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Solutions to a Class of Linear Expectational Difference Equations

1. Introduction

These notes provide an informal characterization of the solution to a class of expectational
difference equations.1 I first consider a very simple example in order to illustrate the main
results. I then turn to the more general case without uncertainty. After that I consider the
case with uncertainty. The previous two sections assumed that a certain matrix is singular,
an assumption that is not typically satisfied in practice. The next section shows how to
address this problem using the QZ decomposition. The last two sections work with an
example to illustrate the various points in detail.

2. A Simple Example to Illustrate Some of the Basic Points

The intertemporal Euler equation associated with the neoclassical growth model, after that
equation has been linearized about steady state, has the following representation:

kt+2 − φkt+1 +
1

β
kt = 0, (2.1)

for t = 0, 1, 2, .....Here, kt+1 denotes the value of the capital stock selected at time t, expressed
in deviation from steady state. Also, k̄0 represents the deviation of the initial stock of capital
from steady state. We assume k̄0 6= 0. Also, 0 < β < 1 and

φ > 1 +
1

β
. (2.2)

We refer to a sequence, {kt}∞t=1 , which satisfies the above sequence of difference equations
as well as the initial condition, as a solution. (The notion of a solution is slightly different
here than it was in Econ411). It is easy to see how many solutions there are. Consider the
sequence of equations, (2.1):

k2 − φk1 +
1

β
k0 = 0

k3 − φk2 +
1

β
k1 = 0

...

If we arbitrarily set a value for k1, the first equation can be solved for k2. Then the second
equation can be solved for k3 and in this way we can find an entire sequence, {kt}∞t=1 . Since

1Much of this material is taken from section 3 in Christiano, 2002, "Solving Dynamic Equilibrium Models
by a Method of Undetermined Coeffi cients," Computational Economics, 20, pp. 21-55.



this sequence is completely determined by the selected value of k1, we conclude that the set
of solutions, {kt}∞t=1 , has one dimension, indexed by the value of k1.
Unfortunately, this way of characterizing the set of solutions to (2.1) is not very con-

venient. There is little else one can say about that set. An alternative characterization is
more convenient. It represents the solutions in the space of roots of the polynomial equation
associated with (2.1):

f (λ) = λ2 − φλ+
1

β
(2.3)

Let λ1 and λ2 satisfy f (λi) = 0 for i = 1, 2. Under the assumption that λ1 and λ2 are distinct
(a condition established in Stokey and Lucas’textbook), the complete set of solutions to (2.1)
can be represented as follows:

kt =
(
k̄0 − a

)
λt1 + aλt2, (2.4)

where a is arbitrary. It is easy to verify that (2.4) satisfies (2.1) and the initial condition for
every possible value of a.
From (2.4) we see, like before, that the set of solutions to (2.1) is one-dimensional and is

indexed by the scalar, a. There are two other characteristics of the space of solutions that
we can we see from (2.4). First, there exist two solutions in which kt solves a first order
difference equation. The two solutions are the ones associated with a = k̄0 and a = 0,
respectively, that is:

kt = k̄0λ
t
2, kt = k̄0λ

t
1.

In each case, divide the expression by itself evaluated at t− 1, to obtain:

kt = λ2kt−1, kt = λ1kt−1.

This verifies that in the case of these two solutions, the sequence of kt’s which satisfy the
second order difference equation, (2.1), also satisfy a first order difference equation. It is
natural to call these solutions minimal state variable (MSV) solutions, because in each case
every capital stock in the sequence can be expressed as a function of only one previous value
of the capital stock. This is a ‘natural’solution if we think of kt as being decided at time
t − 1. At that time, kt−1 is suffi cient information to characterize the current situation and
the value of capital in period t− 2 or earlier seems superfluous. For example, to understand
the nature of production opportunities at date t − 1 one needs only know kt−1. We can
see from (2.4) that there are exactly two MSV solutions. All the other solutions make the
capital stock a non-trivial function of two eigenvalues, and so the capital stock follows a
second order difference equation. These are not MSV solutions because kt at any point in
the solution cannot be determined exclusively as a function of kt−1.
We can also define a solution as being ‘non-explosive’if

kt → 0

as t→∞. From (2.4) we can see three cases.

• Case 1: |λ1| > 1 and |λ2| < 1. In this case, there is precisely one solution that is
non-explosive, the one associated with a = k̄0.
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• Case 2: |λ1| , |λ2| > 1. In this case there is no solution that satisfies non-explosiveness.

• Case 3: |λ1| , |λ2| < 1. In this case, all solutions are non-explosive.

Note that in case 1, when there is exactly one non-explosive solution, that solution is a
MSV.2

These properties of solutions are quite general. (i) The number of solutions correspond
to the number of points in a finite-dimensional Euclidean space (in the example, it’s R1).
(ii) There is a finite number of MSV solutions and that set is easy to characterize. (iii) The
number of non-explosive solutions requires comparing the absolute value of eigenvalues with
unity, and if there is only one solution that is non-explosive, then that solution is MSV.

3. Deterministic Case, Invertible a

We now develop a matrix version of the analysis in the previous section. Suppose that (2.1)
is actually

α0zt+1 + α1zt + α2zt−1 = 0, t = 0, 1, 2, .... (3.1)

where zt is the n × 1 vector of time t endogenous variables, expressed in deviation from
steady state. Also, αi are known n× n matrices for i = 0, 1, 2. The ‘0’after the equality in
(3.1) is an n × 1 vector of zeros.3 The initial conditions, z−1 are given. It is convenient to

2It is readily verified that the neoclassical model falls in case 1. Dividing f in (3.1) by λ, we find that
the zero condition corresponds to

g (λ) = φ,

where
g (λ) = λ+

1

βλ
.

The graph of g against λ has a ‘U’shape, and reaches a minimum at λ =
√

1/β, when g takes on a value of
2
√
β. Note

0 <
(

1−
√

1/β
)2

= 1 +
1

β
− 2
√

1/β,

so that 1+ 1
β > 2

√
1/β. It follows from (2.2) that the φ line cuts the g curve above the point where g reaches

its minimum. As a result, roots of f are definitely distinct. In addition, it is easily verified that one root is
less than unity and the other is greater than unity.

3In the case, n = 1, (3.1) could be the linearized intertemporal Euler equation for the neoclassical growth
model. Thus, supppose the problem is to maximize

∑∞
t=0 β

t log ct subject to ct + kt+1 − (1− δ) kt ≤ kαt ,
β, α, δ ∈ (0, 1) and k0 given. Then the first order condition is

1

ct
− β 1

ct+1

[
αkαt+1 + 1− δ

]
= 0,

for t ≥ 0. Substituting out for ct and ct+1 in this expression from the resource constraint, we obtain

v (kt, kt+1, kt+2) = 0, t = 0, 1, 2, ... .

Compute k∗ such that v (k∗, k∗, k∗) = 0 (i.e., the steady state). Then, (3.6) represents the above condition
in which the v function has been replaced by its first order Taylor series expansion about steady state. In
(3.6), kt stands for kt − k∗. I do not adopt a new piece of notation to express deviations from steady state
in order to keep the notation simple and because this should not cause confusion in this setting.
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express (3.1) as a first order difference equation system:

aYt+1 + bYt = 0, t ≥ 0, (3.2)

where

Yt =

(
zt
zt−1

)
, a =

[
α0 0
0 I

]
, b =

[
α1 α2
−I 0

]
.

The first set of n equations in (3.2) reproduce the n equations in (3.1), while the second set
of n equations in (3.2) capture the fact that the second set of variables in Yt+1 coincide with
the first set of variables in Yt. A solution is a sequence of Yt’s such that (3.2) holds for each
t.
Here we assume that a is invertible (i.e., we assume that α0 is invertible). This assumption

is rarely satisfied in practice, although it is satisfied in the simple example of the previous
section when n = 1. It is convenient to separate the question of how to deal with the
singularity in a from other aspects of model solution. For this reason we defer addressing
the singular a case until a later section.
Premultiplying (3.2) by a−1, we obtain:

Yt = ΠtY0, Π = −a−1b. (3.3)

According to this equation, a solution is completely determined by the initial condition, Y0.
We assume that the eigenvalues of Π are distinct, which guarantees that Π has the following
eigenvector-eigenvalue decomposition:

Π = PΛP−1. (3.4)

Write

P =
(
P1 · · · P2n

)
, P−1 =

 P̃1
...
P̃2n

 , Λ =

 λ1 · · · 0
...

. . .
...

0 · · · λ2n

 ,
where Λ is a diagonal matrix. The elements along the diagonal of Λ are the eigenvalues of
the matrix, Π. The column vectors, Pi, are the right eigenvectors of Π :

ΠPi = λiPi, i = 1, ..., 2n.

After premultiplying (3.4) by P−1, we see that P̃i are the left eigenvectors of Π :

P̃iΠ = λiP̃i, i = 1, ..., 2n.

The left eigenvectors of Π play a fundamental role in shaping the dynamics of the system.
From (3.3), we see that the space of solutions is n−dimensional. This is because Y0 has n

‘free parameters’in it, namely the n elements of z0 (recall, z−1 is given). That is, the set of
solutions corresponds to the n-dimensional Euclidean space, Rn. This is the analog of result
(i) in the previous section. We now proceed to the analogs of results (ii) and (iii).
It is easy to verify that

Πj = PΛjP−1. (3.5)
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So, multiplying both sides of (3.3) by P−1 we obtain:

Ỹt = ΛtỸ0, Ỹt ≡ P−1Yt.

The equations that determine the evolution of Ỹt are completely independent, and can be
expressed as follows:

Ỹit = λtiỸi,0, for i = 1, 2, ..., 2n, (3.6)

where,

Ỹt =

 Ỹ1,t
...

Ỹ2n,t

 .

Equation (3.6) shows that if Ỹi,0 = 0, then Ỹi,t = 0 for all t. Put differently,

P̃iY0 = 0→ P̃iYt = 0, for t = 1, 2, .... . (3.7)

That is, if Y0 is orthogonal to the ith left eigenvector, then Yt will be orthogonal to that
eigenvector too, for t ≥ 1. This results will be useful in what comes next.
We define an MSV solution as a sequence of Yt’s that satisfy (3.2) and have the property

that there exists an n× n real matrix, A which satisfies[
I
... −A

]
Yt = 0 for t = 0, 1, 2, ... . (3.8)

We find a candidate MSV solution by selecting n left eigenvectors of Π and using them to
construct an n× 2n matrix D. Note that, by (3.7)

for any solution with DY0 = 0, we have DYt = 0 for t > 0. (3.9)

We split the D matrix into components that are conformable with the two components of
Yt :

DYt =
[
D1

... D2

]( zt
zt−1

)
= D1zt +D2zt−1.

If
D1 invertible, A ≡ −D−11 D2 real, (3.10)

then the candidate MSV is an MSV (an actual MSV, for emphasis) in which Y0 is uniquely
determined by:

Y0 =

(
A
I

)
z−1, I ~n× n identity matrix.

Condition (3.8) holds because of (3.9).4

Note that there exist (
2n
n

)
(3.11)

4Note that in effect we have described a strategy for computing a matrix zero, A, of the matrix polynomial,
α0A

2 + α1A+ α2I = 0.
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candidate MSV’s, since this is the number of ways of choosing n left eigenvectors from the
set of 2n left eigenvectors. The set of actual MSV’s is smaller than what is indicated in
(3.11) if there are candidate MSV’s which generate a complex A matrix and/or D1 that is
not invertible. (We discuss the complex case by way of an example below.) The key result
is that there is a finite number of isolated MSV solutions. This is analogous to result (ii) in
the previous section.
To determine the set of non-explosive solutions, note that Ỹt → 0 if, and only if, Yt → 0.

Because of (3.6) it is convenient to consider the convergence properties of Ỹt. According to
(3.6), a non-explosive solution must have the property that the eigenvalues greater than unity
in absolute value have been ‘extinguished’from the system. If |λi| > 1 (i.e., λi is ‘explosive’)
this eigenvalue is extinguished by choosing Y0 so that P̃iY0 = 0. The word, ‘extinguished’, is
appropriate here because - according to (3.6) - λi has no impact on solution dynamics when
P̃iY0 = 0. Consider the same three cases delineated in the previous section. Let q denote the
number of explosive eigenvalues.

• Case 1: n = q. In this case a candidate non-explosive solution is found by constructing
a D matrix containing the n left eigenvectors associated with the explosive eigenvalues
and determining the Y0 such that DY0 = 0. This candidate is an actual non-explosive
solution if (3.10) is satisfied. The candidate non-explosive solution is unique.

• Case 2: n < q. In this case, every solution is explosive.

• Case 3: n > q. In this case, construct an q × 2n D1 matrix by including the left
eigenvectors of Π associated with the q explosive eigenvalues. The condition, D1Y0 = 0
represents q restrictions on Y0 which is not suffi cient to determine Y0 uniquely because
Y0 has n > q free elements. One way to isolate a unique element in Y0 is to construct
an (n− q)× 2n matrix, D2, using n− q of the remaining 2n− q left eigenvectors of Π.
Then,

D =

[
D1

D2

]
,

is a n× 2n matrix that represents a candidate MSV solution. There are(
2n− q
n− q

)
candidate MSV, non-explosive solutions.

Other non-explosive solutions can be found that are not MSV as follows. Partition D1

and z0 (i.e., the first n elements of Y0) in the following way:

D1 =
[
D11 D12

]
, z1 =

[
z1,0
z2,0

]
, y =

[
z2,0
z−1

]
.

Here, D11 is q × q and D12 is q × 2n. Also, z1,0 is q × 1, z2,0 is (n− q) × 1 and y is
(q + n)× 1. Then, consider:

D1Y0 = D11z1,0 +D12y = 0.
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As long as D11 is invertible and −D−111 D12 is real we can write

z1,0 = −D−111 D12y. (3.12)

Note that y has n given initial conditions, as well the ‘free’n − q objects in z2,0. For
any specification of z2,0 we have a particular z0 and, hence, Y0. In this way, we have
identified an n−1 dimensional space of candidate solutions. I say ‘candidate’, because
these solutions are actual solutions only if D11 is invertible and D−111 D12 is real. Since
the typical solution obtained in this way does not involve a Y0 that is orthogonal to n
left eigenvectors, almost all of these solutions are not MSV.

Although the equations we study have been linearized, when q < n we know we have
multiple equilibria in the underlying nonlinear system. This is because we know that
when z−1 = 0, then one equilibrium is given by zt = 0 for t > 0. When q < n the
procedure in the previous paragraph allows us to find other solutions arbitrality close
to the steady state. Because these other solutions can be arbitrarily small deviations
from the steady state equilibrium we know that the alternative solutions also satisfy the
underlying non-linear equilibrium conditions.5 This is because the first order Taylor
series expansion is arbitraily accurate for paths suffi ciently close to the steady state
path. Formally, when q < n, then for any high-dimensional ball drawn around the
steady state equilibrium we can find another equilibrium that lies within that ball.
As a result, the steady state equilibrium is said to be indeterminate. It is worth
noting that the MSV solutions that we studied above are less useful. This is because
when z−1 = 0 then all MSV solutions have the property that zt = 0 for t > 0, since
each satisfies, zt = Azt−1 for t ≥ 0 and some A. The non-MSV solutions described
provide a constructive procedure to gaining insight into economic forces underlying
the multiplicity of equilibria that exists when q < n.

4. Stochastic Case, Invertible a

In the stochastic case, (3.1) is written

Et [α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st] = 0, (4.1)

for each zt ∈ Rn, st ∈ Rns . Here, st is the vector of exogenous shocks and is assumed to have
the following time series representation:

st = Pst−1 + εt,

where the eigenvalues of P are all less than unity in absolute value.6 It is convenient to
rewrite (4.1):

α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st = ξt+1, (4.2)

5This obviously also means any relevant transversality conditions since they are solutions that return to
steady state.

6This example, in the case n = 1, could arise from a stochastic version of the neoclassical model in the
previous footnote in which the production function is replaced by kαt exp (θt)

1−α
. If θt−θ = ρ (θt−1 − θ)+ut,

where ut is iid and uncorrelated with past θt and |ρ| < 1, then st = θt, P = ρ, εt = ut. When ns > 1 the
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where ξt+1 is a stochastic process satisfying

Etξt+1 = 0, (4.3)

for all t. Note that the set of ξt+1 satisfying (4.3) is very large. For example,

ξt+1˜N(0, 1− cos (t)),

is a possibility.
As before, we proceed by expressing the system as a first order process. If

Yt
(2n+ns)×1

=

 zt
zt−1
st

 , a =

 α0 0 β0
0 I 0
0 0 I

 , b =

 α1 α2 β1
−I 0 0
0 0 −P

 , ωt =

 ξt+1
0
εt+1

 ,

(4.4)
then (4.2) and the law of motion of st are summarized as follows:

aYt+1 + bYt = ωt+1. (4.5)

As in the previous section, we assume α0 is non-singular, so that a is invertible. Then, the
analog of (3.3) is

Yt = ΠtY0 + a−1ωt + Πa−1ωt−1 + · · ·+ Πt−1a−1ω1. (4.6)

We see that now the {Yt} that solves the system is a stochastic process. We can still use the
sort of approach of the previous section here in characterizing the set of solutions. The set of
solutions is now indexed by Y0 and a stochastic process for

{
ξt+1

}
that satisfies (4.3). The

other stochastic process, {εt} , is treated like z−1 in that it is given by the problem. Thus,
the space of solutions is characterized by the choice of Y0,

{
ξt+1

}
. This is a very large space.

The vector, Y0, has n free elements, the ones corresponding to z0. The vector stochastic
process,

{
ξt+1

}
, also has n free elements.

To further characterize the set of solutions, it is convenient to make use of (3.5) and
premultiply (4.6) by P−1 :

Ỹt = ΛtỸ0 + P−1a−1ωt + ΛP−1a−1ωt−1 + · · ·+ Λt−1P−1a−1ω1, (4.7)

or,
Ỹit = λtiỸi,0 + vi,t + λivi,t−1 + · · ·+ λt−1i vi,1, vi,t ≡ P̃ia

−1ωt,

notation accommodates more complicated θt processes and/or other shocks. For example, suppose

θt − θ = ρ1 (θt−1 − θ) + ρ2 (θt−2 − θ) + ut + γut−1

then, st =
[
θt − θ θt−1 − θ ut

]′
, εt =

[
ut 0 ut

]′
and

F =

 ρ1 ρ2 γ
1 0 0
0 0 0

 .
It can be verified that the roots of λ2− ρ1λ− ρ2 are less than unity in absolute if and only if the eigenvalues
of F are less than unity in absolute value.
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for i = 1, ..., 2n+ ns. Note, selecting Y0 to be orthogonal to the left eigenvector of λi, P̃i, no
longer ensures that Yt remains orthogonal to that eigenvector forever after. For this to be
the case, we must also set vi,t = 0 for each t. In fact we have the degrees of freedom to do
this because of the n free stochastic processes in ξt. To see this, write

vi,t =

[
δ
(i)
1
1×1

δ
(i)
2

1×(n−1)

](
ξ1t
ξ2t

)
+ γ(i)
1×ns

εt,
[
δ
(i)
1 δ

(i)
2 0

1×n
γ(i)

]
= P̃ia

−1,

where

ξt ≡

 ξ1t
1×1
ξ2t

(n−1)×1

 .

We suppose that δ(i)1 6= 0. If ξ2t is any given process that satisfies (4.3), then choose ξ
1
t to

satisfy

ξ1t =
δ
(i)
2 ξ

2
t + γ(i)εt

δ
(i)
1

.

Note that with ξt constructed in this way, (4.3) is satisfied. Thus, it is possible to find a
solution (i.e., a Y0 and a {ξt} that satisfies (4.3)) with the property that P̃iYt = 0 for all t.
As before, we use this result to construct a set of MSV solutions. Here, we define a

candidate MSV solution as a solution, (Y0, {ξt}) , having the property that there exists a
n× (2n+ ns) matrix D such that

DYt = 0, t = 0, 1, 2, .... .

Note that if the analog of (3.10) holds (i.e., the left n × n block of D is invertible and the
analog of A is real), an MSV solution has the property that zt can be determined uniquely
knowing only zt−1 and st. In this case, we say the candidate MSV solution is an actual MSV.
As before, there are many candidate MSV solutions in the space of solutions. They can be
found by constructing D matrices by selecting n left eigenvectors from the set of 2n + ns
eigenvectors of Π and by selecting the n free stochastic processes in ξt so that

Da−1ωt = 0
n×1

, (4.8)

for each t = 0, 1, 2, ... . Note that by selecting ξt in this way, we make ξt an exact function
of εt. Such a solution is sometimes called by economists a ‘fundamental’solution because
it makes the stochastic processes driving the system, ξt, εt exclusively a function of the
exogenous disturbances impacting on preferences and technology, namely the εt’s.7

We now define a non-explosive solution as one having the property:

E0Yt → 0,

V ar0 (Yt) bounded.

7I say ‘economists’here, because the word, ‘fundamental’means something different in other areas, for
example, time series analysis.
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Note that the first condition is not enough, because it does not restrict the ξt’s at all.
Without restricting the ξt’s, the first condition could be satisfied while the Yt’s have exploding
variances...hardly ‘non-explosive’.
As before, the non-explosive solutions are the ones in which the explosive eigenvalues have

been suppressed. To suppress an explosive eigenvalue, λi, a−1ωt and Y0 must be selected so
that P̃ia−1ωt = 0 for all t and P̃iY0 = 0. There are n degrees of freedom in setting ξt and
in setting Y0. As a result, we obtain the same three cases considered in the previous two
sections. Let q denote the number of explosive eigenvalues.

• Case 1: if q = n, the number of candidate non-explosive solutions is unique and it is
an MSV if the analog of (3.10) is satisfied.

• Case 2: if q > n, all solutions are explosive.

• Case 3: if q < n, there are many candidate non-explosive solutions. Some may be
MSV’s. In addition, non-explosive solutions that are not MSV’s also exist. They can
be found using the approach described at the end of the previous section.

It is worthwhile to elaborate a little on case 3. To identify a candidate non-explosive MSV
solution, construct the first q rows of an n× (2n+ns) D matrix using the q left eigenvectors
of Π associated with the explosive eigenvalues. One could fill out the bottom n − q rows
of D with left eigenvectors of Π associated with the non-explosive eigenvalues. There are
obviously several ways of doing this. For each D constructed in this way, choose Y0 so that
DY0 = 0 and choose the n elements of ξt so that (4.8) is satisfied. Each resulting solution,
(Y0, {ξt}) , is a candidate non-explosive MSV solution in which only fundamental shocks
appear. There are also non-MSV solutions. Fill out the bottom n−q rows of D with vectors
other than left eigenvectors of Π. Choose them so that D has rank n. There is obviously a
continuum of ways of doing this. Choose the ξt’s any way you want, subject only to (4.3)
and the requirement that P̃ia−1ωt = 0 for the explosive eigenvalues. There is obviously a
continuum of ways of choosing ξt’s to satisfy these conditions. To the extent that the ξt’s
are not a function of εt, these candidate non-MSV solutions are also non-fundamental. The
elements of ξt that are not a function of εt are called ‘sunspots’.

5. Non-Invertible a

Now consider the case when a is not invertible. This case arises when α0 is singular. It occurs
because in practice equilibrium conditions are different in terms of how many future variables
they include. An intertemporal Euler equation includes variables stretching relatively far into
the future while a resource constraint or an intratemporal Euler equation involves variables
that extend less far in the future. A consequence of this is that rows of α0 can be zero. A
general procedure for handling this case is to substitute out variables in a way that makes
the system smaller, and have the property that α0 in that system is non-singular. A simple
example is the neoclassical growth model with an hours worked decision. In that case, the
system involves the intra- and inter- temporal Euler equations (I’m assuming the resource
constraint has used to substitute out consumption). This system has a singular α0. However,
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hours worked may be substituted out from the linearized intra-temporal Euler equation into
the linearized inter temporal Euler equation. The resulting system has a non-singular α0.
In effect, we ‘decouple’hours worked from the system and solve the smaller system. Once
a solution for the smaller system is found, we can solve for the variable, hours worked, that
had been substituted out.
Although manual substitution along the lines of the previous paragraph works in some

examples, in general it is tedious. Fortunately, there is a simple matrix procedure based
on the QZ decomposition that allows us to make the system smaller by decoupling some
variables. To my knowledge, it was first suggested in Sims in a 1989 working paper, which
was subsequently published in a 2001 issue of Computational Economics.
We consider the deterministic case in detail, and then explain the adjustments required

to handle the stochastic case.

5.1. Deterministic Case

Denote the dimension of Yt by m ≡ 2n. Suppose that the rank of a is m− l, with 0 < l < m.
The QZ decomposition of matrices, a and b, is a set of orthonormal matrices Q and Z, and
upper triangular matrices H0 and H1 with the properties:8

QaZ = H0, QbZ = H1. (5.1)

It is possible to order the rows of H0 so that the l zeros on its diagonal are located in the
lower right part of H0.

9 Denote the upper (m− l)× (m− l) block of H0 by G0. This matrix
must be non-singular. Let the corresponding upper left (m − l) × (m − l) block in H1 be
denoted G1. By construction, the l terms on the lower right part of the diagonal of H0 are
zero. I assume that the diagonal terms in the lower right l × l block of H1 are non-zero.
Also, it is useful to partition Z ′ as follows:

Z ′ =

(
L1
L2

)
, (5.2)

where L1 is (m− l)×m and L2 is l ×m.
Inserting ZZ ′ (= I) before Yt+1 and Yt in (3.2), defining γt ≡ Z ′Yt, and pre-multiplying

(3.2) by Q, (3.2) becomes:

H0γt+1 +H1γt = 0, t = 0, 1, ... . (5.3)

Partition γt as follows:

γt =

(
γ1t
γ2t

)
, (5.4)

8This decomposition can be accomplished with MATLAB’s qz command.
9This can be accomplished by processing the output of MATLAB’s qz command by the code, qz-

div, originally written by Christopher Sims and maintained by Dynare. That code may be found at
http://www.dynare.org/dynare-matlab-m2html/matlab/qzdiv.html

11



where γ1t is (m− l)× 1 and γ2t is l × 1. It is easy to verify that (5.3) implies γ2t = 0, t ≥ 0,
i.e.,10

L2Yt = 0, t = 0, 1, ... . (5.5)

Thus, the ‘full rank’part of the system appears in the upper left (m− l)× (m− l) block of
(5.3) and the singular or ‘static’part of the system appears in the lower right l × l block.
With (5.5) imposed, the last l equations in (5.3) are redundant, so (5.3) can be written

G0γ
1
t+1 +G1γ

1
t = 0, t = 0, 1, ... . (5.6)

In effect, we have reduced the size of the system in a way that puts us into the ‘invertible
a’case, by separating out the static part which is the source of the singularity. The set of
solutions to the reduced sized system, (5.6), can be expressed as γ1t = (−G−10 G1)

tγ10, t ≥ 0,
or,

P−1γ1t = ΛtP−1γ10, (5.7)

where PΛP−1 = −G−10 G1 is the eigenvector, eigenvalue decomposition of −G−10 G1.
Here, we continue to define an MSV as in (3.8). We seek a candidate MSV by constructing

a matrix, D, with the property that DYt = 0 for all t. The matrix, D, corresponds to an
actual MSV if D satisfies (3.10). In the present context, we already have l static restrictions,
(5.5). So, to construct a candidate MSV, we require only n − l additional restrictions. We
find these by putting n− l of the left eigenvectors of −G−10 G1 into a (n− l)× (m− l) matrix
p̃ and forming the (n− l)×m matrix, p̃L1. Our candidate MSV is then given by:

D =

[
p̃L1
L2

]
.

The number of candidate MSV’s corresponds to the number of ways that D matrices like this
can be constructed. That is determined by the number of ways that n − l left eigenvectors
can be selected from the set ofm−l eigenvectors of −G−10 G1. Each of theseD’s is a candidate
MSV solution. A candidate MSV solution is an actual MSV solution if D satisfies condition
(3.10).
Now consider the set of non-explosive solutions, Yt → 0. The γ1t that solve (5.7) converge

to zero asymptotically if, and only if, p̃γ10 = 0, where p̃ is composed of the rows of P−1

corresponding to diagonal terms in Λ that exceed 1 in absolute value. This condition is:

p̃L1Y0 = 0. (5.8)

10To see this, let us temporarily adopt a simpler notation. Let the lower right l× l block of H0 be denoted
Γ and let the corresponding block of H1 be denoted W. Write Γ = [Γij ] and W = [Wij ]. The matrices, Γ
and W, are upper triangular, with the former having zeros along its diagonal and the latter having non-zero
terms along its diagonal. Also, write xt = γ2t , with xt = [x1t, ..., xlt]

′. Then we have Γxt+1 + Wxt = 0
for t = 0, 1, 2, ... . Note that the last row of Γ is composed of zeros, so that the last row of this system of
equations is Wl,lxlt = 0 for all t. Since Wl,l 6= 0, this implies xlt = 0 for all t. Now consider the l − 1th

equation:
Γl−1,lxl,t+1 +Wl−1,l−1xl−1,t +Wl−1,lxl,t = 0,

for t = 0, 1, 2, ... . But, since xl,t = 0 for all t, this implies Wl−1,l−1xl−1,t = 0 for all t. Since Wl−1,l−1 6= 0,
this in turn implies xl−1,t = 0 for t = 0, 1, 2,... . Proceeding in this way, we establish recursively that xj,t = 0
for all t, for j = l, l − 1, ..., 1.
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There are many candidate non-explosive solutions if q, the number of explosive eigenvalues
of −G−10 G1, is less than n− l. There is exactly one solution if q = n− l and there are none
if q > n− l.
Consider the case, q = n− l. Recall that the number of free elements in Y0 is n. Equation

(5.5) for t = 0 represents l restrictions on Y0, so that to pin Y0 down uniquely, n − l more
restrictions are required. Construct the matrix p̃ using the n− l left eigenvectors associated
with the explosive eigenvalues in −G−10 G1. Then, define

D =

[
p̃L1
L2

]
. (5.9)

Under the assumption that D satisfies (3.10), the unique non-explosive solution corresponds
to the MSV associated with the Y0 satisfying DY0 = 0.
Now consider the case, q < n−l. In this case there are multiple, but finite, MSV solutions.

But, there is actually a continuum of solutions, counting the non-MSV solutions. The latter
are useful for thinking about the determinacy of the non-stochastic steady state equilibrium
of the underlying nonlinear model. They can also be useful to gaining intuition about the
economic source of the multiple solutions. So, we now discuss how to find a non-MSV
solution that is close to the steady state solution.
Equation (5.5) provides l restrictions on Y0. Suppressing q explosive eigenvalues from the

system requires that γ10 be orthogonal to the q left eigenvectors of Π associated with the
explosive eigenvalues. Denote these by p̃ and define D as in (5.9), with the understanding
that p̃L1 is q ×m. Now, D is (q + l)×m < n×m. Let ñ ≡ q + l and write

D =
[
D1

... D2

]
,

where D1 is ñ× ñ and D2 is ñ× (m− ñ) . Define

Y0 =

(
z10
y

)
, y =

(
z20
z−1

)
, z0 =

(
z10
z20

)
,

where Y0 is m× 1, z10 is ñ× 1, z20 is (n− ñ)× 1. If we set z−1 to its steady state value of 0,
then for z20 close enough to zero, the computations reveal the local-to-steady-state properties
of the underlying nonlinear equations that are approximated by (3.1).
We seek a sequence of Yt’s which respect the static restriction, (5.5), for all t and which

suppress the explosive eigenvalues for all t, i.e., satisfy (5.8). That is, we seek Y0, Y1, with
the property, DYt = 0 for t = 0, 1, 2, ... . For t = 0 :

DY0 = D1z
1
0 +D2y = 0

implies (assuming D1 is invertible and D−11 D2 is real),

z10 = −D−11 D2y.

Thus, we have a mapping from z20 in y to z10 and, hence, to Y0. Given Y0 we compute
γ10 = L1Y0 and

γ1t = Πtγ10, t = 1, 2, ... . (5.10)
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Then,

Yt = Z

 γ1t
(m−l)×1

0
l×1

 , t = 1, 2, ...

Note that this sequence satisfies L2Yt = 0 for t = 0, 1, 2, ... . In addition, all explosive
eigenvalues have been suppressed, because p̃L1Yt = p̃γ1t = 0 for all t. In practice, p̃γ10 is not
exactly zero, and the effects of this can cumulate, especially if one or several of the explosive
eigenvalues are particularly large. Thus, we expect that p̃γ1t eventually begins to explode for
large enough t, so that these higher values of t should be ignored. An alternative approach,
which is mathematically the same as the one described above, is to replace Πt by P Λ̃tP−1.
Here, Λ̃ is the diagonal matrix of eigenvalues of Λ in which each explosive eigenvalue is
replaced by 0. With this approach, the explosive eigenvalues truly are suppressed and Yt
must go to zero as t→∞.
The above algorithm, as long as z−1 = 0 and z20 is close enough to zero, constructs an

solution that is arbitrarily close to the steady state solution, Yt = 0, t ≥ 0. Because we can
find solutions that are arbitrarily close to the steady state solution, we conclude that the
steady state solution is indeterminate when q < n− l. The steady state is determinate when
q ≥ n − l. In that case, we can construct a region around the point in infinite-dimensional
space corresponding to the steady state solution that is small enough that it does not contain
another solution.

5.2. Stochastic Case

We now consider (4.5) with the structure on ωt+1 that is indicated in (4.4). We have Etωt+1 =
0 which, among other things, requires that ωt+1 be orthogonal to all date t and earlier
variables. Also, by comparing (4.1) and (4.2) we see that the elements of ξt+1 are linear
transformations on one-step-ahead forecast errors of endogenous variables in the system.
The fact that we are in the non-invertible a case implies some restrictions on ξt+1. For
example, a may be non-invertible because some equations are not forward looking, so that
the corresponding row of α0 is composed of zeros. This would be the case, for example,
if one of the equations in the system included a resource constraint, or a static first order
condition that did not involve expectations. When there are rows of α0 that are composed of
zeros, then the corresponding element of ξt+1 is zero too. Another possibility (see section 7)
is that all equations include forward-looking variables, but there are restrictions across the
ξt+1’s. For example, it could be that the expectation of the future value of the same variable
appears in two different equations, so that two of the ξt+1’s are proportional to each other.
For an example, see section 7.2 below.
Premultiplying (4.5) by Q we obtain

H0γt+1 +H1γt = Qωt+1, (5.11)

where γt = Z ′Yt. We adopt the partitioning used in the previous subsection and begin by
establishing that γ2t = 0 for all t and ωt+1 must satisfy a restriction that is specified below.
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Express the bottom l equations in (5.11) as follows: 0 W1,2 W1,3

0 0 W2,3

0 0 0

 γ21,t+1
γ22,t+1
γ23,t+1

+

 H1,1 H1,2 H1,3

0 H2,2 H2,2

0 0 H3,3

 γ21,t
γ22,t
γ23,t

 =

 Q21ωt+1
Q22ωt+1
Q23ωt+1

 , (5.12)

where we set l = 3 to simplify the exposition. The first square matrix in (5.12) is the bottom
right l × l block of H0, the second square matrix is the bottom right block of H1, and

Q2 =

 Q21
Q22
Q23

 ,

where Q2 denotes the bottom l equations in Q. As before, we assume that the diagonal terms
on the bottom right l × l block of H1 are all non-zero. Finally, γ2i,t denotes the i

th element,
i = 1, ..., l, of γ2t . In addition to showing that γ

2
t = 0, we also establish that ωt+1 must satisfy

Q2ωt+1 = 0 for all t.
Consider the last equation in (5.12):

γ23,t =
1

H3,3

Q23ωt+1.

Because ωt+1 must be orthogonal to γ2t , we conclude that ωt+1 must have the property,
Q23ωt+1 = 0. In the example in section 7 below, we found that given the restrictions on ξt+1,
Q23ωt+1 = 0 is satisfied without further constraining ωt+1. We conclude that γ23,t = 0 for all
t. Now, consider the second-to-last equation in (5.12):

W2,3γ
2
3,t+1 +H2,2γ

2
2,t +H2,3γ

2
3,t = Q22ωt+1,

after making use of γ23,t = 0,

γ22,t =
Q22
H2,2

ωt+1.

Orthogonality requires Q22ωt+1 = 0, a condition which may or may not require additional
restrictions on ωt+1. From this we conclude that γ22,t = 0 for all t. A similar argument implies
Q21ωt+1 = 0 and γ21,t = 0 for all t. In this way, we can see that γ2t = Q2ωt+1 = 0 for all t,
for any l. In practice, given the restrictions on ξt+1 the condition, Q

2ωt+1 may be satisfied
automatically. For an example, see section 7.2.
Given that γ2t = 0, we have that (5.11) can be expressed as

G0γ
1
t+1 +G1γ

1
t = Q1ωt+1,

where G0 and G1 are the upper (m− l) × (m− l) blocks of H0 and H1, respectively. Also,
Q1 is the first m− l rows of Q, where m is the length of the vector, Yt.
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6. ‘Candidate’Versus ‘Actual’MSV’s

In the previous sections, we have frequently referred to candidate versus actual MSV solu-
tions. Here, we develop an example to make concrete the difference between them. Consider
the standard neo-Keynesian model11:

δπt+1 + λyt − πt = 0

yt+1 − yt −
1

σ
(rt − πt+1) = 0 (6.1)

ρrt−1 + (1− ρ)βπt+1 + (1− ρ)γyt − rt = 0.

The first equation is the neo-Keynesian Phillips curve, according to which current inflation,
πt, is a function of expected future inflation and current output, yt. The second equation is
a log-linear approximation of the household intertemporal Euler equation for holding bonds.
It says that the expected growth rate in output, yt+1 − yt, is proportional to the expected
real rate of interest, equal to the nominal interest rate, rt, minus expected inflation. The last
equation is the monetary policy rule, which makes the nominal rate of interest a weighted
average of a target rate of interest (this is a linear function of expected inflation and output)
and the lagged nominal rate of interest. All the variables are expressed relative to their
steady state values.
The system can be expressed in our canonical form as follows: δ 0 0

1
σ

1 0
(1− ρ)β 0 0

 πt+1
yt+1
rt+1

+

 −1 λ 0
0 −1 − 1

σ

0 (1− ρ)γ −1

 πt
yt
rt

+

 0 0 0
0 0 0
0 0 ρ

 πt−1
yt−1
rt−1

 =

 0
0
0

 ,

(6.2)
or,

α0zt+1 + α1zt + α2zt−1 = 0,

in obvious notation. There is no uncertainty. A minimal state variable solution is a matrix
A such that

zt = Azt−1,

where A satisfies
α0A

2 + α1A+ α2 = 0. (6.3)

We will now describe the set of candidate and actual MSV solutions. The parameter
values that we adopt for the model are:

δ = 0.99, σ = 1, λ = 0.3, γ = 0.15, ρ = 0.5, β = 1.5. (6.4)

First, we set up the system in first-order form:

aYt+1 + bYt = 0,

where

a =

[
α0 0
0 I

]
, b =

[
α1 α2
−I 0

]
, Yt =

(
zt
zt−1

)
.

11See Clarida, Gali and Gertler, 2000, “Monetary Policy Rules and Macroeconomic Stability: Evidence
and Some Theory,”Quarterly Journal of Economics, February.
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In this example, α0 is 3× 3 and has rank 2. As a result, the rank of a is 5. That is, n = 3,
m = 6 and l = 1. To study the set of solutions, we must apply the QZ decomposition. Thus,
we find Q and Z such that

QaZ = H0, QbZ = H1.

Here, QQ′ = I, ZZ ′ = I, where here and throughout ‘′’denotes the Hermetian transpose
(e.g., transposition and conjugation) and

Q =


0 0 0 1 0 0
0 0 0 0 1 0

−0.22− 0.0003i −0.70− 0.001i −0.17− 0.0002i 0 0 0.65 + 0.0009i
0.36 + 0.36i 0.42− 0.09i 0.27 + 0.27i 0 0 0.64 + 0.10i
0.58− 0.009i −0.47 + 0.32i 0.44− 0.007i 0 0 −0.20 + 0.34i
−0.60 0. 0.80 0 0 0



Z =


0 0 −0.25 + 0.0004i 0.59− 0.3i 0.32− 0.29i −0.56
0 0 −0.55 + 0.0008i 0.26 + 0.34i −0.65− 0.28i 0.11
0 0 0.27− 0.0004i 0.51− 0.17i 0.13− 0.28i 0.74
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0.75− 0.001i 0.21 + 0.21i −0.42− 0.20i −0.37

 .

Also, the upper 5×5 block of H0, G0, and the upper 5× 5 block of H1, G1, are

G0 =


1 0 0 0 0
0 1 0 0 0
0 0 1.14 −0.66 + 0.21i −0.15 + 0.37i
0 0 0 0.96 + 0.26i −0.09 + 0.37i
0 0 0 0 0.77− 0.21i



G1 =


0 0 0.25− 0.0004i −0.59 + 0.3i −0.32 + 0.29i
0 0 0.55− 0.0008i −0.26− 0.34i −.65 + 0.28i
0 0 −0.41 0.38 + 0.09i −0.27− 0.28i
0 0 0 −1.19 −0.25 + 0.19i
0 0 0 0 −0.95

 .
Let

Z ′ =


L1︸︷︷︸
5×6
L2︸︷︷︸
1×6

 , γ1t = L1Yt, γ
2
t = L2Yt.

As explained in the previous section, the system ‘decouples’with γ2t = 0 for t ≥ 0 :

L2Yt = 0, all t, (6.5)

and
G0γ

1
t+1 +G1γ

1
t = 0, (6.6)

or,
γ1t+1 = −G−10 G1γ

1
t = Πγ1t .

17



Interestingly, the variables, γ1t , are complex and so is Π :

Π =


0 0 −0.25 + 0.0004i 0.59− 0.30i 0.32− 0.29i
0 0 −0.55 + 0.0008i 0.26 + 0.34i −0.65− 0.28i
0 0 0.35 0.27− 0.47i 0.70− 0.03i
0 0 0 1.15− 0.31i 0.31 + 0.19i
0 0 0 0 1.15 + 0.31i


Still, we have no problem concluding that the class of solutions here is given by

γ1t = Πtγ10, (6.7)

where γ10 has 2 ‘free parameters’. These are composed of the first three elements of Y0, net
of the one restriction on Y0 implied by (6.5). Thus, (6.5) represents a 2 parameter space of
solutions. The eigenvector-eigenvalue decomposition of Π,

Π = PΛP−1, (6.8)

plays an important role in the dynamics of the solutions, (6.7). The eigenvalues of Π (i.e.,
the 5 terms on the diagonal of the diagonal matrix, Λ) are:

0, 0, 0.35, 1.15± 0.31i.

Note that there are two explosive eigenvalues and three non-explosive. Also, although there
are two repeating eigenvalues, it is nevertheless the case that the eigenvector-eigenvalue
decomposition, (6.8) exists in this example.
We can compute candidate MSV solutions for the system as follows. Choose the 2 × 5

matrices, B, such that Bγ10 = 0 and B is composed of left eigenvectors of π. There are 10
ways to construct a B matrix in this way and each corresponds to a candidate MSV solution.
This is because for any B constructed in this way we can construct a 3× 6 matrix, D such
that DY0 = 0, from

D =

[
BL1
L2

]
.

Whether a given candidate MSV solution is an actual solution requires that there exist a
3× 3 real matrix A such that

A = −D−11 D2,

where
D =

[
D1 D2

]
.

That is, we require that D1 be invertible and that D−11 D2 be real. In this case,

zt = Azt−1

is an actual MSV solution.
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It is easy to confirm that in each of the 10 candidate MSV solutions, D1 is invertible.
However, in only four cases −D−11 D2 is real. Thus, among the 10 candidate MSV’s there are
just four actual MSV’s. These are A1, A2, A3, A4 :

A1︸︷︷︸
(0.35,1.15±0.31i)

=

 1.01 −0.3 0.
−1.01 1.30 1.0
0.92 −0.43 0.35

 , A2︸︷︷︸
(0,1.15±0.31i)

=

 −61.85 0 45.18
269.30 0 −193.28
−87.87 0 64.16

 ,
A3︸︷︷︸

(0,1.15±0.31i)

=

 0 −0.30 0.73
0 1.30 0.27
0 −0.42 1.01

 A4︸︷︷︸
(0,0,0.35)

=

 0 0 −0.34
0 0 −0.74
0 0 0.31

 ,
where numbers in parentheses beneath Aj are the three eigenvalues of Aj, j = 1, ..., 4.
Note that the MSV solutions all look very different. The entries in A2 are a couple of

orders of magnitude different in size from the corresponding entries in the other A matrices.
Note, too, that there is only one A matrix which has all its eigenvalues less than unity in
absolute value. The latter is to be expected. There are two explosive eigenvalues in the
decoupled system, (6.6). The fourth MSV extinguishes both eigenvalues by working with B
constructed using the two associated left eigenvectors of Π.
An interesting special case of the model sets ρ = 0. In this case, (6.3) reduces to:

(α0A+ α1)A = 0.

We can see one MSV solution right away, without using the technology based on the QZ
decomposition. In particular,

A = 0

represents a solution to the system. When we apply the QZ decomposition approach to this
case, we find - like when ρ 6= 0 - that there are 10 candidate MSV’s, but only 4 actual MSV’s.
Among these four MSV’s, only the one in which A = 0 has all eigenvalues less than unity.
Another interesting special case occurs when β = 0.8 and ρ is held at its benchmark value

of 0.5. In this case, Π has only one explosive eigenvalue. Thus, we can expect that there are
many non-explosive solutions, possibly even many non-explosive MSV’s. As before, there
are 10 candidate MSV’s. It turns out that each one is an actual MSV because each satisfies
the invertibility condition and the requirement that A be real. A puzzling feature of the set
of MSV’s is that it does not include A = 0. Finally, four MSV’s are non-explosive. It is of
interest to display these:

A1 =

 0 0 −0.40
0 0 −0.85
0 0 0.38

 , A2 =

 0 0.54 0.82
0 0.46 0.18
0 0.20 0.82

 ,
A3 =

 0 0 1.04
0 0 0.37
0 0 0.90

 , A4 =

 0.65 0 0.29
0.54 0 −0.26
0.24 0 0.63

 .
Since each matrix is different and each has only non-explosive eigenvalues, each represents a
valid equilibrium. One may attempt to impose an equilibrium selection. For example, based
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on the economics of the model one might suppose it ‘implausible’for the state to include
lagged inflation or lagged output. But, two of the MSV solutions satisfy this plausibility
criterion because the first two columns of A1 and A2 are zero. Another possible criterion is
that A should ‘resemble’the A computed when β = 1.5 and there is a unique, non-explosive
solution. This criterion selects A1 as the solution. However, it is not clear why this selection
is appealing.

7. Sunspots in the New Keynesian Model that Does Not Satisfy
the Taylor Principle

We now consider the version of (6.1) in which 0 < β < 1, so that the monetary policy rule does
not satisfy the Taylor principle. As a result, the steady state equilibrium is indeterminate
and there exist sunspot equilibria. The intuition for this result is straightforward in the case
ρ = γ = 0. Consider the following temporary deviation from the steady state equilibrium
(i.e., the one in which all variables are constant). In the deviation, agents expect a higher
inflation rate. Because 0 < β < 1 the monetary authority raises rt, but by less than the rise in
expected inflation. Anticipating a decline in the real rate of interest, agents increase spending
and this leads to an increase in output and marginal cost and, hence, actual inflation. In
this way, the higher expected inflation is self-fulfilling. This logic suggests that there exist
other equilibria in a neighborhood of the steady state equilibrium.
Because we wish to allow for the possibility of sunspot equilibria, we consider a version

of (6.1) in which future variables are replaced by their expectation:

δEtπt+1 + λyt − πt = 0 (7.1)

Etyt+1 − yt −
1

σ
(rt − Etπt+1) = 0

ρrt−1 + (1− ρ)βEtπt+1 + (1− ρ)γyt − rt = 0.

We define

πt+1 = Etπt+1 + ηt+1
yt+1 = Etyt+1 + ψt+1,

where ηt+1 and ψt+1 denote the unexpected components in πt+1 and yt+1, respectively. The
only restriction on ηt+1 and ψt+1 is that they be unpredictable as of time t.
If we mechanically follow the strategy of representing the equilibrium conditions in matrix

form which was developed above (e.g., (3.1)), then the representation of (7.1) puts us in what
we have called the ‘non-invertible a case’(see, e.g., (6.2)). Given that we want to allow for
the possibility of sunspots, this is somewhat more complicated to work with than if the a
matrix in the VAR(1) representation of the equilibrium conditions were invertible. So, in
the first section below, we adopt the ‘trick’suggested in Clarida, Gali and Gertler (NBER
working paper 6442), which puts the model in the invertible a form. Although this approach
is conceptually more straightforward, it is somewhat idiosyncratic because it depends on a
trick. So, in the second subsection below we apply our general strategy, which uses the QZ
decomposition to put the system, (7.1), into the invertible a case.
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7.1. Invertible a

So we instead represent the system in a slightly different format.12 Define

Yt =

 πt
yt
rt−1

 .

We assume that the system starts up in period 0, when the third element of Y0 is given. The
other two elements, π0 and y0, are to be determined. We write the system in the format of
(4.5) as follows: δ 0 0

1
σ

1 − 1
σ

(1− ρ)β 0 −1

 πt+1
yt+1
rt

+

 −1 λ 0
0 −1 0
0 (1− ρ)γ ρ

 πt
yt
rt−1

 =

 δηt+1
ψt+1 + 1

σ
ηt+1

(1− ρ)βηt+1

 ,

or,
aYt+1 + bYt = ωt+1,

in obvious notation. The system is now in the ‘invertible a’form. With obvious modifications,
the analysis after (4.5) can be applied. Thus, we can express a solution of the system as
follows:

Ỹit = λtiỸi,0 + vi,t + λivi,t−1 + · · ·+ λt−1i vi,1, vi,t ≡ P̃ia
−1ωt,

for i = 1, 2, 3. As before, Π = PΛP−1, where Λ is a diagonal matrix with the three eigenvalues
of the system on the diagonal and the three columns of P are the right eigenvectors of Π.
Also, P̃ ≡ P−1 and the three rows of P̃ are the left eigenvectors of Π. Finally, Ỹi,t denotes
the ith element of the column vector, P̃ Yt. Note that:

a−1ωt+1 =

 1
δ

0 0
− 1
σδ

(βρ− β + 1) 1 − 1
σ

1
δ

(β − βρ) 0 −1

 δηt+1
ψt+1 + 1

σ
ηt+1

(1− ρ)βηt+1

 =

 ηt+1
ψt+1

0

 .

This expression is not surprising, because the object, a−1ωt+1, is the one-step-ahead forecast
error in Yt+1 given Yt. We can see this by premultiplying the representation for Yt by a−1 :

Yt+1 = ΠYt + a−1ωt+1.

The third element of a−1ωt+1 is zero because the third element of Yt+1 is known at time t
and so it has no forecast error.
We adopt the parameterization in (6.4), except that now β = 0.5. We have

Π =

 1.0101 −0.3030 0
−0.7576 1.3023 0.5000
0.2525 −0.0008 0.5000

 (7.2)

Λ =

 1.6216 0 0
0 0.8029 0
0 0 0.3879

 , P̃ =

 −0.8034 0.7617 0.3395
0.6527 0.3971 0.6555
−0.6427 −0.2122 0.9468


12We follow the approach in Clarida, Gali and Gertler (NBER working paper 6442).
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Note that we have one explosive eigenvalue. Non-explosiveness requires suppressing that
eigenvalue, or,

p̃Y0 = 0, v1,t = 0 for t = 1, 2, ...,

where p̃ is P̃1, the first row of P̃ . Also, v1,t ≡ p̃a−1ωt.
13 The latter requires

0.8034ηt = 0.7617ψt, t = 1, 2, ...,

where the elements of p̃ have been rounded. The requirement, p̃Y0 = 0, can be accomplished
in a variety of ways. Because the non-explosive eigenvalues die out it does not matter much
how the two degrees of freedom in Y0 are used to accomplish p̃Y0 = 0. For convenience we
do so by setting Y0 = 0.
To do a sunspot simulation of length T periods, draw ψ1, ψ2, ..., ψT from any distribution

with the property, Etψt+1 = 0. For our purposes the standard Normal distribution is good
enough. Then, to impose p̃a−1ωt = 0 set ηt as follows:

ηt =
0.7617

0.8034
× ψt = 0.948× ψt, t = 1, ..., T. (7.3)

By constructing the ηt’s in this way, we ensure that v1,t = 0, t = 1, 2, ... T. Then,

Yt = ΠYt−1 + a−1ωt = ΠYt−1 +

 ηt
ψt
0

 .

for t = 1, 2, ...., T, where ηt satisfies (7.3).
Mathematically, the preceding simulation algorithm works. However, in practice the

explosive eigenvalue will eventually make its appearance in a simulation that is long enough.
An alternative strategy simulates the rotated system, Ỹt ≡ P̃ Yt and then ‘unwinds’the Ỹt’s
at the end, that is, Yt = PỸt. The rotated system is given by (4.7), which is expressed in
recursive form as follows:

Ỹt = ΛỸt−1 + P−1a−1ωt

= ΛỸt−1 +

 P̃1
P̃2
P̃3

 ηt
ψt
0


=

 0 0 0
0 λ2 0
0 0 λ3

 Ỹt−1 +

 0

P̃2
P̃3

 ηt
ψt
0

 ,

where the replacement of P̃1 is designed to enforce P̃1ωt = 0 and the replacement of λ1 by 0
is designed to enforce the orthogonality, p̃Yt = 0 for all t. In an example, we set T = 20, 000,
and found that the correlation between yt and πt is 0.98, 0.92, 0.81, 0.17 for β = 0.5, 0.8,
0.9, 0.99, respectively.

13Here, we follow the previous convention in which p̃ is composed of the rows of P̃ which are associated
with the explosive eigenvalues of Π. In the present example, p̃ simply a row vector.
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7.2. Non invertible a

Now, the equilibrium conditions are represented in a stochastic version of (6.2): δ 0 0
1
σ

1 0
(1− ρ)β 0 0

 πt+1
yt+1
rt+1

+

 −1 λ 0
0 −1 − 1

σ

0 (1− ρ)γ −1

 πt
yt
rt

+

 0 0 0
0 0 0
0 0 ρ

 πt−1
yt−1
rt−1

 = ξt+1,

(7.4)
where

ξt+1 ≡

 δηt+1
1
σ
ηt+1 + ψt+1

(1− ρ)βηt+1

 . (7.5)

Expressing (7.4) in our canonical notation,

α0zt+1 + α1zt + α2zt−1 = ξt+1,

which is expressed in first order vector form as follows:

aYt+1 + bYt = ωt+1,

where

ωt+1 =

(
ξt+1

0

)
. (7.6)

We transform the first order vector representation using the QZ decomposition as follows:

H0γt+1 +H1γt = Qωt+1, (7.7)

where, as before,
H0 = QaZ, H1 = QbZ, γt = Z ′Yt.

Here, m = 6 and the rank of a is 5 so that l = 1. Also,

Q =


0 0 0 1 0 0
0 0 0 0 1 0

−0.2524 −0.7785 −0.0637 0 0 0.5710
0.3886 0.4509 0.0981 0 0 0.7975
0.8517 −0.4365 0.2151 0 0 −0.1946
−0.2448 0 0.9696 0 0 0



Z =


0 0 −0.3017 0.6217 0.6884 −0.2203
0 0 −0.6195 0.4282 −0.6579 0.0007
0 0 0.2621 0.4119 0.0221 0.8724
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0.6757 0.5104 −0.3044 −0.4362

 .
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Consider Q2ωt+1 (this is discussed in section 5.2), where Q2 corresponds to the last equation
in Q. Note that Q2ωt+1 = 0 for all t, since[

−0.2448 0 0.9696 0 0 0
]
ξt+1

=
[
−0.2448 0 0.9696

] 0.99× ηt+1
ηt+1 + ψt+1
0.25× ηt+1


= [−0.2448× 0.99 + 0.9696× 0.25] ηt+1
= 0.

Recall that

γ1t = L1Yt, γ
2
t = L2Yt, L =

[
L1
L2

]
= Z ′,

where L1 is composed of the upper m− l = 5 rows of Z ′ and L2 is composed of the bottom l
rows (in this case, l = 1) of Z ′. Also, γit, i = 1, 2 are (m− l)×1 and l×1 vectors, respectively.
Multiplying (7.7) by Q and taking into account γ2t = 0 for all t,14 we have that (7.7)

reduces to
G0γ

1
t+1 +G1γ

1
t = Q1ωt+1, (7.8)

where Q1 is the first m − l rows of Q. With two exceptions, the system, (7.8), is a straight
application of our discussion of the ‘invertible a case’in 4. One exception is that there are
only two degrees of freedom in how we select ξt, whereas in the invertible a discussion we
assumed the number of degrees of freedom in ξt is equal to its dimension, which in this case
is 3. The second exception has to do with the number of degrees of freedom in γ10. Since
γ10 = L1Y0, it might at first appear that the number of degrees of freedom in γ10 is equal to
the dimension of z0, which is 3. But, we have an additional restriction on Y0, which stems
from γ2t = 0 for all t, so that L2Y0 = 0. The requirement that z0 also satisfy this restriction
reduces the number of degrees of freedom in γ10 to two.
Thus, there are two degrees of freedom in computing a solution, {γ1t} , to (7.8): there

are two choices available in γ10 and two shocks in ξt+1, in (7.6). In the usual way, we try
to absorb these degrees of freedom by limiting ourselves to non-explosive solutions. To this
end, we examine the matrix, Π :

Π = −G−10 G1 = PΛP−1,

where
0, 0, 0.3879, 1.6216, 0.8029,

lie on the diagonal of the diagonal matrix, Λ. Non-explosiveness requires suppressing the
explosive eigenvalue. This eliminates one of the degrees of freedom in γ10, but not both. Since
γ10 does not have a substantial impact on the simulations when the explosive eigenvalue has
been suppressed, we arbitrarily set γ10 = 0.
Consistent with the discussion in 4, suppressing the explosive eigenvalue also pins down

one of the free elements of ξt+1. To see how, rewrite (7.8):

γ1t+1 = Πγ1t +G−10 Q1ωt+1.

14For the latter, recall the discussion in section 5.2.
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Premultiplying by P−1 and defining γ̃1t ≡ P−1γ1t , we obtain

γ̃1t+1 = Λγ̃1t + P−1νt+1, (7.9)

where
νt+1 ≡ G−10 Q1ωt+1.

Suppressing the explosive eigenvalue requires setting P̃4νt ≡ 0, where P̃4 is the fourth row
of P−1. We have

P̃4νt = P̃4G
−1
0 Q1ωt

= P̃4G
−1
0 Q1


δηt+1

1
σ
ηt+1 + ψt+1

(1− ρ)βηt+1
0
0
0


=

[
1.7602 −0.9021 0.4445

] 0.99× ηt+1
ηt+1 + ψt+1
0.25× ηt+1


= [1.7602× 0.99 + 0.4445× 0.25− 0.9021] ηt+1 − 0.9021ψt+1,

so that
ηt =

0.9021

1.7602× 0.99 + 0.4445× 0.25− 0.9021
ψt = 0.948× ψt.

Note that, as expected, the same relationship exists between ηt and ψt exists in this way of
solving the system as we found in the previous subsection.
We can now simulate the system as follows. First, draw an iid sequence, ψ1, ..., ψT , from

a random number generator. Then, compute η1, ..., ηT using the previous expression. Given
the ψt’s and the ηt’s, construct ωt’s using (7.5) and (7.6). Then, generate γ̃

1
t using

γ̃1t+1 = Λ̃γ̃1t +MG−10 Q1ωt+1,

where Λ̃ is the matrix, Λ, with the fourth diagonal element replaced by 0 and M is P−1

with the fourth row replaced by a row of 0’s. Zeroing out the explosive eigenvalue in Λ and
the fourth row in P−1 is mathematically correct and ensures that the explosive eigenvalue
cannot emerge as a result of rounding error. After generating γ̃11, ..., γ̃

1
T , we obtain γ

1
t from

γ1t = P γ̃1t , for t = 1, 2, ..., T. Finally, we obtain Yt from

Yt = Z

(
γ1t
0

)
.

If the calculations are done using the same sequence of realizations of ψ1, ..., ψT as in the
previous subsection, then we also obtain the same sequence of realizations of πt, yt and rt.
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