Christiano
FINC 520, Spring 2007
Homework 7, due Monday, May 28.

1. Obtain Angus Maddison’s (http://www.ggdc.net/maddison/) annual
data on per capita output in India covering the period, 1884 to 2003
(the data are in an excel file on his web page, and have url

http://www.ggdc.net /maddison/Historical Statistics/horizontal-file_03-
2007.xls).

These data can be used to help assess Niall Ferguson’s (see his book,
Empire) view that British colonialism helped India by bringing law,
good governance and a sense of ‘fair play’. The British withdrew when
India achieved independence on August 15, 1947. To evaluate Fergu-
son’s hypothesis, we can compare Indian economic performance with
and without British rule.

(a)

Estimate the mean growth rate, 1, over the period 1884 to 1947.
Estimate the mean growth rate, uo, for the period 1948 to 2003.
Treat the estimates of u; and ps as independent and test the
null hypothesis that p; = po (actually, Ferguson’s hypothesis,
presumably, is j11 > ) versus the alternative that pg > puy.

Actually, the British were in India long before 1884. They arrived
in about 1600 and made it part of the British empire by the mid
1700’s. Maddison’s per capita gdp data are spotty before 1884.
Compute the annual growth rate of per capita GDP from 1700
(Maddison’s observation that is closest to 1750) to 1884. To get a
sense of what was going on in India before the British, compute the
mean annual growth rate from 1000 to 1700 using Maddison’s data
(use the formula, (2, /z;)"/™ , where z; denotes an observation on
per capita income in year t.) How does Ferguson’s hypothesis fare
in light of these data? Compute the ratio of Indian per capita
output to UK per capita output over the period 1884 to 1947.
Now how does Ferguson’s hypothesis fare?

2. The Bayesian posterior distribution is:
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where y is the data set, f (y) is the marginal distribution of y, 6 is the
set of parameters, f () is the prior distribution, f (y|@) is the likelihood
function and f (0|y) is the posterior distribution. Evidently, the mode
of the posterior distribution, #*, can be found by simply maximizing
g (0) with respect to 6. Note, too, that the second derivative, fp (y|0),
of the posterior distribution at 8 = #* can be computed up to a constant
by computing (possibly numerically), gg (0*). In practice, particularly
in the standard case when # has more than one element, numerical
simulation algorithms are needed to obtain the posterior distribution,
f (0ly). An important class of algorithms for doing this is the Markov
Chain Monte Carlo (MCMC) algorithms.

The idea is to generate a sequence of values of § which, if the sequence
is long enough, will cause € to traverse every interval with the same
frequency as is implied by the density, f (0|y) . Inputs into constructing
the sequence include the mode of ¢ (0) as well as an estimate of gy at
the mode and the value of ¢ at each step in the sequence.

The MCMC algorithm works like this. Let the sequence start with
0o = 0*. Compute ggo at 6y. Let go = g(fy). Set i = 1 and use a
random number generator to compute x;:

xizﬁi_1+kxN(0,C'),

where C' is the unique lower triangular matrix with positive diagonal
elements, having the property

CC' = - (999)_1 :
Also, k is a positive scalar discussed below. Form:
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and compare this to a random number, U, drawn from a uniform, [0,1].
Then,
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In words, if the proposed step, z;, in the sequence generates an increase
in g, i.e., it takes the sequence into a high probability region according



to f(0ly) (recall, f(0|y) is proportional to g), then the step, z;, is
definitely taken. If the proposed step in the sequence leads to a lower
probability region of f (i.e., A; < 1), then that step is only taken with
some probability. Continue in this way, for + = 1,2, .... ; M generating
a sequence, 01,05, ..., 03;. The histogram of this sequence is the MCMC
approximation to the density, f (f|y). The key thing to note is that
the algorithm produces a ‘preference’ for wandering in regions where
the density, f (0|y), is high. To a lesser extent, the algorithm will also
wander in regions where f (6|y) is lower. The parameter, k, should be
selected so that the ‘acceptance rate’ is roughly 30 percent. Obviously,
when 6 is a scalar, then C' could just as well be set to unity.

Consider a mixture of two normals, as in [22.3.5] in Hamilton, with N =
2. Let the first distribution be a standard Normal, and let the second
have mean and variance 4 and 1.1, respectively. Consider m = 1, .7,
5. Set M to 100, 000 in each of these three cases. Plot the histogram of
the 0’s generated by the MCMC algorithm, as well as the true density.
Redo the calculations with M = 1,000, 000.

Some computational notes: finding the mode of the mixture of normal
distribution requires numerical optimization. Here is how you can do
this.

(a) Compute a grid of values for theta: xx=-4:.001:8;

(b) Evaluate the density at each point on this grid: f=(mu/sqrt(2*pi*v1))*exp(-
(xx-mul).”2/(2*v1))+((1-mu) /sqrt(2*pi*v2) ) *exp(-(xx-mu2)."2/(2*v2));
Here, mu corresponds to m; and 1-mu corresponds to m,. Also, v1
o 2
1s o7, etc.

(c) Then, find the maximum on this grid, and an interval, (x1,x2)
that brackets it: [Y,I]J=max(f); x1=xx(I-100); x2=xx(I4100);

(d) Finally, use the minimization routine, fminbnd, to refine the esti-
mate of the mode:
[X,FVAL,EXITFLAG] = fminbnd (Q(xx)(-((mu/sqrt(2*pi*v1))*exp(-
(xx-mul)."2/(2*v1))... +((1-mu)/sqrt(2*pi*v2))*exp(-(xx-mu2)."2/(2*v2)))),x1,x2,0pt:
12,’Display’,’off”));
To better understand this command, type help fminbnd at the
MATLAB prompt.



3. Consider the data on the long rate that you have used in previous
homeworks.

(a)
(b)

Fit a 2 lag scalar ar representation to that (for this, you can use
the software written for homework #4).

Test the null hypothesis that 2 lags is appropriate against the
alternative that 5 is (see the discussion in the class for this, or,
page 297 in the text). Does this test indicate that it is acceptable
to use 2 lags, at the 10 percent significance level? Is the page
297 approach relevant for the case in which there is conditional
heteroscedasticity in the residuals? If not, how would you do the
test in a way that is not undermined by heteroscedasticity? (You
need not implement this test.)

Continue working with the 2 lag specification. Graph the residu-
als. Graph the centered 42 year standard deviation of the resid-
uals. Do you agree that there is notable heteroscedasticity in the
residuals?

Estimate the coefficients in an ARCH(2) representation for the
residuals from the 2 lag ar representation. Plot the residuals from
this representation. Do they look like they have constant variance?

Should they have constant (conditional) variance according to the
ARCH(2) model?

Show that the two-step procedure you used to estimate the ar rep-
resentation with 2 lags and ARCH(2) errors is a GMM procedure.



