
Christiano
FINC 520, Spring 2009
Homework 4, due Thursday, April 30.

1. Consider the four variable VAR you estimated for homework #3. Let

ξt =

⎛⎜⎜⎜⎝
Yt − Y
Yt−1 − Y
Yt−2 − Y
Yt−3 − Y

⎞⎟⎟⎟⎠ ,

where Y denotes the unconditional mean for the VAR variables, implied
by your estimated VAR(4). The estimated VAR(4) can also be used to
construct F and Q in:

ξt = Fξt−1 + vt, Evtv
0
t = Q.

The actual long term rate corresponds to Rl
t = τ 0ξt for a particular vec-

tor, τ. The predicted long rate, based on the term structure hypothesis,
corresponds to R̂t = p0ξt for a different vector p.

(a) Use the Riemann approximation to the inverse Fourier transform
to compute

γj = ERl
tR̂

l
t−j,

for j = −5,−4, ..., 4, 5. Graph these. Does the term structure
hypothesis look good based on these calculations?

(b) Redo the previous graph, based on three different frequency com-
ponents of Rl

t and R̂l
t, isolated using appropriately constructed

band pass filters. Let the three frequency components be the
‘business cycle frequencies’ (the component of data corresponding
to frequencies of fluctuation between 1 and 8 years (i.e., 4 and 32
quarters)), ‘high frequencies’ (the component of the data corre-
sponding to fluctuations between 2 quarters and 1 year) and ‘low
frequencies’ (the component corresponding to fluctuations longer
than 8 years). Does the expectations hypothesis do better on some
frequencies than on others?
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(c) Compute the share of variance in R̂l
t and R

l
t in low, business cycle

and high frequencies. How does the expectations hypothesis do
on this dimension? (Hint: recall from the spectral representation
theorem that the variance of a process is the sum of the variances
of that process in different frequency components.)

2. This question explores whether there is a ‘phase shift’ between the
actual and predicted long rates. Obviously, for the expectations hy-
pothesis to be a good one requires that the phase shift between the two
series be small. As we will see, the phase shift between two series is a
function of the complex part of their cross-spectrum (i.e., the Fourier
transform of γj in the previous question.) That is, consider two mean
zero, covariance stationary, purely indeterministic variables, xt and yt.
Denote their covariance by Γyx (j) = Eytxt−j. The cross-spectrum be-
tween the two series is defined by:

Syx
³
e−iω

´
=
1

2π

∞X
j=−∞

Γyx (j) e
−iωj.

In general, the cross spectrum is complex, and we express it in polar
form as follows:

Syx
³
e−iω

´
= r (ω) eiθ(ω),

where Sxy is complex if and only if θ 6= 0. Also, r (ω) ≥ 0. We will
argue that the phase relationship between the frequency ω components
of xt and yt is controlled by θ (ω) , with the frequency ω components
of these two series reaching a maximum at the same date if, and only
if, θ (ω) = 0. In the latter case, we say there is no phase shift between
the frequency ω components of the two series.

To develop the above results, it is useful to follow Sargent (1979) in
considering the projection of yt onto xt infinitely far in the future and
the past:

yt =
∞X

k=−∞
hjxt−j + εt,

where, by the orthogonality property of projections, εt is uncorrelated
with xt−j for all j. Let

Γx (k) ≡ Extxt−k.
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The projection represents yt in terms of xt at all leads and lags and a
component, εt, that is orthogonal to xt at all leads and lags.

(a) Is εt autocorrelated? Explain.

(b) Show that the Fourier transforms of these objects and the projec-
tion coefficients are related as follows:

Syx
³
e−iω

´
= h

³
e−iω

´
Sx
³
e−iω

´
,

where

Sx
³
e−iω

´
=

∞X
k=−∞

Γx (k) e
−iωk, h

³
e−iω

´
=

∞X
k=−∞

hke
−iωk.

(Hint: use a version of the argument used in class about how
Fourier transforms convert convolution operators into multiplica-
tion.) An implication of this result, not of specific interest here,
is that the Fourier transform of the projection coefficients, {hj} ,
is given by:

h
³
e−iω

´
=

Syx (e
−iω)

gx (e−iω)
,

so that the individual projection coefficients may be recovered
using the inverse Fourier transform:

hk =
1

2π

Z π

−π

gyx (e
−iω)

gx (e−iω)
eiωkdω.

This may be approximated by a Riemann sum.

(c) By the spectral representation theorem, xt is the integral of sinu-
soidal functions across different frequencies. Suppose the ω com-
ponent of xt is as follows:

xt = 2 cos (ωt) , t = 0,±1,±2, ... .

Show that the frequency ω component of yt ‘due to’ the frequency
ω component of xt (i.e., ignoring εt) is as follows:

yt = 2s (ω) cos (ωt+ θ (ω)) ,
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and display an expression for s (ω) . Explain why s (ω) must be
non-negative. This establishes the sense in which θ (ω) , the com-
plex part of the cross spectrum, controls the phase relationship
between yt and xt.

(d) Compute θ (ω) for ω ∈ (0, π) when yt = R̂l
t and xt = Rl

t in question
(1), and the data are generated by your estimated VAR(4).

3. (Optimal seasonal adjustment). Suppose that a time series, {Xt} , has
the following representation:

Xt = xt + ut,

where xt and ut are purely indeterministic and ergodic, covariance
stationary processes and xt ⊥ us for all s, t. Suppose that ut is the
source of seasonality in Xt. That is, the spectrum of ut, Su (e

−iω) , has
much power concentrated in the seasonal frequencies (i.e., those near
ω = 2π/4 in quarterly data). The spectrum of xt, Sx (e

−iω) , is smooth
and does not display a peak in the seasonal frequencies. The econome-
trician seeks to estimate the ‘seasonally adjusted data’, xt, by project-
ing xt onto a complete realization of Xt (i.e., {..., X−1,X0, X1, ...}):

xt =
∞X

k=−∞
hkXt−k + vt,

where vt is uncorrelated with Xt−k for all k. Let x̂t denote the ‘season-
ally adjusted’ data:

x̂t =
∞X

k=−∞
hkXt−k.

(a) Derive the formula for h (e−iω) in terms of the known objects,
Su (e

−iω) and Sx (e
−iω) .

(b) Show that Sx̂ (e
−iω) < Sx (e

−iω) for all ω.

(c) Show that if Sx (e
−iω) is smooth across all frequencies, while Su (e

−iω)
has sharp peaks at the seasonal frequencies, then Sx̂ (e

−iω) will
have substantial dips at the seasonal frequencies. (It may seem
ironic that optimal seasonal adjustment produces a series, x̂t, that
itself displays seasonality.)
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4. Suppose that the data are generated by a true (scalar) autoregressive
representation of the following form:

yt = φ (L) yt−1 + εt,

where φ (L) is a polynomial in non-negative powers of L and the poly-
nomial coefficients are square-summable. Also, εt is a white noise,
uncorrelated with yt−s, s > 0. Suppose the econometrician estimates
φ (L) by running a regression of yt on p lags of itself. The econome-
trician is assumed to have an entire (i.e., doubly infinite) realization
of data. The econometrician may commit some form of specification
error, for example by choosing a value of p smaller than the true value
(the true lag length may actually be infinite). By ‘running a regres-
sion’, the econometrician is assumed to choose coefficients, φ̂1, ..., φ̂p,

for the AR polynomial, φ̂ (L) , so that

yt − φ̂ (L) yt−1

has the smallest possible variance in the (infinite!) sample.

(a) Argue carefully (be clear when you use ergodicity and covariance
stationarity) that the econometrician’s choice of φ̂ (L) solves

min
φ̂1,...,φ̂p

1

2π

Z π

−π

h
φ
³
e−iω

´
− φ̂

³
e−iω

´i
gy
³
e−iω

´ h
φ
³
eiω
´
− φ̂

³
eiω
´i0

dω,

where gy (e
−iω) is the covariance generating function of {yt} . Note

that if the econometrician commits no specification error, then

φ
³
e−iω

´
= φ̂

³
e−iω

´
, for all ω ∈ (−π, π) .

(b) Suppose the econometrician does commit specification error, so
that the previous equality is not possible over all frequencies,
ω ∈ (−π, π) . Suppose the econometrician is particularly inter-
ested in the sum of the AR coefficients, φ (1) . Explain why the
econometrician’s estimator of this object, φ̂ (1) , is likely to be a
good one if there is an important low-frequency component in the
data, {yt}. Alternatively, if the data are primarily driven by high
frequency components, then φ (1) is likely to be badly estimated.
Explain.
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