
Christiano
FINC 520, Spring 2009
Homework 3, due Thursday, April 23.

1. In class, we discussed the pth order VAR:

yt = c+ φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt,

where εt is a white noise with variance-covariance matrix, Ω, and or-
thogonal with yt−s, s > 0. Find a definition of ξt, so that the VAR(p)
can be written in the following VAR(1) form:

ξt = Fξt−1 + vt.

We assume that if λ satisfies¯̄̄
λpIn − φ1λ

p−1 − φ2λ
p−2 − ...− φp

¯̄̄
= 0, (1)

then λ is less than unity in absolute value. In the above expression, |A|
denotes the determinant of the matrix, A.

2. Write the VAR(p) in transposed form:

y0t = x0tΠ+ ε0t,

where

xt
(np+1)×1

=

⎛⎜⎜⎜⎜⎝
1

yt−1
...

yt−p

⎞⎟⎟⎟⎟⎠ , Π0
n×(np+1)

=
h
c φ1 · · · φp

i
.

Suppose we have data over the period t = 1, ..., T and write:

Y =

⎛⎜⎜⎜⎜⎝
y01
y02
...
y0T

⎞⎟⎟⎟⎟⎠ , X =

⎛⎜⎜⎜⎜⎝
x01
x02
...
x0T

⎞⎟⎟⎟⎟⎠ , ε =

⎛⎜⎜⎜⎜⎝
ε01
ε02
...
ε0T

⎞⎟⎟⎟⎟⎠ ,
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so that the VAR can be written as follows:

Y
T×n

= X
T×(np+1)

Π
(np+1)×n

+ ε
T×n

.

Premultiply this by X 0 and then take expectations:

E [X 0Y ] = E [X 0X]Π+E [X 0ε] .

Note that

EX 0ε = E
TX
t=1

xtε
0
t = 0,

because of the assumed orthogonality properties of εt. Then,

Π = {E [X 0X]}−1E [X 0Y ] .

Ergodicity suggests using the following estimator for Π:

Π̂ = (X 0X)
−1

X 0Y.

(a) Compute Π̂ using the data in the MATLAB m file that has been
provided, with p = 4. Let

yt =

⎛⎜⎝ Rt

log GDPt
GDPt−1

πt

⎞⎟⎠ ,

where Rt denotes the 3 month Tbill rate, πt denotes the quar-
terly inflation rate and GDPt denotes Gross Domestic Product in
quarter t.

(b) Construct F, the matrix you constructed for question 1. Note
how your way of handling the constant term causes there to be
one eigenvalue equal to unity this matrix. Compute μ = Eyt =
[I − φ1 − φ2 − φ3 − φ4]

−1 c. Compare μ with:

P [yt+500|yt, yt−1, ....] ,

Why should μ and this projection be so similar?
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(c) Is the VAR(p) model you constructed covariance stationary and
ergodic? Explain. (Hint: for this, you will want to know the roots
of the polynomial in (1) and these can be found with Proposition
10.1 in the book.)

(d) Construct a ‘predicted time series’ on the long rate for the T =
201 quarters, 1955Q4-2005Q4. Graph it together with the actual
5 year rate, Rl

t. To do this, you’ll have to do the calculations
discussed in class. However, the geometric sum formula described
there will not work if you do it with the version of F in question
1, because that has a unit root in it. You can simply add I +F +
....+F 19. How does the expectations hypothesis do? Do the same
graph, only this time do it with

yt =

⎛⎜⎜⎜⎜⎝
Rt

Rl
t

log GDPt
GDPt−1

πt

⎞⎟⎟⎟⎟⎠ .

Do the results make any difference with this adjustment?

3. In question 2, I expect you to find that the predicted long rate falls
too rapidly in the early 1980s. This could be because (i) the linear
prediction of the short rate based on the VAR does not correspond
with people’s actual expectations, or (ii) because the term structure
hypothesis itself is not good. The possibility, (ii) is explored in the
work of Piazzesi and Schneider (see, e.g., ‘Equilibrium Yield Curves’,
NBER working paper 12609) and the papers they cite. However, this
takes us too far afield of the subject matter of this course. Possibility (i)
can be pursued in two ways. One could obtain survey data on forecasts
of the short term interest rate and use those in place of P [Rt+j|Ωt] in
the formula for the long rate. This possibility would be fun to pursue,
but would also take us too far off topic. Another way to attack (i) is
to study the forecasts of the short rate that go into the calculation of
the long rate in question (2). The idea is to see if they are ‘any good’.

To investigate the quality of the forecast, you should graph the actual
short rate data. At each two year interval you should graph the forecast
of the short term rate that went into computing the predicted long term

3



rate. Thus, suppose t is a quarter when you compute the forecast.
On the graph of the actual short term rate, you should also graph
P [Rt+j|ξt], for j = 0, .., 19. Because the forecasted and actual interest
rates appear in the same graph you can see if there is a systematic
problem with the forecasts of the short rate. For example, is there a
tendency to under-predict the short rate in the early 1980s? Your graph
will look a little messy, because the forecasts will appear like long hairs
sprouting at two year intervals and wiggling along for 5 years. The
hairs associated with different forecast dates will become intertwined
and be a little hard to distinguish. Hopefully, it will still be possible
to see something.

4. The forecasting procedure not only provides formulas for P [Rt+j|ξt] ,
j > 0, but it also provides estimates of the uncertainty of the forecast.
To see this, note that

Rt+j − P [Rt+j|ξt] = Dvt+j +DFvt+j−1 + ...+DF j−1vt+1,

where D is a row vector defined in class. Then the variance of the
forecast error is:

v (j) ≡ vart (Rt+j − P [Rt+j|ξt]) = DVD0+DFV F 0D0+...+DF j−1V (F 0)
j−1

D0,

where V is the variance covariance matrix of vt. This object can be
constructed from the definition of vt and an estimate of V, V̂ , where

V̂ =
ε̂0ε̂

T
.

Here, ε̂ ≡ Y −XΠ̂. Consider the three dates, t1 = 1980Q1, t2 = 1982Q1
and t3 = 1985Q1. Produce three graphs, each containing the actual
data as well as three other lines. Each of the three graphs corresponds
to one of the dates, ti, i = 1, 2, 3. Overlayed on the graph with the
actual data, graph P [Rti+j|ξt] , for j = 0, ..., 19, as well as

P [Rti+j|ξt]± 2
q
v (j), j = 0, ..., 19.

The graphs should be lined up so that P [Rti+j|ξt] coincides with Rti+j,
as in question 3. Do the uncertainty bands about the forecasts seem
‘plausible’ in light of the degree of fluctuations in the data? Do the
uncertainty bands continue to expand, or does their width converge?
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5. Consider the following time series representation for xt :

xt = ρxxt−1 + εt, ρx = 0.9, σε = 0.01.

In class we have worked out that the variance of xt is:

E (xt)
2 =

σ2x
1− ρ2x

,

and the τ th lag covariance is

C (τ) = Extxt−τ = ρ|τ |x Ex2t , τ = 0,±1,±2, ... .

According to the discussion in class, the spectral density of xt is:

Sx
³
e−iω

´
=

σ2x
(1− ρxe−iω) (1− ρxeiω)

.

Applying the inverse Fourier transform to this yields the covariances:

C (τ) =
1

2π

Z π

−π
Sx
³
e−iω

´
eiωτdω.

(a) Consider two parameterizations of the xt process. One has the
parameter values given above, and the other has ρx = 0.0 and σε
set so that the variance of the two xt representations is the same.
On the same figure, graph the spectral densities associated with
the two representations of xt for ω ∈ (0, π) . Also, generate 100
artificial time series observations from each representation. Note
how the one with the higher value of ρx generates a pattern of
xt ’s that wanders around more lazily than does the representation
with the smaller value of ρx. That ‘lazy’ pattern in the high-ρx
representation shows up as relatively more power in the lower
frequencies of its spectrum.

(b) Approximate the integral for C (τ) by the sum of the area of N
rectangles, based on the Riemann sum interpretation of the inte-
gral. That is, if ωj = 2πj/N, with j = −(N/2) + 1, ..., N/2,

1

2π

Z π

−π
Sx
³
e−iω

´
eiωτdω ≈ 1

2π

N/2X
j=−(N/2)+1

Sx
³
e−iωj

´
eiωjτ (ωj − ωj−1) .

 

 

 

 



Is it correct to work with the lower value of −(N/2) + 1 for j, or
with the lower value of −(N/2)?

Evaluate C (0) , C (2) , C (4) using the exact formulas above and
the Riemann approximation for various values of N. What is the
smallest values of N for which the Riemann approximation is
good?


