Christiano
FINC 520, Spring 2008
Homework 5, due Friday, May 16.

1. Consider the following time series representation:

(a)

yt:5t—95t—1, 622, O'gzl (].)

Compute the alternative time series representation for y;, which

has the same covariance function as above, in which the moving
average root has been ‘flipped’:

Yp = Ut — PU—1, EU? =0, (2)

Derive and display u and o2.

Verify that, by recursive substitution, one can write (2) as:
Yt = Z OilYi—i + U, (3)
i=0

where {¢;} is a square summable sequence. Prove that this ex-
pression represents the linear projection of ; onto its infinite past
history. Because u; is the error in this relation, the representa-
tion of y; is sometimes referred to as its ‘fundamental’ representa-
tion (or, ‘Wold representation’). The other representation, (1), is
not ‘fundamental’ (careful, the economic and time series analysis
term, ‘fundamental’, means different things). Motivated by (3),
it is said that the shock in the fundamental representation ‘lies in
the space of past data’, while the shock in the alternative repre-
sentation does not. To see what space ¢, lies in, show by recursive
substitution that ; can be represented as follows:

€ = — Z (5) Yttis



so that & lies in the space of (all) future y;’s.

(c) The reasoning in (a) and (b) suggests that &, will look very
different from é,;_,. Since &; does not lie in the (infinite) space of
past y;’s the error of the projection, &, - denoted F;_; - can be
expected to be just o2. By contrast, the error in the projection,
€y - denoted Py r - should be quite small, except for ¢ close to T

Write the non-fundamental representation, (1), in state space/observer

form (hint, let the state be & = ( Yi &t )I ,andlet H' = (1 0 ))
Program the formulas for the forecast error variances in MATLAB
and display a graph of Py, Pyr, Py¢—1, fort =1,...,T. Set T' = 10.
Now display the same graph, but for the fundamental represen-
tation of g;. Are the results in the graphs consistent with what
intuition suggests?

(d) Consider the state-space/observer representation of the non-fundamental
representation of y;. Iterate on the recursive expression for
to obtain:
P = lim Pt|t—1-
t—o00

The 1,1, element of P is the one-step-ahead variance of the error

Tt is interesting to note that the recursive substitution corresponds to simple manip-

ulation of lag operators:
yr =¢€¢ —Ogp—1 = (1 —0L) ey,
so
1
1—oL”
A problem is that the expansion of the above polynomial in positive powers of L has

explosive coefficients. However, the polynomial can also be expanded in negative powers
of L

&t =

1 —0'L!
1—6L 1—6-1L-1’

so that

g1t e
1_g- 11/t~ 1 _g-1p-17t+

0

1 1\?
Yt+1 + Piias: + 5 ) Vs + ..




in forecasting y; given y; 1, vy;_2, ... . Does the quantitative magni-
tude of this one-step-ahead forecast error variance make sense in
light of your results in (b)? Confirm that the 1,1 element of P is
unchanged if you construct the state-space/observer system using
the fundamental representation of y,. What happens to the other
elements of P? State your findings in intuitive terms.

2. Denote the real interest rate by r;, where r, = i, — my and 7; denotes
a quarterly interest rate and 7§ represents the (unobserved) quarterly
inflation rate. For these calculations, use the data from homework 2.
Suppose that the real interest rate evolves according to:

Ty = (1 — 095) 12 + 0.957}71 + Vg,

where p is the sample mean of the ex post real rate, i, — 7, so that
= 0.0050 (i.e., 2 percent, at an annual rate). Let v; be a white noise
with standard deviation, 0.0015. Treat the ex post real rate of interest,

1y — T, AS
by — T = Ty + Wy,
where w; and v, satisfy all the properties assumed for the Kalman filter

(Hamilton, p. 376). Let the standard deviation of the white noise, w;,
be 0.0034. Compute

T = E[rliy = 1y ooy i — 71]

for t = 1,...,T using the Kalman filter. Also, compute Pyr for ¢ =
1,...,T. Place four graphs in one figure: the ex post realized real rate,
iy —m¢; the estimated ex ante real rate, 7yr; and 77 plus /minus 2 times

Rf\Ty for t = 1, ,T

3. In class, we motivated the spectral decomposition theorem using the
band pass filter. In this question, we motivate the same theorem using
a discrete decomposition of data into a set of sinusoidal functions.

Consider the discrete analog of the spectral representation theorem:

(T—1)/2

Y = Z Yjts (4)
=0

yjt = «ajcos(w;t)+ d;sin (w;t),

3



where T is the number of observations on y,;, T" is assumed to be odd,
2ry . T—-1

(.Uj = ] = ,...,T,
and o and 0;, j = 0,...,(T"— 1) /2 are a set of parameters to be deter-
mined. Although it looks at first like there are T+ 1 parameters here
(one more than the number of observations), note that this is in fact not
true, since &y multiplies the zero vector and so can be ignored. Recall
that cos (x) = cos (z + 27k) and sin (z) = sin (x 4+ 27k) for any integer
k. As a result, the j component of y; in (1), y;., has period 27 /w;.
To see this, let ¢t denote an initial date, and let ¢’ denote the next time
when y,, is at the same point in its cycle. Thus, t'w; = tw; + 27, so
that the period, in units of time, of the cycle in y;;, the j component
of yq, is

ﬂ—t:Aw=&2j>0

Wy

Note that higher values of w; (i.e., ‘higher frequency components of v;’)
are associated with cycles of shorter duration, or period.

The equations in (1) can be written in matrix form like this:

y=Xp,

where

(&%)
651
01

(8%

L =
and X corresponds to the cosine and sine variables in (1) (note how
we’ve ignored dp).
(i) Show that

1 T

T
T > sin (wjt) sin (wit) = Z ) cos (wit) = {

t=1

j=101>0
J#1

Ol
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T
%ZCOS (wjt)sin (wit) = 0, all j,1,
t=1

so that X is a square matrix with orthogonal columns. Thus, (1) rep-
resents an exact decomposition of a time series (any time series, not
just the covariance stationary and indeterministic series addressed by
the spectral decomposition theorem) into orthogonal sinusoidal com-
ponents, as in the spectral decomposition theorem.

(ii) Show that

T-—1
_ 1 T ER
var (y,) = Z )2 = Z var (yje) ,
t:O =0
where . 71
m(yj,t):§ {Oé?"‘(g] s j:]_,...,T,

and the a;’s and d;,’s are the unique solution to
B=(X'X)" X"y

(Note that this reduces to § = X 1y since X is square and invertible,
but it is somewhat easier to understand the vector S by using the more
elaborate formula.)

(iii) Denote the k™ order sample covariance of y, ..., yr by

. 1 _
Yo = 7 Z ) (Yi—k — T)
t=k+

’ﬂ

1

T
o= =
t=1
and 4_p = A, for £ =0,...,T — 1. Denote the sample periodogram by

T-1
fzwk
Z Yre
—T+1

~

1

Sy (UJ) 27T

This is the sample analog of the population spectral density. Show that

N T
Sy (w3) = L0 ()



so that the periodogram at frequency w; corresponds to the variance
of the j*" frequency component of the data. This is the analog of a
similar result that we derived using an argument based on the band
pass filter.

. Consider the industrial production data made available with this home-
work. There are two versions of the data. One is seasonally unadjusted
and the other is seasonally adjusted. The data cover the period, Jan-
uary 1919 to December 2006. Compute the first difference of the log
of the data, to obtain the 1,055 monthly growth rates from February
1919 to December 2006.

(a)

Consider the seasonally unadjusted data first. Compute the sam-
ple periodogram for frequencies, w; = 275 /T, j =0,...,(T"—1)/2
and graph the results. Note how jagged the curve is (throughout,
you should only graph the log of the spectrum). This reflects the
result (see Hamilton, p. 164) that S, (w) and S, (') are approxi-
mately independent (for large T') for w # w’. Moreover, although
gy (w) is an unbiased estimator of the true spectrum, S, (w), its
variance does not shrink to zero as T" — oo. The lack of precision
in the sample spectrum as an estimator of the spectral density is
perhaps not surprising. The function being estimated (i.e., the
spectrum as a function of frequency) is a high-dimensional object
(there is a continuum of frequencies between 0 and 7), and no
assumptions are made about the structure of the underlying time
series representation. This is an example of ‘little input’ implies
‘little output’.

Now consider a more parametric way to estimate the spectrum of
the seasonally unadjusted data (call this the ‘ar estimator of the
spectrum’). Use ordinary least squares to fit a 20 lag scalar ar
representation to the data, with a constant term. Compute the
spectral density of the resulting ar representation over the same
range of frequencies used in (a). Graph the two spectral density
estimators in the same picture. Note how one appears to be a
smooth version of the other.

Note the local peaks in the spectrum. What period of oscillation
do these correspond to?



(d) Apply the ar estimator of the spectrum to the seasonally adjusted
data. Graph the spectrum of the adjusted and unadjusted data in
the same figure. Are there ‘dips’ in the spectrum of the seasonally
adjusted data, as we were led to expect based on the results for
‘optimal seasonal adjustment’ in the previous homework? Why or
why not?

(e) An alternative strategy that is sometimes used to seasonally adjust
monthly data is to regress the data on 12 seasonal dummies (don’t
include a constant term here, or you’ll have perfectly collinear
datal)? and treat the residual in this regression as the seasonally
adjusted data. In the same graph, plot the estimated spectrum of
the unadjusted data, the data adjusted by the US government and
the data adjusted using the dummy method (in all cases, compute
the spectrum using the ar method). Which is the more effective
seasonal adjustment procedure, the dummy method or the US
government’s method?

2That is, let the right hand variables be in the T by 12 matrix, X. The i** column of
X has zeros everywhere and a unity in the i*” entry. A MATLAB routine that will set up
X with the right structure is:

B=eye(12);

X=[J;

for ii = 1:88

end
X=X([2:end],:);



