
Christiano
FINC 520, Spring 2009
Homework 5, due Thursday, May 7.

1. Generate 10,000 observations from the first order autoregressive time
series representation:

yt = 0.9yt−1 + εt.

Then, HP filter the data using the attached software.1 Recall that the
HP filter solves the problem:

min
{yTt }

T−1X
t=1

½³
yt − yTt

´2
+ λ

h³
yTt+1 − yTt

´
−
³
yTt − yTt−1

´i2¾
,

and the ‘HP-filtered’ data are

yct ≡ yt − yTt .

(a) Graph yt and y
T
t to verify that the HP filter is operating properly.

The yTt series should be a smooth version of yt.

(b) Calculate C (0) , C(2), C (4) using the artificial data, where C (τ)
is the lag τ covariance of yct .

(c) Repeat the same exercise using the spectral analysis tools we have
developed. For this, you will first need the Fourier transform of the
HP-filter. To find this, compute the first order necessary condition
for optimality satisfied by yTt . In lag operator form, this has the
representation,

yt = B (L) yTt ,

where B (L) is symmetric in positive and negative powers of L,
i.e., B (L) = B (L−1) . Note that since yTt = yt − yct , this implies:

yt = B (L) yt −B (L) yct ,

or,
yct = g (L) yt,

1The code is HPFAST.m, programmed by Ed Prescott. The call is [d,t]=hpfast(y,s),
where y is the column vector of data, s (=1,600) is the value of the multiplier on the HP
filter, d denotes the detrended (i.e., ‘cyclical’) data and t denotes the HP trend.
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where the HP filter, g (L) is

g (L) =
B (L)− 1
B (L)

.

i. To see what the HP filter does to a time series, graph g (e−iω)
for ω ∈ (0, π) . Note that it looks like a high pass filter: it
lets higher frequencies of oscillation through and zeros out
the lower frequencies. What is the cutoff between frequencies
allowed through and frequencies set to zero? Here, imagine
you are working with quarterly data and λ = 1600.

ii. Use the spectral formulas together with the Riemann approx-
imation to calculate C (0) , C (2) , C (4) . For N sufficiently
large, your answer should be the same as in (a).

2. Consider the process
xt = εt − εt−1. (1)

One might be tempted to ‘invert’ this process as follows:

xt + xt−1 + xt−2 + ... = εt.

(a) show that the process on the left side of the equality is not well
defined in that it is not the limit of a sequence of finite sums of yt
that converges in the mean square sense.

(b) show that there is nevertheless a sense in which εt is the one-step-
ahead forecast error in yt. In particular, show that

P [xt|xt−1, xt−2, ..., xt−n] =
nX

j=1

djxt−j,

dj = −
∙
1− j

n+ 1

¸
.

(Hint: prove the result for the cases, n = 2 and n = 3 and the
general Prove that

E (xt − P [xt|xt−1, xt−2, ..., xt−n]− εt)
2 → 0 as n→∞.
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(c) It has been argued that processes with a unit root in the moving
average representation, like (1), are extremely unlikely in practice,
since most data are measured with at least a little bit of measure-
ment error. That is, even if the true data were measured as in (1),
measured data look like x∗t , where

x∗t = xt + υt,

where υt white noise and orthogonal to xt at all leads and lags.
(Hint: show that the spectrum of x∗t is the sum of the spectrum
of xt and of υt, and that the unit moving average root in (1)
corresponds to a spectrum which is zero at frequency zero.)

3. Prove that the Wold error derived in the handout on spectral analysis
and projection problems is not-autocorrelated over time.

4. We motivated the spectral decomposition theorem using the band pass
filter and the discrete decomposition of data into a set of sinusoidal
functions. This question explores the latter.

Consider the discrete analog of the spectral representation theorem:

yt =
(T−1)/2X
j=0

yj,t, (2)

yj,t = αj cos (ωjt) + δj sin (ωjt) ,

where T is the number of observations on yt, T is assumed to be odd,

ωj =
2πj

T
, j = 0, ...,

T − 1
2

,

and αj and δj, j = 0, ..., (T − 1) /2 are a set of parameters to be de-
termined. At first sight it may look like there are T + 1 parameters
here - 2 for each value of j - and so one more parameters than the
number of observations. In fact this is not true, since δ0 multiplies the
zero vector and so can be ignored. Recall that cos (x) = cos (x+ 2πk)
and sin (x) = sin (x+ 2πk) for any integer k, so that the jth compo-
nent of yt in (2), yj,t, has period 2π/ωj. Note that higher values of ωj
(i.e., ‘higher frequency components of yt’) are associated with cycles of
shorter duration, or period.
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The equations in (2) can be written in matrix form like this:

y = Xβ,

where

β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0
α1
δ1
α2
δ2
...

αT−1
2

δT−1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and X corresponds to the cosine and sine variables in (2) (note how
we’ve ignored δ0).

(i) Show that

1

T

TX
t=1

sin (ωjt) sin (ωlt) =
1

T

TX
t=1

cos (ωjt) cos (ωlt) =

(
1
2

j = l > 0
0 j 6= l

1

T

TX
t=1

cos (ωjt) sin (ωlt) = 0, all j, l,

so that X is a square matrix with orthogonal columns. Thus, (2) rep-
resents an exact decomposition of a time series (any time series, not
just the covariance stationary and indeterministic series addressed by
the spectral decomposition theorem) into orthogonal sinusoidal com-
ponents, as in the spectral decomposition theorem.

(ii) Show that

dvar (yt) = 1

T

TX
t=0

(yt − ȳ)2 =

T−1
2X

j=0

dvar (yj,t) ,
where dvar (yj,t) = 1

2

h
α2j + δ2j

i
, j = 1, ...,

T − 1
2

,
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and the αj’s and δj’s are the unique solution to

β = (X 0X)
−1

X 0y.

(Note that this reduces to β = X−1y since X is square and invertible,
but it is somewhat easier to understand the vector β by using the more
elaborate formula.)

(iii) Denote the kth order sample covariance of y1, ..., yT by

γ̂k =
1

T

TX
t=k+1

(yt − ȳ) (yt−k − ȳ)

ȳ =
1

T

TX
t=1

yt,

and γ̂−k = γ̂k, for k = 0, ..., T − 1. Denote the sample periodogram by

Ŝy (ω) =
1

2π

T−1X
k=−T+1

γ̂ke
−iωk.

This is the sample analog of the population spectral density. Show that

Ŝy (ωj) =
T

4π
dvar (yj,t) ,

so that the periodogram at frequency ωj corresponds to the variance
of the jth frequency component of the data. This is the analog of a
similar result that we derived using an argument based on the band
pass filter.

5. Consider the industrial production data made available with this home-
work. There are two versions of the data. One is seasonally unadjusted
and the other is seasonally adjusted. The data cover the period, Jan-
uary 1919 to December 2006. Compute the first difference of the log
of the data, to obtain the 1,055 monthly growth rates from February
1919 to December 2006.

(a) Consider the seasonally unadjusted data first. Compute the sam-
ple periodogram for frequencies, ωj = 2πj/T, j = 0, ..., (T − 1)/2
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and graph the results. Note how jagged the curve is (throughout,
you should only graph the log of the spectrum). This reflects the
result (see Hamilton, p. 164) that Ŝy (ω) and Ŝy (ω

0) are approxi-
mately independent (for large T ) for ω 6= ω0. Moreover, although
Ŝy (ω) is an unbiased estimator of the true spectrum, Sy (ω) , its
variance does not shrink to zero as T →∞. The lack of precision
in the sample spectrum as an estimator of the spectral density is
perhaps not surprising. The function being estimated (i.e., the
spectrum as a function of frequency) is a high-dimensional object
(there is a continuum of frequencies between 0 and π), and no
assumptions are made about the structure of the underlying time
series representation. This is an example of ‘little input’ implies
‘little output’.

(b) Now consider a more parametric way to estimate the spectrum of
the seasonally unadjusted data (call this the ‘ar estimator of the
spectrum’). Use ordinary least squares to fit a 20 lag scalar ar
representation to the data, with a constant term. Compute the
spectral density of the resulting ar representation over the same
range of frequencies used in (a). Graph the two spectral density
estimators in the same picture. Note how one appears to be a
smooth version of the other.

(c) Note the local peaks in the spectrum. What period of oscillation
do these correspond to?

(d) Apply the ar estimator of the spectrum to the seasonally adjusted
data. Graph the spectrum of the adjusted and unadjusted data in
the same figure. Are there ‘dips’ in the spectrum of the seasonally
adjusted data, as we were led to expect based on the results for
‘optimal seasonal adjustment’ in the previous homework? Why or
why not?

(e) An alternative strategy that is sometimes used to seasonally adjust
monthly data is to regress the data on 12 seasonal dummies (don’t
include a constant term here, or you’ll have perfectly collinear
data!)2 and treat the residual in this regression as the seasonally

2That is, let the right hand variables be in the T by 12 matrix, X. The ith column of
X has zeros everywhere and a unity in the ith entry. A MATLAB routine that will set up
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adjusted data. In the same graph, plot the estimated spectrum of
the unadjusted data, the data adjusted by the US government and
the data adjusted using the dummy method (in all cases, compute
the spectrum using the ar method). Which is the more effective
seasonal adjustment procedure, the dummy method or the US
government’s method?

X with the right structure is:
B=eye(12);
X=[];
for ii = 1:88
X=[X
B];
end
X=X([2:end],:);
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