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1 Explaining Labor Market Volatility

The purpose of this question is to explore a labor market puzzle that has bedev-
iled business cycle researchers for years. The problem is to produce a sensible
model that generates the amount of labor market volatility that we observe in
the data. The first step is to show that there is a problem in the standard
real business cycle model. The second step is to document a particular diag-
nosis of the problem, namely that it reflects excessive movement in the wage.
The third step is to introduce firm/worker bargaining over the wage and show
that this opens a possible route for solving the problem. The example is in-
spired by Hagedorn and Manovskii’s 2008 AER paper in which they showed that
if the unemployment compensation of the worker is high enough, then wages
could be smooth enough and, hence, employment volatile enough, to match the
data. Hagedorn and Manovskii’s posited explanation has been criticized on the
ground that real-world agents’outside option is not as great as Hagedorn and
Manovskii’s explanation requires. The problem is that if workers’outside op-
tion is reduced to levels that the critics argue is empirically plausible, then it
is claimed (see Shimer’s 2005 AER paper) that the bargaining model loses the
ability to account for the volatility of labor markets. We will pursue these ideas
further later in the course, by drawing attention to the observations in Hall and
Milgrom’s 2008 AER paper.

1.1 Real Business Cycle Model

Consider the following real business cycl model. At time t, the representative
household maximizes

Et

∞∑
j=0

βj [logCt+j + ψ log (1−Nt+j)] ,

subject to
Ct +Kt+1 − (1− δ)Kt ≤ rtKt + wtNt,

for all t. Here, rt denotes the rental rate of capital and wt denotes the wage rate.
The household is ‘small’and takes the prices as given. There is a representative
firm. In period t, the firm maximizes by choice of Kt and Nt, its profits:

Yt − rtKt − wtNt,

subject to its technology:

Yt = Kα
t [exp (at)Nt]

1−α
,
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where
at = ρaat−1 + εt.

Here, εt is iid with mean zero and Eε2t = σ2 = 0.012, ρa = 0.95. Also, β =
1.03−1/4, α = 0.36, δ = 0.025. Finally, assign a value to ψ which implies that
Nt = 1/3 in steady state, given the setting of the other parameters. That is, the
representative household works one-third of available time.

1.1.1 Questions

1. Use Dynare to solve the model and simulate 1,000 observations on log
output and log employment (work with the ‘periods=1000’command in
stoch_simul). Detrend these two series using the HP filter. Compute
the standard deviation of the result. Display the ratio of the standard
deviation of (filtered) employment to the standard deviation of (filtered)
output. This ratio is call the ‘relative volatility of employment to output’.

2. Go to the web-based data base of the Federal Reserve Bank of St. Louis
(FRED) and retrieve data on Real Gross Domestic Product (GDP) and
employment, All Employees: Total nonfarm (take these data quarterly).
Do to these data what you did to the model data. Display the relative
volatility of employment to output in the data.

3. You will see that the relative volatility of employment is much higher in
the data than it is in the model. This failing of the model has attracted
a lot of attention. One interpretation is that it reflects wages rise too
much in the wake of a shock that causes output to expand. Explore this
hypothesis by returning to question 1. Fix the wage rate exogenously at its
steady state value and assume that firms are always on their labor demand
schedule, while households always supply all the labor that is demanded
(this implies that sometimes they work more than they want). What
happens to the volatility of employment with this change in the model?
Much of the macro labor supply literature is about trying to reproduce
the properties of this sticky wage model. But, economists prefer if they
can arrive at this by some endogenous mechanism.

1.2 Real Business Cycle Model with Nash Bargaining

Assume that the representative household has a unit mass of workers. Each
worker goes to the labor market. A fraction, Nt, of the workers meet a firm
and are employed. The complementary fraction is unemployed. There is per-
fect insurance inside the household and each worker enjoyed the same level of
consumption, Ct. Each employed worker brings home the wage, wt, and each
unemployed worker brings home an unemployment payment, D. The household
problem is to maximize:

E0

∞∑
t=0

βt log (Ct) ,

2



subject to

Ct +Kt+1 − (1− δ)Kt ≤ wtNt + rtKt + (1−Nt)D − Tt.

Here, Tt denotes taxes raised to pay for government unemployment payments.
The government budget constraint is:

(1−Nt)D = Tt.

Workers are instructed by households to be interested in the present discounted
value of the resources they bring home. Workers do not suffer any personal
disutility from working. Thus, a period t employed worker enjoys utility, Vt,
where

Vt = wt + Etmt+1 [ρVt+1 + (1− ρ) (ft+1Vt+1 + (1− ft+1)Ut+1)] . (1)

Here, mt+1 denotes the household’s stochastic discount factor and the object in
square brackets indicates the various things that could happen to the worker in
period t + 1. These include that the worker will remain matched to the same
firm in t+ 1 with probability ρ. With probability 1− ρ the worker will separate
from the firm. In that case, there are two possibilities. With probability ft+1
the worker matches immediately with another firm. With probability 1 − ft+1
the worker goes into unemployment in t+ 1.
The value of being an unemployed worker is:

Ut = D + Etmt+1 [ft+1Vt+1 + (1− ft+1)Ut+1] . (2)

A worker who is unemployed in period t receives a payment, D. In period
t+ 1 the period t unemployed worker is employed with probability ft+1 and is
unemployed with probability 1− ft+1.
There are two types of firms in this variant of the model. There are the

firms (we’ll call them RBC firms) that look just like their cousins in the real
business cycle model. They operate the Cobb-Douglas production function. To
do so, they rent capital, Kt, and a second input which we denote by ht. The
RBC firms hire Kt and ht, in competitive markets. The second type of firm,
we call them the bargaining firms, are endowed with the knowledge of how to
convert one unit of labor power into one unit of ht. RBC firms and bargaining
firms interact in competitive markets.
We now discuss bargaining firms in greater detail. The value to the firm of

an employed worker is denoted Jt :

Jt = ϑt − wt + ρEtmt+1Jt+1, (3)

where ϑt denotes the (competitively determined) market value of the one unit
of ht produced by the worker and sold by the bargaining firm.
The number of employed workers in period t is denoted lt and this evolves

as follows:
lt = (ρ+ xt) lt−1. (4)
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Here, ρ corresponds to the exogenous rate at which employed workers are sepa-
rated from their firms at the end of the period. Also, xt denotes the hiring rate
so that the number of new hires in period t is equal to xtlt−1. Note that the job
finding rate is given by,

ft =
xtlt−1

1− ρlt−1
, (5)

where the numerator is the number of workers that are newly-hired at the
beginning of time t, while the denominator is the number of workers who are
searching for work at the end of time t− 1. The denominator term is arrived at
as follows. The number of workers that are unemployed during period t − 1 is
1 − lt−1. In addition, (1− ρ) lt−1 workers become separated from their firm at
the end of t− 1. Thus, the total number of people searching at the end of t− 1
is

1− lt−1 + (1− ρ) lt−1 = 1− ρlt−1.

A firm that wishes to meet with a worker can do so by paying a fixed cost, κ.
Free entry implies that bargaining firms cannot make profits by hiring a worker,
so that

Jt = κ

We assume that the wage is determined by Nash bargaining:

Jt =
1− η
η

(Vt − Ut).

Here, η is the share of the total surplus, Jt + Vt − Ut, given to workers. The
object, Jt, is the surplus of the firm. It is what the firm gets by employing
the worker (i.e, Jt), minus what it gets if it does not employ the worker (i.e.,
nothing). Similarly for the surplus of the workers.
The resource constraint in this economy is:

Ct + κxtlt−1 +Kt+1 − (1− δ)Kt ≤ Kα
t [exp (at)ht]

1−α
,

for all t. Here, κxtlt−1 denotes the goods purchased by bargaining firms to
address their hiring costs. Also, ht is the quantity of input goods purchased by
RBC firms from bargaining firms. Clearing in that market requires

lt = ht.

To save notation, you may just as well use lt wherever ht appears, so that the
resource constraint is:

Ct + κxtlt−1 +Kt+1 − (1− δ)Kt ≤ Kα
t [exp (at) lt]

1−α
.

Finally, there is the discount factor, mt+1 :

mt+1 = β
Ct
Ct+1

.
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1.2.1 Questions

1. The parameters of the RBC part of the model are, as before,

α = 0.36, β = 1.03−1/4, ρa = 0.95, Eε2t = 0.012, δ = 0.025.

Set the persistence of job matches, ρ, to 0.90. The other parameters of
the bargaining part of the model,

D,κ, η,

should be set so that, given the other parameter values, the following is
true in steady state:

κxl
GDP = 0.01 hiring costs as a fraction of GDP (≡ C + δK)
D
w = 0.98 replacement ratio

u = 1− l = 0.055 unemployment rate

Display formulas for the steady state of the model, including for D,κ, η.
Report the steady state values of K,C, x, w, ϑ, U, V, f, r.

2. Generate 1,000 observations on log GDP and log employment in the model,
HP filter the result as you did in the RBC model and compute the standard
deviations of the result. Does this model do a better job at accounting for
the observed volatility of labor? To help answer this question, compute
and display on the same graph the impulse response to technology shock
implied by the RBC model and the RBC model with bargaining.

3. Discuss the role played in the analysis of the high replacement ratio. Do
this by repeating 2 with replacement ratios of 0.99 and 0.97.

2 Monte Carlo Markov Chain

The idea here is to explore the accuracy of the Metropolis-Hastings algorithm
for approximating a distribution. We’ll specify a density function for a single
random variable. Since we know the density function we’re trying to approx-
imate, we’ll be able to assess the quality of the approximation provided by
the MH algorithm. In applying the algorithm, we’ll need to compute a second
derivative. Do this numerically. Here is a formula for a function, f (x) :

f ′′ (x) =
f (x+ 2ε)− 2f (x) + f (x− 2ε)

4ε2
,

for ε small (for example, you could set ε = 0.000001.)
In this exercise we make the test of the MH algorithm pretty tough by spec-

ifying that the true density function is bimodal. At the same time, the test will
be very weak because we are working with a one-dimensional random variable.
We we consider a mixture of normal distribution. This density function is a
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linear combination of two normals, where the weights in the linear combination
are denoted π and 1 − π. The object, π, is the probability that a variable is
drawn from the first Normal distribution, and 1− π is the probability of draw-
ing from the second Normal distribution. Suppose the ith Normal has mean and
variance, µi and σ

2
i , respectively, i = 1, 2. In addition, suppose

µ1 = −0.06, µ2 = 0.06, σ1 = 0.02, σ2 = 0.01, π = 1/2.

1. Let x denote the mixture of Normals random variable. Graph its density
over the range, x = −0.15 to x = 0.15. Specify a very fine grid of values
of x so that you get a very accurate graph of the mixture of Normals. If
the grid is fine enough then you can pinpoint the value of x, x∗, where
the density is highest by simply identifying the value of x on your grid
that produces highest density (i.e., you can just use the max operator in
MATLAB).

2. Compute the second derivative of the density function around the mode,
x∗. Apply the algorithm described in the handout to compute a sequence,
x(1), x(2), ...., x(M), where x(1) = x∗. Choose the scalar in the jump distri-
bution so that you get a rejection rate of 23 percent when M = 1, 000.
Graph the histogram of x(1), x(2), ...., x(M). Scale the heights of the his-
togram bars so that the sum of the areas of the histogram rectangles
equals unity. Only with this scaling will the histogram be comparable to
the true density function, the mixture of Normals. Graph the properly
scaled historgram on the same graph with the density of the true mixture
of Normals you graphed in question 1. Don’t make the graph a bar chart,
make it a line graph so it looks like a density function. Does the MH
algorithm produce a good-looking approximation?

3. In question 2, you should have found that the histogram is rather choppy.
Now increase M to 100,000. You should find that you get an amazingly
accurate approximation. Try different values of k, fixing M at, say 5,000.
Does k affect accuracy much?

4. Center the MCMC algorithm around the second, lower, peak of the density
function. Use M = 100, 000. Does it make much difference that you did
not center things on the actual mode?

5. Draw the Laplace approximation of the density function around the mode
of the mixture of Normals (see the later sheets on the Bayesian inference
handout for the Laplace approximation). How well does that approximate
the distribution?

3 Bayesian Estimation I

Suppose the analyst has a sample of T iid Normal observations, y = [y1, ..., yT ]
′
.

To make the problem simple, suppose the analysis knows the value of the vari-
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ance, σ2. The likelihood of these observations is

P (y|µ) =
1

(2πσ2)
T/2

exp

[
−1

2

T∑
t=1

(yt − µ)
2

σ2

]
.

The analyst does not know the value of µ. But, before seeing y, she had a prior
about it, P (µ). This prior takes the following form:

P (µ) =
1

2πη2
exp

[
−1

2

(µ−m)
2

η2

]
,

where m denotes the mean of the prior and its variance is η2. The posterior over
µ, after observing y, is denoted P (µ|y) , where

P (µ|y) ∝ P (y|µ)P (µ) ,

where ∝ means ‘is proportional to’. Let µ∗ denote the mode of the posterior
distribution, i.e.,

µ∗ = arg max
µ

P (µ|y) .

The maximum likelihood estimator of µ, µ̂, is

µ̂ = arg max
µ

P (y|µ) .

1. Show that

µ̂ = ȳ, ȳ ≡ 1

T

T∑
t=1

yt.

2. Show that µ∗ can be written in the form:

µ∗ = αm+ (1− α) ȳ,

where

α → 0 as T →∞
α → 1 as η → 0.

That is, as the precision of the prior increases (η → 0), the data are
ignored. As there are more data (T →∞) the prior is ignored. Derive an
explicit formula for α in terms of T, σ, η.

4 Bayesian Estimation II

Consider the NK model described in class, in which the technology shock process
has a difference stationary representation. Assign the following parameter val-
ues:

β = 0.97, φx = 0.15, φπ = 1.5, α = 0.8, ρ = 0.9, λ = 0.5, δ = 0.2,

ϕ = 1, θ = 0.75, σa = στ = 0.02.
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Generate T = 4, 000 artificial observations on the variables using Dynare. Make
sure to include output growth in the model, as well as inflation. (Output growth
is the first difference of the log of the output gap, xt, plus the first difference of
the log of first best output.) These are generated by the stoch_simul command
by including periods=4000 in the argument list of that command. You can find
the simulated variables in an N × 4000 matrix after the stoch_simul command
in the matrix, oo_.endo_simul. The rows of this matrix correspond to the
variables in the var command. Save that matrix as a MATLAB file. You need
a Dynare program which loads the MATLAB file with the simulated data and
estimates the model using only the inflation and output growth data.
The Dynare code for estimation is the same as the code you used to sim-

ulate the data, up to the stoch_simul command. Instead of the stoch_simul
command, you use the estimate command. Before the estimate command you
must have a varobs command which indicates which variables are to be used in
the estimation, and another command where you specify the parameters to be
estimated and the associated priors. Estimate the four parameters that govern
the exogenous shocks. (All other parameters should be set to their true values,
though for fun you could study the case where the econometrician makes the
wrong assumption about the value of the other parameters.) Standard priors
for standard deviations are the inverted gamma distribution. The best way
to assess the reasonableness of this is to stare at the graph of the prior when
Dynare generates it. A standard prior for autoregressive coeffi cients that you
think ought to be positive is the beta distribution, because it is bounded on
the interval between 0 and 1. An (incomplete) example of the required code is
supplied as part of this take home exam.

1. Set the mean of the priors over the parameters to the corresponding true
values. Set the standard deviation of the inverted gamma to 10 and of
the beta to 0.04. (It’s hard to interpret these standard deviations directly,
but you will see graphs of the priors, which are easier to interpret.) Use
30 observations in the estimation and set M = 500 (M corresponds to
mh_replic). Adjust the value of k, so that you get a reasonable acceptance
rate. Display all graphs in your answer to the midterm. Have a look at
the posteriors, and notice how, with one exception, they are much tighter
than the priors. The exception is lambda, where the posterior and prior
are very similar. This is evidence that there is little information in the data
about lambda (this is a general feature of NK models: the dynamics of the
data are relatively invariant to things on the supply side, it’s almost like
those models had dropped the labor supply curve). Graph the priors and
posteriors. When you do the estimation, be sure to include mode_check as
an argument. This triggers the graphing of the posterior and the likelihood
for each parameter, holding the others at their mode. This allows you to
verify visually that the mode has, in fact been achieved. It also allows you
to see separately the role of the likelihood (i.e., the function of the data)
in determining the curvature of the posterior. For example, in the case
of λ the posterior is primarily driven by the prior, so you should see the
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likelihood being very flat.

2. Redo 1., but set the mean and standard deviation of the prior on lambda
equal to 0.95 and 0.04, respectively. Note how the prior and posterior are
again very similar. There is not much information in the data about the
value of lambda!

3. Note how the priors on σa and ρ have ‘shoulders’on the right side. Redo
1., withM = 4, 000. Note that the posteriors are now smoother. Actually,
M = 4, 000 is a small number of replications to use in practice.

4. Now set the mean of the priors on the standard deviations to 0.1, far from
the truth. Set the prior standard deviation on the inverted gamma dis-
tributions to 1. Keep the observations at 30, and see how the posteriors
compare with the priors. (Reset M = 1, 000 so that the computations go
quickly.) Note that the posteriors move sharply back into the neighbor-
hood of 0.02. Evidently, there is a lot of information in the data about
these parameters.

5. Repeat 1. using 4,500 observations. Compare the priors and posteriors.
Note how, with one exception, the posteriors are ‘spikes’. The exception,
of course, is lambda. Still, the difference between the prior and posterior
in this case indicates there is information in the data about lambda.
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