
Christiano
Advanced Macro
416, Fall, 2013
Homework 2.

1. Consider the one-sector stochastic neoclassical growth model discussed
in class. Consider the following model parameterization:

(a) Compute the coefficients in the linear, second order perturbation
on the policy rule, for several parameterizations of the model. Do
the approximation in terms of the capital stock itself, rather than
in terms of the log of capital, as in the handout. In all cases,

α = 0.36, β = 0.99, δ = 0.02, ρ = 0.95.

Solve the model for the following four cases: γ = 2, 20 and for
V ar (εt) = 1 and 0.012. Report the coefficients of the approximate
policy rules and store them for analysis below.

(b) One way to quantify the difference between first and second order
perturbations, is to investigate their implications for the speed of
adjustment. Although shocks potentially play an interesting role
in this, let us abstract from the shocks at this point. Thus, the
policy rule is:

kt+1 − k = gk × (kt − k) +
1

2
gkk × (kt − k)2 ,

where k is the value of the capital stock in non-stochastic steady
state (it is not the log of the capital stock, as in lecture). In
percent terms:

k̂t =
kt − ks
ks

.

Dividing the second order policy rule by ks :

k̂t+1 = gkk̂t +
1

2
gkk × k ×

(
k̂t
)2
. (1)

Suppose that at t = 1, k1 = λ × k, so that k̂1 = λ − 1. Consider
first the standard, first order perturbation, in which gkk is set to
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zero. Then, k̂t+1 = gtk (λ− 1) , t = 0, 1, ... . The time required to
close 95 percent of the gap between the capital stock and steady
state is the value of t such that

k̂t+1 = (λ− 1)× 0.05,

or,

gtk = 0.05

t =
log (0.05)

log gk
.

Notice that t is independent of the value of λ. Compute the value
of t for our model economy.

Now, consider the implications of the second-order expansion for
speed of adjustment. Set k̂1 = λ − 1, and simulate (1) for t =
1, ..., 100. Set λ to a very small number, λ = 0.0001 and put in the
large value of γ. Graph the two trajectories, one for the first order
approximation and the other for the second order approximation.
Are they very similar?

2. (Simulating a rule obtained by second-order perturbation.) Consider
the following expression, which we can think of as the second order
approximation of some unspecified law of motion:

yt = f (yt−1, εt) = ρyt−1 + αy2t−1 + εt, 0 < ρ < 1,

where εt is a mean zero, iid process, uncorrelated with past yt. Note
that there are two solutions, y = f (y, 0) : y = 0, y = (1−ρ)/α. The first
steady state is locally stable, since the root in its first order expansion
is ρ. The second is not. So, if yt > (1−ρ)/α, then yt is likely to explode.
Verify this by simulating 100 observations of yt with εt˜N (0, σε) and
σε = 0.01, 0.10. The problem illustrated here is something that can
happen with policy rules that are quadratic expansions: “...they will
have extra steady states not present in the original model, and some of
these steady states are likely to mark transitions to unstable behavior”.1

1Taken from page 17, Kim, Jinill, Sunghyun Kim, Ernst Schaumburg, and Christo-
pher Sims, February 3, 2005, ‘Calculating and Using Second Order Accurate Solutions of
Discrete Time Dynamic Equilibrium Models,’ manuscript.
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Kim, Kim, Schaumburg and Sims (2005, section 7) argue that the
system should be simulated by ‘pruning’, as follows. Let the first order
system be y

(1)
t :

y
(1)
t = ρy

(1)
t−1 + εt.

The pruned simulated output is y
(2)
t , where y

(2)
t solves the original sys-

tem with the exception that wherever yt−1 appears in quadratic terms,

it is replaced by y
(1)
t :

y
(2)
t = ρy

(2)
t−1 + α

[
y
(1)
t−1

]2
+ εt.

Construct two graphs for the case, σε = .01. Display yt and y
(2)
t in one

graph. Display y
(1)
t and y

(2)
t in the other. Note how pruning elimi-

nates the explosive behavior. See Kim, Kim, Schaumburg and Sims for
additional discussion.

3. Return to the policy rule in question 1a with γ = 20 and V ar (εt) = 1.
Simulate 10,000 observations using the linear approximate rule, the
quadratic rule (e.g., ‘naive simulation’), and the quadratic rule based on
pruning (all three should be simulated in response to the same shocks).
Display the three sequences of capital stocks in a graph (truncate super
large values if you have to). How do mean value of kt and its variance
compare for the three rules? How does the mean value of kt compare
with its non-stochastic steady state value? Repeat this exercise us-
ing the more reasonable estimate of the variance, Vε = 0.012. Finally,
consider the same experiment with the more ‘normal’ risk aversion:
γ = 2 (set Vε = 0.012). Note that in the latter case, there is very little
difference between the three solutions.

4. (Orthogonality property of Chebyshev polynomials). Consider the Cheby-
shev polynomial:

T0 (r) = 1

T1 (r) = r

Tn (r) = 2rTn−1 (r)− Tn−2 (r) ,
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for n = 2, 3, 3, ... Let r1, ..., rN denote the zeros of the N th order Cheby-
shev polynomial, TN (r) :

rk = cos

(
π

2

2k − 1

N

)
, k = 1, ..., N.

The Chebyshev polynomial has the following discrete orthogonality
property:

N∑
k=1

Ti (rk)Tj (rk) =


0 i 6= j
N i = j = 0
N
2

i = j 6= 0
.

The way you did N−point Chebyshev interpolation in the previous
homework is that you first computed the zeros of the N−dimensional
Chebyshev polynomial, r = [r1, ..., rN ]′ . These map into the N × 1 set
of points, x, belonging to the domain of the Runge function via the
transformation:

x =
(b− a) (r + 1)

2
+ a,

where a = −5, b = 5. Then, you constructed a matrix

X =
[
T0 (r) · · · TN−1 (r)

]
,

where Tj (r) is the N−dimensional column vector formed by evaluating
the jth order Chebyshev polynomial at each of the elements of the
column vector, r. Finally, you form the N dimensional column vector,
f (x) , where f denotes the Runge function evaluated at each of the
elements in x. Then the interpolation equation to be solved is given by:

Xγ = f (x) .

Premultiply by X ′ :
X ′Xγ = X ′f (x)

Note from the discrete orthogonality property, that X ′X is a diagonal
matrix with N

2
in all but one entry on the diagonal. In the 1,1 element

of X ′X there appears N. To find γ simply invert the X ′X matrix:

γ = (X ′X)
−1
X ′f (x) ,
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or

γk =


T0(r)

′f(x)
N

k = 0

2Tk(r)
′f(x)
N

k = 1, ..., N − 1
. (2)

Notice the relatively trivial nature of this formula for the γ’s. For
example, it is no problem to make N very large. This stands in sharp
contrast with the fixed interval interpolation that was done (and which
works badly!) in the previous homework. In that case, for N large you
have to invert a matrix, X, with columns of numbers that are of very
different orders of magnitude, with negative implications for numerical
accuracy.

We conclude that the N − 1th order Chebyshev interpolating function
for f (x) is

f (x) '
N−1∑
k=0

γkTk (ϕ (x)) , (3)

where ϕ was defined in the previous homework. Verify that the γ’s you
computed in the previous homework are also the solution to the above
formula.

5. (Using the Chebyshev interpolation theorem approximate an integral).
The Chebyshev interpolation theorem tells us that for large enough
N, (3) provides an excellent (in the sup norm sense) approximation to
virtually any function, f (some restrictions, such as continuity, are re-
quired for f). And, as noted above, the Chebyshev orthogonality prop-
erty implies that making N as large as you want creates no numerical
problems. Thus, we have

∫ b

a
f (x) dx '

N−1∑
k=0

γk

∫ 1

−1
Tk (r) dr.

Since Tk (r) is a polynomial, it is easy to integrate. The formula for
this is: ∫ 1

−1
Tk (r) dr =

[
kTk+1 (r)

k2 − 1
− rTk (r)

k − 1

]r=1
r=−1

This method for approximating an integral is called Chebyshev Quadra-
ture integration (the Chebyshev quadrature integration formula is usu-
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ally expressed in a simplified form). Consider the integral,∫ 1

0
e3xdx.

The exact value of this integral is easy to work out analytically. Approx-
imate it using Chebyshev quadrature, programming everything yourself
(there is software all over the web for doing this, but it is most instruc-
tive to do it yourself, at least one time). Try it for a small value of N
(say, N = 2), and determine what value of N you need to go to, to get
a decent approximation.
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