
Christiano
FINC 520, Spring 2008
Homework 1, due Monday, April 16.

1. Here are two questions about linear projections. You may use the
necessity and sufficiency of the orthogonality property of projections in
your answer.

(a) Prove:
P [Y1 + Y2|X] = P [Y1|X] + P [Y2|X] ,

where Y1 and Y2 are scalar random variables andX = [X1, ..., Xn]
0,

where Xi is a scalar random variable. Also, P denotes the linear
projection operator.

(b) Consider three random variables, x, y, z, where cov (y, x) = cov (x, z) =
0. Prove:

P [y|x, z] = P [y|z] .

(c) Consider the random variable, w = δz + ψx, where δ and ψ are
arbitrarily selected non-zero numbers. Prove

P [y|w, z] = P [y|x, z] ,

where the equality holds for each possible realization of x, z and
w.

2. Consider a stochastic process with covariance function, γ0 > 0, |γ1| <
1
2
γ0, γj = 0, j ≥ 2. Identify two MA(1) representations for xt :

xt = νt + θνt−1, νt˜white noise with variance σ
2
ν .

That is, identify two sets of values of θ and σ2ν that have the property
that the resulting MA(1) is consistent with the given γj, j ≥ 0.

3. Consider the ARMA(2,2) process:

yt = φ1yt−1 + φ2yt−2 + εt + θ1εt−1 + θ2εt−2.
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(a) Express the model for yt as a vector AR(1) (VAR(1)):

Yt = FYt−1 + vt,

and display the contents of Yt, F, vt.

(b) Use the VAR(1) representation to express yt as an MA(∞). Ex-
plain why the existence of the MA(∞) requires that the eigenval-
ues of F lie inside the unit circle (i.e., have absolute value less
than unity).

(c) Prove (for example, using the expansion by cofactors discussed in
class) that whether the eigenvalues of F lie inside the unit circle
depends only on whether the roots of the AR polynomial in the
ARMA representation lie inside the unit circle, where the ‘AR
polynomial’ means f (λ) , where

f (λ) = λ2 − φ1λ− φ2.

4. Consider the following parameterization of the ARMA(2,2) process in
question 3:

φ1 = 1.70, φ2 = −0.7125,
θ1 = −0.75, θ2 = 0.125,
σ2ε = 1.

(a) write out the VAR(1) representation of this ARMA process. Com-
pute ψj, j = 0, 1, ...., 100, in

yt = ψ0εt + ψ1εt−1 + ψ2εt−2 + ...,

and graph ψj on the vertical axis and j on the horizontal.

(b) compute the covariance function,

γj = Eytyt−j, j ≥ 0,

using the VAR(1) representation.

Hint: Note that the covariance function of Yt, CY (j) ≡ EYtY
0
t−j

is as follows. The covariance solves:

CY (0) = FCY (0)F
0 + V, (1)
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where V = Evtv
0
t. You can find CY (0) by setting C

(0)
Y (0) to an

arbitrary positive semidefinite matrix (zero is fine) and computing

the sequence, C
(r)
Y (0) , r = 1, 2, 3, ...., using

C
(r)
Y (0) = FC

(r−1)
Y (0)F 0 + V, r ≥ 1,

which is bound to converge given that the eigenvalues of F lie in-
side the unit circle. Alternatively, note that (1) is linear in CY (0)
and can be converted into a standard linear system of equations
in an equal number of unknowns using the fact,

vec (A1A2A3) = (A
0
3 ⊗A1) vec (A2) ,

where vec (X) takes the matrix, X, and converts it into a vector
by stacking its columns and ⊗ is the Kronecker operator, whose
description may be found by typing help kron at the MATLAB
command prompt.

With CY (0) in hand, note that

CY (j) = EYtY
0
t−j = FCY (j − 1) , j = 1, 2, .... .

(c) note that the autocovariances of interest, γj, lie in the upper left
block of CY (j) . Graph γj for j = 0, 1, ...., 100.

(d) ‘flip’ one of the roots in the moving average part of the ARMA
model, to obtain an alternative, equivalent ARMA representation.
Show that its autocovariance function, γj, is in fact the same.
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