
Christiano
FINC 520, Spring 2008
Homework 6, due Thursday, May 22.

1. Consider the iid Normal stochastic process, {xt} , with Ext = μ and
E (xt − μ)2 = σ2. Let μl = E (xt − μ)l denote the lth moment about
the mean. A property of the Normal distribution is that odd-ordered
moments are zero, and even-ordered moments satisfy:

μ2k =
σ2k

2k
(2k)!

k!
.

Skewness of any distribution is defined as

s =
E (xt − μ)3

σ3
.

In the case of a Normal distribution, this is of course zero. Skewness is
estimated as follows:

ŝT =
1
T

PT
t=1 (xt − μ̂)3

σ̂3
, σ̂2 =

1

T

TX
t=1

(xt − μ̂)2 , μ̂ =
1

T

TX
t=1

xt.

(a) Set this estimator of skewness up as an exactly identified GMM
estimator. Show that ŝT is asymptotically normal with standard
deviation, s

6

T
.

(b) Now suppose that the true value of the mean is known. Show that
ŝT is asymptotically normal with standard deviation,s

15

T
.

(Hint: to do each part of this question, you have to identify a dif-
ferent ‘GMM stochastic process’, ht (θ, wt) , having the property,
Eht (θ

0, wt) = 0, where θ
0 is the true value of the parameters, and

θ = (μ, σ, s)0 in the case of part a while θ = (σ, s)0 in the case
of part b. When computing the matrices required by GMM, be
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sure to impose all the properties of the Normal distribution. Also,
when inverting matrices, make life simple for yourself by using the
‘evaluate’ command in the ‘compute’ pull-down menu in Scientific
Word.)

(c) Does the sampling distribution of the estimator of σ depend on
whether or not μ is known?

2. Consider the data from homework 2. Compute the skewness statistic
for each of the four variables (inflation, the long rate, the short rate
and GDP growth). To do this, you cannot rely on the assumptions of
iidNormality used in the previous question. So, you must take a stand
on how many lags to use in constructing the zero-frequency spectral
density for the GMM error. For this, use the covariance, and the first,
second and third lagged-covariances. Using the GMM sampling theory,
compute the p−value of the empirical ŝ statistic under the null hypoth-
esis that the true value is zero and the sampling distribution of

√
T × ŝ

is N
³
0, V̂

´
, where V̂ is the GMM estimator of the sampling variance of

ŝ (i.e., the p−value of ŝ is the probability that an N
³
0, V̂ /T

´
random

variable is larger than ŝ.

3. For question 2, you computed the p−value of ŝ under the null hypoth-
esis of no skewness, using asymptotic sampling theory. It is possible
that T is not large enough for the asymptotic theory to be a good ap-
proximation. You can use a Monte Carlo sampling experiment to check
this. The idea is to use a computer to directly compute the sampling
distribution, in an empirically relevant sample size and under the null
hypothesis of no skewness, of the skewness statistic. To do this, one
needs to take a position on the mechanism that generated the data used
to compute the skewness statistic. This step is important because, pre-
sumably, the sampling distribution of the skewness statistic is sensitive
to what mechanism generates the data. A natural choice for the data
generating mechanism is the four variable VAR(4) you estimated for
homework 2:

yt = c+ φ1yt−1 + φ2yt−2 + φ3yt−3 + φ4yt−4 + εt, Eεtε
0
t = Ω,
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where Ω is estimated by

1

T
Y 0MY,

M ≡ I −X (X 0X)
−1

X 0,

and yt, εt, X and Y are defined in homework 2. Write

CC 0 = Ω,

where C is lower triangular with positive elements on its diagonal.1

Note that if ε̃t is N (0, I) , then Cε̃t has variance-covariance matrix, Ω.
Generate N artificial observations, y1, y2, ..., yN , using

yt = c+ φ1yt−1 + φ2yt−2 + φ3yt−3 + φ4yt−4 + Cε̃t,

where ε̃t is drawn independently from N (0, I) for each t.2 To start this
simulation, you will need initial conditions, y0, ..., y−3. Set these to the
value of Eyt implied by the estimated VAR. Let N = 200 + T, where
T is the number of rows in X, the matrix containing the actual data.
Compute ŝ for each of the four variables using y201, ..., y200+T . (Note
that by beginning with y201, the initial yt’s are in effect being drawn
from the unconditional distribution of yt.) Repeat this exercise 2,000
times. Obtain the p−value for each of your four skewness statistics, by
computing the fraction of times that the simulated skewness statistics
exceed their empirical counterparts. Note that the simulations impose
the zero skewness statistic of the null hypothesis because of the way
the VAR disturbances are drawn. Do you get a different result from
what you found in question 2?

4. Develop asymptotic sampling theory for the centered R2 statistic on
page 202 of Hamilton. Use the asymptotic sampling theory for GMM
for this.

1This matrix exists and is unique, given that Ω is positive definite. The routine, chol(B)
in MATLAB computes the upper triangular Choleski decomposition. To obtain what we
want, set C =chol(B’)’.

2You can draw ε̃t by executing the MATLAB command, randn(4,1).
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5. Consider the VAR(4) you studied in question 2, part (c), of home-
work #2. Compute the fitted residuals, ε̂ = MY, where M = I −
X(X 0X)−1X 0Y. Note that the first column of ε̂ corresponds to the 201
quarterly observations, 1955Q4-2005Q4 on residuals in the short term
interest rate equation (i.e., R);the second column corresponds to obser-
vations over the same period for fitted residuals in the Rl equation; the
third column corresponds to GDP growth and the fourth, to inflation.
We will examine the hypothesis that the residuals in the underlying
‘true’ VAR are identically distributed over time.

(a) For each of the four residuals, graph their 2-year moving, centered
standard deviation, st:

st = std ([ε̂t−4, ..., ε̂t+4]) ,

for t = 1956Q4−2004Q4 (‘std’ in the above expression is the name
of the MATLAB command for computing the standard deviation).
Does this graph appear to be consistent with the proposition that
the underlying disturbances are drawn, at each date, from the
same distribution (in particular, that they have the same variance
at each date)?

(b) Implement the Engle test for ARCH described on page 664, with
m = 4 and m = 6, for each of the four fitted residual series. Com-
pute Engle’s proposed test statistic on each of the four residual
series (i.e., T times the centered R2 statistic defined in equation
[8.1.14], page 202). Compute the p−value of each test statistic
using the asymptotic χ2 distribution theory for the null hypoth-
esis that the underlying εt’s are iid (hint: this is implemented
as 1 − chi2cdf(statistic,m), in MATLAB). You should ponder
(though it need not be worked out for this homework) how you
yourself would derive Engle’s χ2 asymptotic sampling theory using
our GMM results).

(c) The asymptotic sampling theory you used in part b of this ques-
tion is asymptotic, and you may wonder whether you have enough
observations for this theory to be a good approximation. There is
reason to be concerned because I think that in part b you will find
that there is no significant departure from the iid assumption in
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the GDP growth shock. But, this conclusion seems inconsistent
with the results in Justiniano and Primiceri, who argue that the
‘Great Moderation’ (a fall in the volatility of macroeconomic vari-
ables after 1980) reflects a fall in the variance of shocks to GDP
post 1980. One possibility worth exploring is that the failure to
find significant departures from the iid assumption in the GDP
shocks reflects the failure of asymptotic theory (working against
this possibility is that I think you’ll find that there is not a very
large amount of visual evidence against the iid assumption for the
GDP shock in the figures you constructed for part a). A Monte
Carlo experiment needs to be designed in which an empirically
plausible data generating mechanism is used to simulate the En-
gle statistics under the null hypothesis of iid disturbances (Engle
worked this out by hand - using our GMM sampling theory - for
the case T large, but we now want to work it out for T of normal
size and this is too hard to work out by hand). For this, you
should use the bootstrap and a computer.

Doing the bootstrap requires executing the simulations you did
for question 3, but with a twist. Instead of drawing the εt’s from
the multivariate Normal distribution, you will now draw them by
bootstrap (the Normal distribution made sense in question 3, be-
cause the null hypothesis there required that the shocks exhibit no
skewness and lack of skewness is not guaranteed in the bootstrap
procedure...though for present purposes the bootstrap is just fine
because it imposes the iid assumption by design).

The εt’s can be drawn by bootstrap as follows. Let ε̂1, ..., ε̂T denote
the fitted residuals from the VAR (i.e., ε̂t is the t

th row of MY ).
The idea is to draw 2,000 random simulations on the Yt’s, each
of length 200 + T , by simulating the VAR with the estimated
parameter values. In each of the 2,000 simulations, you will need
200 + T independent draws, with replacement, from the set of
vectors, ε̂1, ..., ε̂T . This in effect requires that you draw randomly
from the set of integers, {1, ..., T} . You can do so as follows.
A single random draw from ε̂1, ..., ε̂T can be accomplish by drawing
a uniform (0,1) random variable from Matlab using the MATLAB
routine, rand. Multiply this random variable by T . Then, apply
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the MATLAB routine, ceil, to round the result up to the next
highest integer. This gives you one random draw from {1, ..., T} .
Call the result, j ∈ {1, ..., T} . Then, use ε̂j. Repeat this 200 + T
times, and you have 200 + T random draws, with replacement,
from ε̂1, ..., ε̂T . These can be used to simulate one realization out
of the 2,000 you need.

In each artificial realization, use Y200+1, ..., Y200+T to fit a VAR
and obtain VAR residuals. Then, compute the Engle T × R2

statistic on each residual that you did for part b of this question.
The end result will be 2,000 realizations of this Engle statistic for
each of the four residuals. Compute p−values by calculating the
fraction times that the realizations of these statistics exceed the
empirical values of the statistics that you computed in part b. If
the p−values are essentially the same as the ones in part b, then
the asymptotic theory is working well (if you did the bootstrap
with T = 1, 000, 000, then the asymptotic theory should work
perfectly. You may want to check this.)
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