
Christiano
FINC 520, Spring 2007
Homework 4, due Tuesday, May 1.

1. In class, we motivated the spectral decomposition theorem using the
band pass filter. In this question, we motivate the same theorem using
a discrete decomposition of data into a set of sinusoidal functions.

Consider the discrete analog of the spectral representation theorem:

yt =
(T−1)/2X
j=0

yj,t, (1)

yj,t = αj cos (ωjt) + δj sin (ωjt) ,

where T is the number of observations on yt, T is assumed to be odd,

ωj =
2πj

T
, j = 0, ...,

T − 1
2

,

and αj and δj, j = 0, ..., (T − 1) /2 are a set of parameters to be deter-
mined. Although it looks at first like there are T + 1 parameters here
(one more than the number of observations), note that this is in fact not
true, since δ0 multiplies the zero vector and so can be ignored. Recall
that cos (x) = cos (x+ 2πk) and sin (x) = sin (x+ 2πk) for any integer
k. As a result, the jth component of yt in (1), yj,t, has period 2π/ωj.
To see this, let t denote an initial date, and let t0 denote the next time
when yj,t is at the same point in its cycle. Thus, t

0ωj = tωj + 2π, so
that the period, in units of time, of the cycle in yj,t, the j

th component
of yt, is

t0 − t = ∆t =
2π

ωj
, j > 0.

Note that higher values of ωj (i.e., ‘higher frequency components of yt’)
are associated with cycles of shorter duration, or period.

The equations in (1) can be written in matrix form like this:

y = Xβ,
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where

β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0
α1
δ1
α2
δ2
...

αT−1
2

δT−1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and X corresponds to the cosine and sine variables in (1) (note how
we’ve ignored δ0).

(i) Show that

1

T

TX
t=1

sin (ωjt) sin (ωlt) =
1

T

TX
t=1

cos (ωjt) cos (ωlt) =

(
1
2

j = l > 0
0 j 6= l

1

T

TX
t=1

cos (ωjt) sin (ωlt) = 0, all j, l,

so that X is a square matrix with orthogonal columns. Thus, (1) rep-
resents an exact decomposition of a time series (any time series, not
just the covariance stationary and indeterministic series addressed by
the spectral decomposition theorem) into orthogonal sinusoidal com-
ponents, as in the spectral decomposition theorem.

(ii) Show that

dvar (yt) = 1

T

TX
t=0

(yt − ȳ)2 =

T−1
2X

j=0

dvar (yj,t) ,
where dvar (yj,t) = 1

2

h
α2j + δ2j

i
, j = 1, ...,

T − 1
2

,

and the αj’s and δj’s are the unique solution to

β = (X 0X)
−1

X 0y.
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(Note that this reduces to β = X−1y since X is square and invertible,
but it is somewhat easier to understand the vector β by using the more
elaborate formula.)

(iii) Denote the kth order sample covariance of y1, ..., yT by

γ̂k =
1

T

TX
t=k+1

(yt − ȳ) (yt−k − ȳ)

ȳ =
1

T

TX
t=1

yt,

and γ̂−k = γ̂k, for k = 0, ..., T − 1. Denote the sample periodogram by

Ŝy (ω) =
1

2π

T−1X
k=−T+1

γ̂ke
−iωk.

This is the sample analog of the population spectral density. Show that

Ŝy (ωj) =
T

4π
dvar (yj,t) ,

so that the periodogram at frequency ωj corresponds to the variance
of the jth frequency component of the data. This is the analog of a
similar result that we derived using an argument based on the band
pass filter.

2. Consider the industrial production data made available with this home-
work. There are two versions of the data. One is seasonally unadjusted
and the other is seasonally adjusted. The data cover the period, Jan-
uary 1919 to December 2006. Compute the first difference of the log
of the data, to obtain the 1,055 monthly growth rates from February
1919 to December 2006.

(a) Consider the seasonally unadjusted data first. Compute the sam-
ple periodogram for frequencies, ωj = 2πj/T, j = 0, ..., (T − 1)/2
and graph the results. Note how jagged the curve is (throughout,
you should only graph the log of the spectrum). This reflects the
result (see Hamilton, p. 164) that Ŝy (ω) and Ŝy (ω

0) are approxi-
mately independent (for large T ) for ω 6= ω0. Moreover, although
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Ŝy (ω) is an unbiased estimator of the true spectrum, Sy (ω) , its
variance does not shrink to zero as T →∞. The lack of precision
in the sample spectrum as an estimator of the spectral density is
perhaps not surprising. The function being estimated (i.e., the
spectrum as a function of frequency) is a high-dimensional object
(there is a continuum of frequencies between 0 and π), and no
assumptions are made about the structure of the underlying time
series representation. This is an example of ‘little input’ implies
‘little output’.

(b) Now consider a more parametric way to estimate the spectrum of
the seasonally unadjusted data (call this the ‘ar estimator of the
spectrum’). Use ordinary least squares to fit a 20 lag scalar ar
representation to the data, with a constant term. Compute the
spectral density of the resulting ar representation over the same
range of frequencies used in (a). Graph the two spectral density
estimators in the same picture. Note how one appears to be a
smooth version of the other.

(c) Note the local peaks in the spectrum. What period of oscillation
do these correspond to?

(d) Apply the ar estimator of the spectrum to the seasonally adjusted
data. Graph the spectrum of the adjusted and unadjusted data in
the same figure. Are there ‘dips’ in the spectrum of the seasonally
adjusted data, as we were led to expect based on the results for
‘optimal seasonal adjustment’ in the previous homework? Why or
why not?

(e) An alternative strategy that is sometimes used to seasonally adjust
monthly data is to regress the data on 12 seasonal dummies (don’t
include a constant term here, or you’ll have perfectly collinear
data!)1 and treat the residual in this regression as the seasonally

1That is, let the right hand variables be in the T by 12 matrix, X. The ith column of
X has zeros everywhere and a unity in the ith entry. A MATLAB routine that will set up
X with the right structure is:
B=eye(12);
X=[];
for ii = 1:88
X=[X
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adjusted data. In the same graph, plot the estimated spectrum of
the unadjusted data, the data adjusted by the US government and
the data adjusted using the dummy method (in all cases, compute
the spectrum using the ar method). Which is the more effective
seasonal adjustment procedure, the dummy method or the US
government’s method?

3. Denote the real interest rate by rt, where rt ≡ it − πet and it denotes
a quarterly interest rate and πet represents the (unobserved) quarterly
inflation rate. For these calculations, use the data from homework 2.
Suppose that the real interest rate evolves according to:

rt = (1− 0.95)µ+ 0.95rt−1 + vt,

where µ is the sample mean of the ex post real rate, it − πt, so that
µ = 0.0050 (i.e., 2 percent, at an annual rate). Let vt be a white noise
with standard deviation, 0.0015. Treat the ex post real rate of interest,
it − πt, as

it − πt = rt + wt,

where wt and vt satisfy all the properties assumed for the Kalman filter
(Hamilton, p. 376). Let the standard deviation of the white noise, wt,
be 0.0034. Compute

r̂t|T = Ê [rt|i1 − π1, ..., iT − πT ] ,

for t = 1, ..., T using the Kalman filter. Also, compute Pt|T for t =
1, ..., T. Place four graphs in one figure: the ex post realized real rate,
it−πt; the estimated ex ante real rate, r̂t|T ; and r̂t|T plus/minus 2 timesq
Pt|T , for t = 1, ..., T.

B];
end
X=X([2:end],:);
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