Christiano FINC 520, Spring 2008 Homework 1, due Monday, April 16.

- 1. Here are two questions about linear projections. You may use the necessity and sufficiency of the orthogonality property of projections in your answer.
 - (a) Prove:

$$P[Y_1 + Y_2|X] = P[Y_1|X] + P[Y_2|X],$$

where Y_1 and Y_2 are scalar random variables and $X = [X_1, ..., X_n]'$, where X_i is a scalar random variable. Also, P denotes the linear projection operator.

(b) Consider three random variables, x, y, z, where cov(y, x) = cov(x, z) = 0. Prove:

$$P\left[y|x,z\right] = P\left[y|z\right].$$

(c) Consider the random variable, $w = \delta z + \psi x$, where δ and ψ are arbitrarily selected non-zero numbers. Prove

$$P[y|w,z] = P[y|x,z],$$

where the equality holds for each possible realization of x, z and w.

2. Consider a stochastic process with covariance function, $\gamma_0 > 0$, $|\gamma_1| < \frac{1}{2}\gamma_0$, $\gamma_j = 0$, $j \ge 2$. Identify two MA(1) representations for x_t :

 $x_t = \nu_t + \theta \nu_{t-1}, \ \nu_t$ white noise with variance σ_{ν}^2 .

That is, identify two sets of values of θ and σ_{ν}^2 that have the property that the resulting MA(1) is consistent with the given γ_j , $j \ge 0$.

3. Consider the ARMA(2,2) process:

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}.$$

(a) Express the model for y_t as a vector AR(1) (VAR(1)):

$$Y_t = FY_{t-1} + v_t,$$

and display the contents of Y_t , F, v_t .

- (b) Use the VAR(1) representation to express y_t as an MA(∞). Explain why the existence of the MA(∞) requires that the eigenvalues of F lie inside the unit circle (i.e., have absolute value less than unity).
- (c) Prove (for example, using the expansion by cofactors discussed in class) that whether the eigenvalues of F lie inside the unit circle depends only on whether the roots of the AR polynomial in the ARMA representation lie inside the unit circle, where the 'AR polynomial' means $f(\lambda)$, where

$$f(\lambda) = \lambda^2 - \phi_1 \lambda - \phi_2.$$

4. Consider the following parameterization of the ARMA(2,2) process in question 3:

$$\begin{array}{rcl} \phi_1 &=& 1.70, \ \phi_2 = -0.7125, \\ \theta_1 &=& -0.75, \ \theta_2 = 0.125, \\ \sigma_{\varepsilon}^2 &=& 1. \end{array}$$

(a) write out the VAR(1) representation of this ARMA process. Compute ψ_j , j = 0, 1, ..., 100, in

$$y_t = \psi_0 \varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + \dots,$$

and graph ψ_j on the vertical axis and j on the horizontal.

(b) compute the covariance function,

$$\gamma_j = E y_t y_{t-j}, \ j \ge 0,$$

using the VAR(1) representation.

Hint: Note that the covariance function of Y_t , $C_Y(j) \equiv EY_tY'_{t-j}$ is as follows. The covariance solves:

$$C_Y(0) = FC_Y(0) F' + V, (1)$$

where $V = Ev_t v'_t$. You can find $C_Y(0)$ by setting $C_Y^{(0)}(0)$ to an arbitrary positive semidefinite matrix (zero is fine) and computing the sequence, $C_Y^{(r)}(0)$, r = 1, 2, 3, ..., using

$$C_Y^{(r)}(0) = F C_Y^{(r-1)}(0) F' + V, \ r \ge 1,$$

which is bound to converge given that the eigenvalues of F lie inside the unit circle. Alternatively, note that (1) is linear in $C_Y(0)$ and can be converted into a standard linear system of equations in an equal number of unknowns using the fact,

$$vec(A_1A_2A_3) = (A'_3 \otimes A_1) vec(A_2)$$

where vec(X) takes the matrix, X, and converts it into a vector by stacking its columns and \otimes is the Kronecker operator, whose description may be found by typing help kron at the MATLAB command prompt.

With $C_{Y}(0)$ in hand, note that

$$C_Y(j) = EY_t Y'_{t-j} = FC_Y(j-1), \ j = 1, 2, \dots$$

- (c) note that the autocovariances of interest, γ_j , lie in the upper left block of $C_Y(j)$. Graph γ_j for j = 0, 1, ..., 100.
- (d) 'flip' one of the roots in the moving average part of the ARMA model, to obtain an alternative, equivalent ARMA representation. Show that its autocovariance function, γ_j , is in fact the same.