problem, first solve for kt. Then find a sequence of ct’s that are consistent with the solved-for

7



kt’s and the budget and incentive constraints. The second interesting feature of (17) is that the
e§ect of the incentive constraint is to attach an additional (shadow) cost to capital, so that we
can expect there to be less capital than when the incentive constraint is ignored. As a result, we
can also expect the ex post return on capital to be high in periods when the incentive constraint
is strictly binding. To see this, note that the first order condition for kt+1 is:

kt+1 : ! + βΛt+1θ = β! [AF
0(kt+1) + (1− δ)] ,

for t = 0, 1, ... .
Collecting first order conditions:

ct : 1 + γt + Λt + Λt−1 + Λt−2 + ...+ Λ1 = !,

≥0z}|{
ct ×

≥0z}|{
γt = 0 (18)

kt+1 : ! + βΛt+1θ = β! [AF
0(kt+1) + (1− δ)] (19)

According to (18), an ever growing sum of non-negative objects is equal to a constant. Evidently,
it must be that γt is falling. To see this, write the expression at time t+ 1 :

1 + γt+1 + Λt+1 + Λt + Λt−1 + Λt−2 + ...+ Λ1 = !.

Now, subtract, to obtain:
γt = γt+1 + Λt+1. (20)

Since Λt+1 ≥ 0, it follows that
0 ≤ γt+1 ≤ γt for all t.

Thus, the non-negativity constraint on consumption is non-increasing over time.
Suppose that there is some t, say t∗, in which the incentive constraint binds, i.e., Λt∗ > 0.

This implies, via (20), that γt∗ < γt∗−1. Since γt ≥ 0 for all t, it follows that γt∗−1 > 0. By the
complementary slackness condition, (18),

ct∗−1 = 0. (21)

There is a simple intuition for (21). Dividing both sides of (19) by !β and making use of R = 1/β :

R + Λt+1
θ

!
= AF 0(kt+1) + (1− δ). (22)

That is, if Λt+1 > 0 then the return on capital built in period t is greater than R. But, for the
entrepreneur to be compensated for a reduction in ct by an increase in ct+1 the return need only
be R. With the return via capital investment greater than R, utility is maximized by reducing
ct to its limit of zero and investing the proceeds in kt+1. Put di§erently, ‘internal funds’ (i.e.,
consumption) are used to the maximum extent possible when the external source of funds is
constrained.

5.3 If the IC fails to bind in a period then it fails to bind in all
subsequent periods

The result, (20), implies:
γt = 0! γt+1 = Λt+1 = 0. (23)

Since γt+1 and Λt+1 are both non-negative, the only way their sum can be zero is if each term is
individually zero. In words, if the non-negativity constraint on ct is non-binding, then it must be
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that the return on investing internal funds in capital is no greater than the intertemporal rate of
return on consumption, i.e., Λt+1 = 0 (see (22)).
We now show:

if Λt = 0 then Λt+s = 0 for all s > 0. (24)

Thus, suppose Λt = 0. By (20), we have

γt−1 = γt + Λt = γt.

So, γt−1 = γt. Suppose γt−1 = 0. Then, by (23) we know that Λt+s = 0 for s > 0. Now suppose
γt−1 > 0 and Λt+1 > 0. We show that this implies a contradiction. Since γt > 0 it must be that
ct = 0 by (18). The supposition, Λt = 0, implies:

βct+1 + β
2ct+2 + · · · ≥ θkt,

using ct = 0. Then,
β [ct+1 + βct+2 + · · · ] ≥ θkt

Now, Λt+1 > 0 implies (by complementary slackness):

ct+1 + βct+2 + · · · = θkt+1.

Combining the last two results:
βθkt+1 ≥ θkt,

or, cancelling θ,
βkt+1 ≥ kt.

Since β < 1,
kt+1 > kt. (25)

Consider (19) for t and t+ 1 :

! = β! [AF 0(kt) + (1− δ)]
! + βΛt+1θ = β! [AF 0(kt+1) + (1− δ)] ,

where Λt = 0 and Λt+1 > 0 has been used. The above expressions imply:

kt+1 < kt,

which contradicts (25). Thus, the supposition, γt−1 > 0 and Λt+1 > 0, implies a contradiction.
That supposition is therefore false. This leaves two possibilities: γt−1 = 0, in which case (24)
follows by the argument given above; or γt−1 > 0 and Λt+1 = 0. In the latter case, we repeat the
argument to obtain Λt+2 = 0, and so on. This establishes (24).

5.4 Internal funds cease to be exhausted starting in the period before
the IC ceases to bind

We now argue that
if Λt = 0, then γt−1+s = 0 for s ≥ 0.

That is, the non-negativity constraint on consumption ceases to bind starting in the period before
the date when the incentive constraint ceases to bind. Thus, suppose Λt = 0. We know from the
preceding subsection that Λt+s = 0 for s > 0. We know that the γ’s are declining over time and
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that initially, they are positive (the latter is by assumption, for otherwise the financial frictions
would be uninteresting). Suppose that t∗ is the first date when Λt = 0, so that Λt∗−1 > 0. Using

γt−1 = γt + Λt,

this means that γt > 0 for t = t
∗ − 2, t∗ − 3, etc. That is, consumption is zero in all those dates.

From the same expression, we obtain γt∗−1 = γt∗ = γt∗+1 = ... . The multipliers are all constant
from the date just before Λt hits zero. Suppose they were all positive. This would mean that
consumption is always zero, from the start to date infinity. But, we assume that consumption is
feasible at some date (otherwise, the problem would not be interesting). It follows that all the
multipliers are constant at zero. This means that consumption is weakly positive at all those
dates, beginning with the date before t∗. So, we conclude

γt∗−1 = γt∗ = γt∗+1 = ... = 0.

But, Λt = 0 for each t = t∗ + s, s ≥ 0. Thus, Λt = 0 implies

γt−1 = γt = γt+1 = ... = 0.

5.5 The IC constraint is less binding over time

We now show that Λt ≥ Λt+1, i.e., the IC constraint is less binding over time. Suppose γt = 0. In
that case, we showed above that Λt+1 = 0 and the result holds because Λt ≥ 0. Suppose γt > 0,
so that ct = 0 and the incentive constraint for period t is:

β [ct+1 + βct+2 + ...] ≥ θkt.

If Λt+1 = 0 the result follows trivially. Suppose Λt+1 > 0. In this case, by complementary slackness,

ct+1 + βct+2 + ... = θkt+1,

and substituting,
βθkt+1 ≥ θkt,

or,
kt+1 > kt.

Equation (19) implies Λt > Λt+1. Thus, the incentive constraint gets less and less binding over
time.

6 Solving the Model with Financial Frictions

We use the results of the previous sections to guide the computation of an optimal contract in
the presence of financial frictions. For the computations to be interesting, those frictions must
obviously be binding. That is, with k1 = k∗ it must be that the period 1 incentive constraint,

1

1− β
(β [AF (k∗) + (1− δ) k∗]− k∗) ≥ βθk∗, (26)

is violated. In (26), the object on the left of the inequality is the present discounted value of
consumption as of date 0. The discussion that follows presumes that (26) does not hold, so that
T ≥ 1.
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Expression (26) shows that for larger θ the likelihood that the incentive constraint violated
for the first best allocations increases. It is useful to have a formula for the largest value of θ
compatible with the incentive constraint:

(β [AF (k∗) + (1− δ) k∗]− k∗)
(1− β) βk∗

.

We can represent this expression directly in terms of parameters alone by substituting out the
value of k∗ in terms of model parameters:

(β [AF (k∗) + (1− δ) k∗]− k∗)
(1− β) βk∗

=
β (1− α)A(k∗)α−1

(1− β) β
=

(1− α)
α (1− β)

[
1

β
− (1− δ)

]
. (27)

From this expression we see that the incentive constraint is more likely to be violated at the first
best allocations when α is larger and/or δ is smaller.

6.1 Computing the Sequence of Capital Stocks

We describe a simple algorithm that can be used to compute the sequence of capital stocks that
solve the entrepreneur problem. We assume that the constraints are binding for T periods, after
which the capital stock is at k∗. This assumption can be verified at the end. In what follows we
first derive a result about the path that the capital stock must follow, according to the optimal
contract. We use this result in the second subsection to motivate our simple computational
algorithm.

6.1.1 The Slope of the Capital Path While the Constraint is Binding

According to the discussion in section 5.5, the incentive constraint is weakly less binding over time
and once it hits zero it stays there. This suggests looking for a solution to the contract problem
in which the incentive constraint is binding for a finite number of periods, t = 1, 2, ..., T, and is
non-binding in T + 1 and all subsequent periods. Thus, we proceed under the assumption that
the solution is characterized by

Λt > 0, t = 1, ..., T,

Λt = 0, t = T + 1, T + 2, ... ,

for some 1 > T > 0. The fact that the incentive constraint binds in t = 1 implies, by the IC
constraint, (15):

c1 + βc2 + ...+ β
T−1cT + β

T cT+1 + β
T+1cT+2... = θk1. (28)

In words, k1 is determined in period 0 and the entrepreneur decides whether or not to abscond
at the start of period 1, at which point lifetime utility is evaluated according to the object on the
left of the equality in (28).
The discussion in section 5.4 shows that consumption is zero in periods 1 to T − 1, so that

(28) simplifies as follows:

βT−1cT + β
T cT+1 + β

T+1cT+2 + ... = θk1. (29)

The entrepreneur also has the opportunity to abscond at the start of period t = 2, at which point
the utility of continuing under the contract is the object on the left of the equality in the following
expression:

c2 + βc3 + ...+ β
T−2cT + β

T−1cT+1 + β
T cT+2... = θk2.

11



Imposing
ct = 0 for t = 2, ..., T − 1, (30)

we have
βT−2cT + β

T−1cT+1 + β
T cT+2... = θk2,

or, after multiplying by β :

βT−1cT + β
T cT+1 + β

T+1cT+2... = βθk2. (31)

Similarly,

βT−1cT + β
T cT+1 + β

T+1cT+2... = β2θk3 (32)

βT−1cT + β
T cT+1 + β

T+1cT+2... = β3θk4 (33)

...

βT−1cT + β
T cT+1 + β

T+1cT+2... = βT−1θkT (34)

That is,
βT−1cT + β

T cT+1 + β
T+1cT+2... = β

t−1θkt, (35)

for t = 1, 2, ..., T. Note that the object on the left of (35) is the same for all t, so that

βt−2θkt−1 = β
t−1θkt,

or,

kt =

(
1

β

)t−1
k1 < k

∗, (36)

for t = 1, 2, ..., T. Evidently, to compute the optimal kt’s in the contract, it remains only to find
k1 and T. We do so in the following subsection.

6.1.2 An Algorithm for Computing the Optimal Capital Path

To understand how we proceed, recall that the basic problem of the entrepreneur is so identify a
sequence of c’s and k’s that satisfy

(i) the budget constraint, (7);

(ii) the sequence of IC constraints at t = 1, 2, ..., (15);

(iii) the non-negativity constraint on ct.

We impose two additional constraints:

(iv) the entrepreneur must choose a particular value of T and must choose c1 = c2 = ... = cT−1 =
0;

(v) the sequence of k’s that is chosen must satisfy (36).

Our algorithm chooses the contract that maximizes entrepreneur utility by choice of k1 and T,
subject to (i)-(v). We know from the results in the previous section (and the conjecture that the
solution is characterized by finite T ) that the best contract which satisfies (i)-(iii) also satisfies
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(iv) and (v). So, if we find the best contract that satisfies (i)-(v), that contract is then also the
best one that satisfies (i)-(iii).7

We now derive a simple characterization of conditions (ii) and (iii), conditional on (iv), (v)
and a specific value for T. First, we show that the period 1 IC constraint can be used to solve for
k1 as a function of T. As before, let C denote the present discounted value of consumption:

C ≡
1X

t=T

βtct.

Optimality implies that the entrepreneur is on the boundary of her budget constraint, (7). Thus,

C =

1X

t=1

βt [AF (kt)− (kt+1 − (1− δ) kt)]− k1. (37)

Rearranging the terms in (37) and imposing kt = k∗ for t > T :8

C =

TX

t=1

βt−1 (β [AF (kt) + (1− δ) kt]− kt) (38)

+
βT

1− β
(β [AF (k∗) + (1− δ) k∗]− k∗) .

The period 1 incentive constraint evaluated at equality is:9

C = βθk1. (39)

Equating (38) and (39):

TX

t=1

βt−1

 
β

"
AF (

(
1

β

)t−1
k1) + (1− δ)

(
1

β

)t−1
k1

#
−
(
1

β

)t−1
k1

!
(40)

+
βT

1− β
(β [AF (k∗) + (1− δ) k∗]− k∗) = βθk1

This expression defines k1 as a function of T, and we denote this relationship by k1 (T ) . To see
that k1 (T ) is single-valued note first that for k1 = 0 the term on the left of the equality in (40)
is positive and has infinite slope (recall, 0 < α < 1 according to (2)). Consequently, for small k1
the term on the left of the equality is greater than the term on the right of the equality. However,
the slope of the term on the left is monotonically decreasing and as k1 !1 it becomes negative
(here, we use the facts, α, δ 2 (0, 1))10. Thus, the term on the left must, for su¢ciently large k1

7We have not included a formal demonstration that the solution necessarily involves a finite value of T, We
suspect that such a demonstration is possible.

8A key step uses the fact that, by rearranging terms, (37) can be written as:

C = lim
N!1

NX

t=1

βt−1 (β [AF (kt) + (1− δ) kt]− kt)

− lim
N!1

βNkN .

Then, note that the last term is zero given that kN = k∗ for N > T.
9The fact that β multiplies the object on the right of the weak inequality reflects that C = βc1 + β

2c2 + ...,
while the incentive constraint involves c1 + βc2 + ... .
10Note that for k1 > k∗ every term in the summand in (40) is decreasing.
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be smaller than the term on the right. Continuity of the mappings on the left and the right of
the equality implies that there must be a crossing. Because the derivative of the function on the
left is monotone decreasing in k1, there can at most be only one crossing. We conclude that there
is a unique value of k1 that solves (40) for every T . That is, k1 (T ) is single-valued.
It is also easy to verify that k1 (T ) is decreasing in T. To do so, consider the infinite sum from

t = 1 to infinity on the left of the equality in (40). Each summand for t > T is at its maximized
value because it is evaluated at k∗ (recall (13). The summands for t ≤ T are evaluated at capital
stocks that are less than k∗ and so they are smaller than the summands for t > T. It follows that
for each k1, the curve to the left of the equality in (40) shifts down as T increases. From this, we
conclude that k1 (T ) is decreasing in T.
We know that kt < k∗ for t = 1, ..., T, so that, using (36),

k1 (T ) < k
∗βT−1. (41)

We now show that when kt evolves according to (36), the fact that the IC holds with equality at
t = 1 implies that it also holds with equality in t = 2, ..., T. To see this, note that the value of
remaining in the contract for 1 ≤ t ≤ T is:

(
1

β

)t
C,

by (30). The value of deviating from the contract in period t is (using (36)):

θ

(
1

β

)t−1
k1.

It follows that the IC constraint evaluated at equality is:

(
1

β

)t
C −

(
1

β

)t−1
θk1 = 0,

or, (
1

β

)t
[C − βθk1] = 0.

This is zero if, and only if C = βθk1. This is indeed satisfied by the construction of k1. Thus, the
IC constraint is satisfied as a strict equality in periods t = 1, ..., T.
Finally, we turn to the IC constraints after T, that is,

cT+l + βcT+l+1 + .... ≥ θk∗,

for l = 1, ... . The IC constraints at T and T + 1 are:

cT + βcT+1 + .... = θkT

cT+1 + βcT+2 + .... ≥ θk∗.

Multiply the second equation by β and subtract:

cT ≤ θ (kT − βk∗) . (42)

Thus, a constraint on T is that
kT ≥ βk∗. (43)
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It is easy to see that if (43) is satisfied, then the IC constraints in T +2, T +3, ... are also satisfied.
Thus, consider the IC constraints at T and T + l :

cT + βcT+1 + .... = θkT

cT+l + βcT+l+1 + .... ≥ θk∗.

Multiply the second term by βl and subtract:

cT + βcT+1 + ...+ β
l−1cT+l−1 ≤ θ

(
kT − βlk∗

)
. (44)

From (44) we can see that non-negativity of consumption requires

kT ≥ βlk∗,

for l = 1, 2, ... . To guarantee that the latter condition is satisfied, it is su¢cient to verity (43).
We conclude that for the IC constraints to be satisfied for t ≥ 1 and for given T, it must be

that k1 = k1 (T ) and

βk∗ ≤
k1 (T )

βT−1
< k∗. (45)

An equivalent representation of (45) is, by (36), that

βk∗ ≤ kT < k∗.

That is, the optimal contract has the property that in the last period in which the IC constraint
is binding, the capital stock is ‘close’ to k∗.
The entrepreneur’s problem is to maximize discounted utility, C, subject to the constraints,

(i)-(v). The constraints are satisfied as long as we set k1 = k1 (T ) and are consistent with (45).
By construction of k1 (T ) , we have C (T ) = βθk1 (T ) . Thus, the entrepreneur’s problem reduces
to that of solving

max
T
k1 (T ) , (46)

subject to (45). Given that k1 (T ) is decreasing in T, we have a simple numerical algorithm for
finding the optimal contract. First, verify that k1 = k∗ is not incentive compatible (i.e., does not
satisfy (26)). Then, consider T = 1. If (45) is violated then increase the value of T by unity and
try againt. Continue in this way until (45) is satisfied.

6.2 Computing a Sequence of Consumptions and Debts

Once the preceding computations have been executed, we can look for a sequence, cT , cT+1, ...,
that is compatible with the budget constraint (i.e., C) and with incentive compatibility in periods
T + 1, T + 2, ... . In fact, there is more than one consumption sequence that satisfies these two
requirements.
A very natural consumption sequence, one in which ct = c for t ≥ T, does not satisfy the

incentive constraints. In this case,

c =
1− β
βT

C = (1− β)
θk1

βT−1
= (1− β) θkT = θ (kT − βkT ) > θ (kT − βk∗) . (47)

Here, the first equality ensures that c satisfies the budget constraint; the second equality uses
the fact, C = βθk1 (see (39)); and the third equality uses (36). The strict inequality in (55)
uses the fact, kT < k∗ (see (45)) and so a necessary condition for an optimal contract, (44) with
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l = 1, is contradicted. Although this consumption sequence is budget feasible, it is not incentive
compatible. With the constant level of consumption, c, the entrepreneur would abscond in period
T + 1.
Consider a di§erent consumption stream in which cT = 0 and ct = c for t ≥ T + 1. In this

case,

c =
1− β
βT+1

C =
1− β
β

θkT . (48)

Here, the first equality assures the budget feasibility of c and the second equality corresponds to
(36) and (39). It is trivial to use (48) to verify that the period T participation constraint, (34),
is satisfied as a strict equality. Now consider the incentive constraints for periods t ≥ T + 1.
Similarly, (48) can be used to verify that the periods t ≥ T +1 participation constraints, (35), are
satisfied as weak inequalities because of the first inequality in (45). If it is the case that the first
inequality in (45) is strict, then the periods t ≥ T + 1 participation constraints are also satisfied
as strict inequalities. We refer to this sequence of consumptions as our ‘baseline sequence’.
We now consider an alternative sequence of consumptions (the ‘alternative sequence’) that

satisfy the budget constraint and participation constraints. Let ct, t = T, T + 1, ... denote the
sequence of consumptions defined by (44) evaluated at equality for l = 1, ... :

ct =

{
θ (kT − βk∗) t = T
θ (1− β) k∗ t > T

. (49)

The alternative consumption sequence coincides with our baseline sequence in the special case
where model parameter values imply that kT = βk∗, in which case cT = 0. Of course, this case
has measure zero in the space of parameters, so that typically, kT > βk∗ and the baseline and
alternative consumption sequences di§er.
We confirm that the sequence of ct’s defined by (49) enforce (44) as a strict equality for l > 1

by noting (i) that the ct’s which solve (44) with equality strict is unique and (ii) that (49) satisfies
(44) as a strict equality for each l > 1. To see (ii), note

cT + βcT+1 + ...+ β
l−1cT+l−1

= θ (kT − βk∗) + β
1− βl−1

1− β
θ (1− β) k∗

= θ
(
kT − βlk∗

)
.

It remains to confirm that the ct’s defined by (49) satisfy the budget constraint. In particular,

βT [cT + βcT+1 + ...]

= βT
[
θ (kT − βk∗) +

(
β + β2 + ...

)
θ (1− β) k∗

]

= βT θkT

= θβk1,

by (36). The result then follows by (39).
Given a choice for the sequence of consumptions and capitals, we compute a sequence of debts

as follows:

B1 = k1,

Bt+1 =

expendituresz }| {
kt+1 − (1− δ) kt + ct +RBt −

incomez }| {
AF (kt),

for t ≥ 1.
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6.3 A Numerical Example

We first consider the set of parameters values,

α = 0.3, β = 0.97, δ = 0.10,

and we set A so that k∗ = 1. From (26) and (27),

(1− α)
(1− β)

1
β
− (1− δ)
α

= 10.18, (50)

after rounding. Thus, θ would have to exceed 10.18 for the period 1 incentive constraint to be
binding. Of course, θ > 1 has no interpretation. So, we conclude that for these parameter values,
the first best allocations are incentive compatible for any 0 ≤ θ ≤ 1. Equation (50) indicates that
with a su¢ciently high value of α, the first best allocations will not be incentive compatible for
some 0 < θ ≤ 1.
With these considerations in mind, we set α = 0.90 and A = 0.1455, so that k∗ = 1 and

the object on the left of the equality in (50) is 0.48. We set θ = 0.49, so that the first best
allocations are not incentive compatible. We found that the best incentive compatible allocations
(i.e., the ones that solve (46)) have the property, T = 1. If the bank were to lend B1 = 1 to the
entrepreneur in period 0, then at the start of period 1 the entrepreneur would take θk∗ = 0.49
and renege on her debt to the bank. In the best incentive compatible contract, the entrepreneur
borrows B1 = 0.9896 and acquires k1 = 0.9896 units of capital. In periods 2, 3, ... , kt = 1, so that
output is simply equal to A in each of these periods. As discussed in the previous subsection,
consumption in periods t = T, T + 1, ... is not determined, though it is restricted by incentive
compatibility and by the budget constraint. We display results only for the baseline consumption
and debt plan. The details of the solution appear in the following table:

Solution to Dynamic Debt Contract Problem for Particular Parameter Values
Period, t

0 1 2 3
interest payments on debt, RBt 0 1.0202 1.0159 1.0159
beginning of period t debt, Bt 0 0.9896 0.9855 0.9855
beginning of period t net worth, kt −Bt 0 0 0.0145 0.0145
beginning of period t capital, kt 0 0.9896 1 1
It = kt+1 − (1− δ) kt 0.9896 0.1093 0.10 0.10
ct 0 0 0.0150 0.0150
C 0.4704
output, Akαt 0 0.1441 0.1455 0.1455
utility of deviating (running away), θkt NA 0.4849 0.490 0.490
utility of abiding by the contract NA 0.4849 (= β

1−β c) 0.4999 (= 1
1−β c) 0.4999

Note: parameter values - θ = 0.49, α = 0.90, β = 0.97, δ = 0.10, A = 0.1455; NA - ‘not applicable’

Exercise 1. Compute the alternative consumption and debt plan for the above example. Consider
a version of the above example with one change, θ = 0.51. Construct a table like the one above
for this model. Report the baseline and alternative debt and consumption paths.

We considered a version of the above model with θ = 0.7. The results are reported in Figures
1-4. Each figure displays the properties of the solution for the baseline specification of the model,
as well as for a perturbation. Consider Figure 1. The starred line displays the properties of the
baseline model, in which T = 13. Note how the borrowing, B, of the entrepreneur rises over time,
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and that this occurs while the entrepreneur’s net worth, k − B, is also increasing. Another way
to see this is that leverage, k/(k − B), falls monotonically as the capital stock increases. Figure
1 also shows what happens to the solution when α is increased from 0.90 to 0.95. The value of
k∗ is increased substantially, and the value of T nearly doubles. Figure 2 displays the impact of
reducing β from 0.97 in the baseline to 0.96. Not surprisingly, the reduction in β results in a
fall in k∗. The amount of time required to grow away from the binding financial constraints, T,
increases. Figure 3 shows the impact of raising θ. The value of k∗ is not changed, but the amount
of time needed to reach k∗ increases because the higher value of θ makes the financial constraint
more binding. Figure 4 compares the baseline and alternative paths for consumption. They are
in fact quite similar. Consumption rises in period T = 13 in the alternative path, and as a result,
it settles to a smaller number after period T. The di§erence in the debt is very small.

7 Appendix: Properties of Budget Constraints

In this appendix, we establish the results summarized in section 3. To establish the equivalence
of the present discounted value budget constraint (7) and the flow budget constraints, (3), (5)
and (6), we must first establish the boundedness of various objects in the model. We do this in
three lemmas, before turning to our main proposition. The first lemma is the following:

Lemma 1. Suppose {ct, kt, Bt}
1
t=1 satisfies (3), (5) and (6) and that β, δ, F satisfy (1), (2) and

(4). Then k1, B1 are bounded above.

Proof. Rearranging (5) for t = 1:

RB1 − [AF (k1) + (1− δ) k1] + c1 ≤ B2 − k2,

or, because c2 ≥ 0,
RB1 − [AF (k1) + (1− δ) k1] ≤ B2 − k2. (51)

For t = 2, after rearranging and using β = R−1 :

B2 ≤ β [AF (k2) + (1− δ) k2] + βB3 − βk3. (52)

Using (52) to substitute out for B2 in (51), we obtain:

RB1 − [AF (k1) + (1− δ) k1] ≤ β [AF (k2) + (1− δ) k2]− k2 + βB3 − βk3. (53)

Evaluating (52) for t = 3 :

B3 ≤ β [AF (k3) + (1− δ) k3] + βB4 − βk4.

Using this to substitute out for B3 in (53),

RB1 − [AF (k1) + (1− δ) k1] ≤ β [AF (k2) + (1− δ) k2]− k2
+β (β [AF (k3) + (1− δ) k3]− k3) + β2B4 − β2k4

Continuing in this way,

RB1 − [AF (k1) + (1− δ) k1] ≤
NX

j=2

βj−2 (β [AF (kj) + (1− δ) kj]− kj) + βN−1BN+1 − βN−1kN+1

≤
NX

j=2

βj−2 (β [AF (kj) + (1− δ) kj]− kj) + βN−1BN+1,
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since kN+1 ≥ 0. Under our assumptions on F and δ, M in

M = max
k
{β [AF (k) + (1− δ) k]− k} > 0, (54)

and the value of k, k∗, that attains the maximum exists and is finite.11 Thus,

RB1 − [AF (k1) + (1− δ) k1] ≤
NX

j=2

βj−2max
kj
(β [AF (kj) + (1− δ) kj]− kj) + βN−1BN+1

=
1− βN−1

1− β
M + βN−1BN+1

Driving N !1 and making use of (6):

RB1 − [AF (k1) + (1− δ) k1] ≤
1

1− β
M

From (3), k1 ≤ B1. Also, the object in square brackets to the left of the inequality is strictly
increasing in k1. Thus,

RB1 − [AF (B1) + (1− δ)B1] ≤
1

1− β
M. (55)

Note that the derivative of the left side with respect to B1 is R−AF 0 (B1)− (1− δ). The object
on the left of (55) is zero at B1 = 0, slopes down for small B1 and is eventually monotonically
increasing with slope R − (1− δ) > 0. So, there is exactly one value of B1 such that equality in
(55) is attained. We denote this value of B1, B̄1 :

RB̄1 −
[
AF (B̄1) + (1− δ) B̄1

]
=

1

1− β
M.

We conclude that (3), (5) and (6) imply:

k1 ≤ B1 ≤ B̄1. (56)

Our second lemma is as follows:

Lemma 2. Under assumptions (3), (5) and (6),

NX

t=1

βt [kt+1 − (1− δ) kt + ct − AF (kt)−Bt+1 +RBt]

converges to a finite number as N !1.

Proof. Proof: let cN denote the following partial sum:

cN =

NX

t=1

βt [AF (kt) + (1− δ) kt − kt+1 − ct +Bt+1 −RBt] . (57)

11Note that in the graph of β [AF (k) + (1− δ) k] versus k, the slope of the curve is βAF 0 (k) + β (1− δ) !
β (1− δ) < 1 as k ! 1. The slope ! 1 as k ! 0. Thus, the curve, β [AF (k) + (1− δ) k] , rises above the 45
degree line (i.e., the graph of k against k) for small k and eventually cuts the 45 degree line from above at a point,
say k̄. It is easy to see that 0 < k∗ < k̄. The object, k∗ solves βAF 0 (k) + β (1− δ) = 1;
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Rearranging the terms in (57) and using βR = 1, we obtain:

cN = βNBN+1 + β (AF (k1) + (1− δ) k1)− βc1

+
NX

t=2

βt−1 [β (AF (kt) + (1− δ) kt)− kt − βct]−B1 − βNkt+N .

Taking into account the non-negativity of B1 and kt+N ,

cN ≤ βNBN+1 + β (AF (k1) + (1− δ) k1) +
NX

t=2

βt−1 [β (AF (kt) + (1− δ) kt)− kt]

≤ βNBN+1 + β
(
AF (B̄1) + (1− δ) B̄1

)
+

M

1− β
.

The second inequality makes use of (54) and (56).
Equation (6) implies that for each fixed " > 0 there exists an N̄ such that for all N > N̄,

βNBN+1 ≤ ".

Thus, for all N > N̄,

cN ≤ "+ β
(
AF (B̄1) + (1− δ) B̄1

)
+

M

1− β
.

Because the object in square brackets in (57) is non-negative for each t (see equation (5)), we
have that

c1 ≤ c2 ≤ .... ≤ cN .

It follows that each element in the sequence, {cN} , is bounded. Since {cN} is bounded and
non-decreasing, we can infer that

lim
N!1

cN

exists, i.e., it is finite.

The third lemma is:

Lemma 3. Suppose {ct, kt, Bt}
1
t=1 satisfies (3), (5) and (6) and that β, δ, F satisfy (1), (2) and

(4). Then,
NX

t=1

βt [AF (kt) + (1− δ) kt − ct − kt+1]

converges to a finite number as N !1.

Proof. Let aN be defined as follows:

aN ≡
NX

t=1

βt [AF (kt) + (1− δ) kt − ct − kt+1] . (58)

Then,
aN = bN + cN ,

where

bN = −
NX

t=1

βt (Bt+1 −RBt) = RB1 − βNBN+1,

where we have used Rβ = 1 and cN is defined in (57). The previous lemma established the
convergence of aN . The convergence of bN is immediate because we assume in (6) that β

NBN+1
converges to a specific number.
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Our central proposition is:

Proposition 4. The entrepreneur’s intertemporal consumption and capital accumulation opportu-
nities implied by the flow budget constraints, (3), (5), and the borrowing limit, (6), are equivalent
to the consumption and capital opportunities implied by the following single budget constraint:

k1 ≤
1X

t=1

βt [AF (kt) + (1− δ) kt − ct − kt+1] . (59)

The proposition has a straightforward interpretation. The budget constraint, (7), prevents the
entrepreneur from borrowing more in period 0 to buy k1 than can be repaid by the discounted
future surpluses of production over expenditures, ct + kt+1.

Proof. We establish the above proposition in two steps. We first show that if there is a sequence
of k’s and c’s and B’s that satisfy the flow budget constraints and debt limit, then those k’s
and c’s satisfy the single budget constraint, (59). Consider the weighted sum of the flow budget
constraints:

0 ≥ k1 −B1 + lim
N!1

NX

t=1

βt [kt+1 − (1− δ) kt + ct − AF (kt)−Bt+1 +RBt]

= k1 −B1 + β [k2 − (1− δ) k1 + c1 − AF (k1)−B2 +RB1]
+β2 [k3 − (1− δ) k2 + c2 − AF (k2)−B3 +RB2]
+β3 [k4 − (1− δ) k3 + c3 − AF (k3)−B4 +RB3] + ...

= k1 −B1 + βRB1 + lim
N!1

NX

t=1

βt [kt+1 + ct − (AF (kt) + (1− δ) kt)]− lim
N!1

βNBN+1

≥ k1 + lim
N!1

NX

t=1

βt [kt+1 + ct − (AF (kt) + (1− δ) kt)] . (60)

The limits in (60) are well defined by the preceding lemmas. The first inequality (60) reflects the
sign of each item in the sum. The second equality reflects the cancellation of Bt with βRBt when
βR = 1, for t = 2, 3, ..., N − 1. The last inequality reflects RB = 1 and the sign restriction on
limN!1 β

NBN+1. We conclude that if (5) and (6) are satisfied, then (59) is satisfied.
Now we consider the reverse result. In particular, suppose we have a sequence of k’s and c’s

that satisfy (59). Then, a sequence of B’s can be found that satisfy the debt limit, (6), and
that has the property that together with the given k’s and c’s, the flow budget constraints, (5),
are satisfied. Our strategy is to select a particular sequence of B’s that satisfy the flow budget
constraints and then verify that that sequence satisfies the debt limit. Set B1 as follows:

B1 =
1X

t=1

βt [(1− δ) kt + AF (kt)− kt+1 − ct] ,

an object that is well defined by an earlier lemma. By (59), the period 0 flow budget constraint,
(3), is satisfied. Next, set Bt+1 so that the flow budget constraint is satisfied for each t ≥ 1 as a
strict equality. That is,

kt+1 − (1− δ) kt + ct − AF (kt) +RBt −Bt+1 = 0,

for t = 1, 2, ... . Multiply the above expression by βt and add over all t :

lim
N!1

NX

t=1

βt [kt+1 − (1− δ) kt + ct − AF (kt) +RBt −Bt+1] = 0,
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because each term in the sum is, by construction, equal to zero. Rearranging terms, we obtain,
for fixed N :

NX

t=1

βt [kt+1 − (1− δ) kt + ct − AF (kt) +RBt −Bt+1]

=

NX

t=1

βt [kt+1 − (1− δ) kt + ct − AF (kt)] +B1 − βNBN+1,

where Rβ = 1 has been used. Then,

0 = lim
N!1

NX

t=1

βt [kt+1 − (1− δ) kt + ct − AF (kt) +RBt −Bt+1]

= lim
N!1

NX

t=1

βt [kt+1 − (1− δ) kt + ct − AF (kt)] +B1 − lim
N!1

βNBN+1

= − lim
N!1

βNBN+1,

by construction of B1. We conclude that the chosen sequence of B’s satisfies the debt limit. Since
we have already verified that k1 ≤ B1, it follows that we have found a sequence of B’s with the
property that the sequence of budget constraints and the debt limit are satisfied. Our result has
now been established.
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Figure 1: Baseline (*) and Perturbation on Alpha
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Figure 2: Baseline (*) and Perturbation on Beta
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Figure 3: Baseline (*) and Perturbation on Theta
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