
Christiano
FINC 520, Spring 2010
Homework 8, due May 30.

1. This question studies the Monte Carlo Markov Chain (MCMC) algo-
rithm and the Laplace approximation. Because we do this in an exam-
ple where we know the true distribution being approximated, we have
a direct way to assess its performance. In addition, we can explore the
wisdom of the recommendation that the parameter in the jump distri-
bution be tuned so that the acceptance rate of the algorithm is in a
neighborhood of 25 percent.

Consider the Weibull probability distribution function (pdf) for the
random variable, x. In MATLAB, the density of the Weibull distrib-
ution associated with a specific value of the random variable, x, can
be obtained by executing [g] = wblpdf(x, a, b). Here, a and b are pa-
rameters of the Weibull density. Consider a = 10, b = 20. Graph this
pdf over the grid, [7, 11.5] , with intervals 0.001 (i.e., graph g on the
vertical axis, where g = wblpdf(x, 10, 20), and x on the horizontal axis,
where x = 7 : .001 : 11.5). Compute the mode of this pdf by find-
ing the element in your grid with the highest value of g. In addition,
you will require the appropriate information matrix. (Hint: the second
derivative of a function, f, around a point x can be approximated as
follows:

f 00 (x) =
f (x+ 2ε)− 2f (x) + f (x− 2ε)

4ε2
,

for ε small. For example, you could set ε = 0.000001.) The jump
distribution described in class was Normal, which can produce a can-
didate that is negative. However, a random variable with a Weibull
distribution is non-negative. You could adjust the algorithm so that
the jump distribution is the absolute value of the Normal described in
class.

(a) Set the number of random draws to M = 1, 000 (this is actually a
small number). Graph the density function implied by the MCMC
approximation, the actual density function, and the one implied by
the Laplace approximation. When graphing these functions, make
sure they are appropriately scaled so that the area underneath
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them is unity. (In the case of the MCMC you will have to draw
using the output of the MATLAB histogram program using, say,
150 bins.) What value of the jump distribution parameter, k,
produces roughly a 26 percent acceptance rate?

(b) Show the effects of a very large and a very small value of k. How
does the algorithm perform with these alternative values of k?
Does it look like the algorithm would converge to the right answer
for values of k that produce a very low or high acceptance rate,
as M →∞?

(c) Notice how ‘choppy’ the histogram seems when you run it with
M = 1, 000. Try a much larger value ofM, sayM = 100, 000, and
show how the results smooth out. Above, I suggested that you
use the absolute value of the Normal distribution as your jump
distribution. Try instead using the Normal itself and then define
the Weibull density of a negative candidate random variable as
zero. How does this change affect the performance of the MCMC
algorithm?

(d) How does the Laplace approximation work in approximatingWeibull?

2. Suppose you have time series data on output growth, ∆yt. Suppose we
wish to estimate μy and the vector, γ =

³
σy ρ1 ρ2

´
:

μy = E∆yt

σ2y = E [∆yt − μy]
2

ρj =
E [∆yt − μy] [∆yt−j − μy]

E [∆yt − μy]
2 ,

for j = 1, 2. (Note in particular that it is σy and not σ
2
y that needs to

be estimated.)

(a) Show how to set up the estimator for the 4 × 1 column vector
of unknown parameters, β =

³
μy γ

´
, as an exactly identified

GMM estimator. Thus, you must find a GMM error column vec-
tor, ht (β) , with the property, Eht (β

0) = 0, where β0 denotes the
unknown true value of β. Derive an explicit expression for

D0 =
∂Eht (β)

∂β0
|β=β0,
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and recall that
√
T
³
β̂T − β0

´
converges in distribution toN

³
0, (D0)−1 SD−1

´
,

where β̂T is the GMM estimator.

(b) Explain how S might be estimated using data.

(c) Let

S =

"
S11 S12
S12 S22

#
,

where S12 is 1 × 3, S22 is 3 × 3, and S11 is a scalar. The block
structure of S is designed to be conformable with the structure of
β in terms of μy and γ. Suppose S12 = 0. Show that

√
T (γ̂T − γ0)

and
√
T
³
μ̂y,T − μ0y

´
are asymptotically independent random vari-

ables (hint: recall that lack of correlation between Normal random
variables implies that they are independent.)

(d) Based on your answer to (c), derive an expression for the limiting
distribution of

√
T (γ̂T − γ0) in terms of S22 and the bottom 3×3

block of D. Write the distribution out explicitly in terms of the
Normal distribution.

3. Consider the model economy in the previous homework. The solution
to that model is a 4× 4 matrix, B, where

zt = Bst, zt =

⎛⎜⎜⎜⎝
πt
xt
rt
rr∗t

⎞⎟⎟⎟⎠ .

Here, st is the vector of exogenous shocks having the following law of
motion:

st =

⎛⎜⎜⎜⎝
∆at
mt

h∗t
μt

⎞⎟⎟⎟⎠ =
⎡⎢⎢⎢⎣
ρ 0 0 0
0 δ 0 0
0 0 λ 0
0 0 0 ρμ

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

∆at−1
mt−1
h∗t−1
μt−1

⎞⎟⎟⎟⎠+ �t,

st = Pst−1 + �t, E�t�
0
t = V,

where V is a diagonal matrix. The vector of observed variables is
denoted Yt. Suppose the econometrician has observations on output
growth only:

Yt = ∆yt.
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The observer equation has the following representation:

Yt = H 0ξt + wt, Ewtw
0
t = R,

and law of motion for the state, ξt =
³
s0t s0t−1

´0
, is

ξt = Fξt−1 + vt, Evtv
0
t = Q.

Now, Yt and wt are scalars. Consider the following baseline values for
the economic parameters of the model:

θ = 0.75, β = 0.99, κ = 0.10, φπ = 1.49, φx = 0.19.

Let the parameters of the stochastic processes take on the following
values:

δ = 0, λ = 0.5, ρ = 0, ρμ = 0.5, R = 0.

Note that there is no measurement error, technology is a random walk
and the monetary policy shock is iid. Also,

V =

⎡⎢⎢⎢⎣
0.00842 0 0 0
0 0.00072 0 0
0 0 0.42 0
0 0 0 0.0032

⎤⎥⎥⎥⎦ .

(a) Solve the model and compute the implied values of

σ∆y =
n
E [∆yt]

2
o1/2

, ρi =
E [∆yt −E∆yt] [∆yt−i −E∆yt]

σ2∆y

, i = 1, 2.

(b) In the previous question, you defined the GMM estimator of the
above three statistics and determined their distribution. Here, we
investigate the accuracy of the large sample assumption used to
derive the distribution in a sample of size 200. In particular, use
the model to generate 1,000 artificial data sets of 200 observations
each: ∆y1, ...,∆y200. In each of the 1,000 data sets, draw �1, ..., �200
independently from a N (0, V ) , where V = E�t�

0
t. In addition, to

initiate the simulations, you will need to do a random draw of ξ1.
For this, you should use N (0,W ) , where W = Eξtξ

0
t. In each of
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the 1,000 artificial data sets, compute the GMM point estimates,
σ̂∆y,T , ρ̂1,T , ρ̂2,T , as well as their sample standard deviations using
the GMM formulas.1

i. Compute the mean and standard deviation of the point esti-
mates, across the 1,000 artificial data sets. These calculations
provide you with the actual small sample means and standard
deviation of the GMM estimators of σ∆y, ρ1, ρ2. Is the GMM
estimator of σ∆y, ρ1, ρ2 unbiased? In each case, is the GMM
estimator of the sample standard deviation of the estimator
itself unbiased? What about its sampling uncertainty across
the 1,000 artificial data samples? Is that sampling uncertainty
small?

ii. To assess the Normality result, compute the percent of times,
across the 1,000 realizations, that the true values of σ∆y, ρ1,
ρ2 lie outside 20 percent confidence intervals. In each artificial
sample, the 20 percent confidence interval should be computed
in the usual way. In the case of each parameter, the confidence
interval is formed by the point estimate plus and minus the
appropriate critical value times the GMM-estimated standard
deviation. For the critical value, it is useful to know

prob [|x| > 1.28] = 0.20,

where x is N (0, 1) . Your calculations are expected to provide
evidence that the GMM asymptotic theory works reasonably
well. That is to say, if you are handed a set of point esti-
mates, σ̂∆y,T , ρ̂1,T , ρ̂2,T , and you are told they are based on
a sample of size 200, it is not unreasonable to suppose that
the point estimates are realizations of a Normal distribution
with mean equal to the true value of these parameters and
variance consistently estimated using the GMM formulas.

(c) We shall estimate, using Bayesian methods, the autocorrelation
(i.e., λ) and innovation standard deviation, σh∗, of the preference

1You may assume, as in the question above, that S12 = 0 and you may use the MATLAB
routine, se.m, that is provided, using l = 2, θ = 1, but make sure you confirm that that
routine is doing the right thing.
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shock, h∗t . Let the prior distribution of λ be a beta distribution
with mean equal to the true value of λ and standard deviation
equal to 0.20. You may use the routine that is provided, prior-
dens.m, to do the calculations (this routine computes the log pdf
for various distributions).2 The routine requires a lower and up-
per bound on the prior distribution. Let these bounds be 0 and
1. Let the prior distribution for σh∗ be inverted gamma (type I),
with mean equal to the true value and standard deviation 0.002.
In addition, the lower and upper bounds on this variable should
be 0 and 0.1, respectively. Graph these two prior distributions.

(d) Do inference about the parameters using the standard Bayesian
procedure, using one of the datasets you constructed for the ear-
lier question with Monte Carlo simulation. You may find it conve-
nient to include the command, randn(’seed’,1) at the start of your
program, so that you use the same set of random numbers each
time you run your program. This will be important when you
compare runs based on different runs. You want to be sure that
differences do not reflect random differences in simulated data.
Use the Kalman filtering software from homework #7, to con-
struct the Normal likelihood of the data. Use priordens.m for the
log prior distribution. For the purpose of optimization, you may
want to use the MATLAB multidimensional minimization algo-
rithm, fminsearch.m. That algorithm uses as its third input ar-
gument a variable called options, which should be set by entering
the following statement before the call to fminsearch:

options = optimset(0Display0, 0iter0, 0TolFun0, 1e−13, 0TolX0, 1e−13, 0MaxIter0, 200);

The first input into fminsearch is the name of the function which
takes as input values for the parameters and produces as out-
put the corresponding posterior mode (not including, of course,
the denominator constant). Suppose, for example, the function
is called as follows, x = func(x0, p1, p2, ..., pN), where x0 is the

2Note that the beta distribution is not symmetric. As a result, supposing that the
mean of the prior coincides with the true value of the parameter has the effect of pushing
the mode of the posterior distribution away from the true value of the parameter.
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column vector containing values for the two parameters being es-
timated and pi, i = 1, ..., N are other parameters that are required
to evaluate the criterion. Then, the arguments of fminsearch are
(0func0, x0, options, p1, ..., pN). Finally, it’s probably a good idea
to set the optimization criterion to the penalty value, −.10e15, in
case fminsearch attempts to evaluate the criterion at an impermis-
sible value for the parameters. For example, you should restrict
λ to lie inside the interval, (0, 1) , and the innovation standard
deviation should be greater than zero.

i. Compute and report the mode of the posterior distribution
for the two parameters. Record the amount of computer time
it takes to find the posterior mode by placing the command,
tic; , just before the call to fminsearch, and toc; just after
the call. Compute the Laplace approximation to the poste-
rior density of the data, p (Y ) . Plot the prior distribution for
the two parameters and the posterior distribution using the
Laplace approximation. Since the Laplace approximation to
the posteriors is Normal, you can use MATLAB’s normpdf
function to do this. You can use the priordens.m program
included with this homework to graph the prior density. To
graph a density, you have to specify a range of values for the
random variable. In the case of the autoregressive parameter,
this is easy because it lives on the unit interval. You can use
a grid, .001 : .001 : .999, for this. In the case of the innova-
tion standard deviation, you should make the lower boundary,
xl say, one-half the prior mean and the upper boundary, xu,
twice the prior mean. Then, set w = (xu − xl) /800, and make
the grid xl : w : xu.

ii. Redo the calculations with a prior mean of λ = 0.7. What is
new the posterior mean? I expect you to find little difference
in the latter, reflecting that there is a lot of information in
the data about λ. There is relatively little information in the
data about the innovation standard deviation.

(e) Redo part (d) using the moment-matching Bayesian limited in-
formation procedure described in class. In particular, replace the
likelihood used in (d) of this question with the likelihood of γ̂T
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used in question 2 (d) above. Record the time needed to compute
the mode of the posterior distribution. Report all the results.
You should see little difference. In addition, the computer time
is cut substantially. The computer time required for the moment
matching procedure is independent of T.

4. A variable of interest to policy-makers is the output gap, xt. The main
reason for this is that the gap indicates where the economy is in relation
to its ideal position. More narrowly, the variable, xt, is an important
input into inflation forecasts (see one of the structural equations from
homework 7). However, xt is fundamentally a latent variable. It is a
theoretical concept and cannot be read directly from some measured
variable. If our theory is correct, then we can use it, along with the
available data on output growth, to estimate the output gap. We can
do this by solving the projection problem,

p [xt| {∆yt−j, j ± 0, 1, 2, ...}] =
∞X

j=−∞
fj∆yt−j.

Often, the HP filter is also used to estimate the output gap. We can
compare the properties of the two measures using the frequency domain
tools that we have developed in this course.

According to the orthogonality principle, the weights, fj, satisfy

E

⎛⎝xt − ∞X
j=−∞

fj∆yt−j

⎞⎠∆yt−k = 0,

for k = ±0, 1, 2, ... . That is:

Cx,y (k) =
∞X

j=−∞
fjCy,y (k − j)

where
Cy,y (l) ≡ E∆yt∆yt−l, Cx,y (k) ≡ Ext∆yt−k.

(a) Apply the convolution argument presented in class to establish
that

f (z) =
Sx,y (z)

Sy,y (z)
,
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where

f (z) =
∞X

j=−∞
fjz

j.

(b) To see how to compute the weights on powers of z in f (z) , let

Zt =

Ã
∆yt
xt

!
=

"
τ 0y
τ 0x

#
ξt,

where τ 0y and τ 0x are 1× 8 row vectors and ξt is the state, defined
in question 2 above. The covariance generating function of Zt,
S (z) , is:

S (z) =

"
Sy,y (z) Sy,x (z)
Sx,y (z) Sx,x (z)

#
=

"
τ 0y
τ 0x

#
Sξ (z)

h
τy τx

i
,

where Sξ (z) is the covariance generating function of the state:

Sξ (z) = (I − Fz)−1Q
³
I − F 0z−1

´−1
.

Then,

f (z) =
τ 0xSξ (z) τy
τ 0ySξ (z) τy

.

To be in a position to compare the optimal filter weights, f (z) ,
with those of the HP filter, it is convenient to define the filter as
it applies to the level data, yt. Since ∆yt = (1− L) yt the weights,
f̃ (z) , as they apply to the level of the data are:

f̃ (z) =

⎛⎝ ∞X
j=−∞

fjz
j

⎞⎠ (1− z) =
τ 0xSξ (z) τy
τ 0ySξ (z) τy

(1− z) .

Show how the integral formula can be used to recover the coeffi-
cients in f̃ (z) . Use the Riemann approximation to that formula
to implement it on the model analyzed above. Graph these coef-
ficients.
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(c) Earlier in the course, we discussed the HP filter. In the frequency
domain, this filter has the following representation:3

h (z) = −g2
(1− z) (1− z) (1− z−1) (1− z−1)

(1− g1z − g2z2)(1− g1z−1 − g2z−2)
,

where g1 and g2 are constants which are determined by the smooth-
ing weight. This filter applies directly to the level data, and so it
is comparable with f̃ (z) .

i. Prove that the phase angle of this filter is zero at all frequen-
cies.

ii. Compute the filter weights by applying the inversion formula.
Graph these alongside the filter weights in f̃(z). Note how dif-
ferent the two filters are. The HP filter provides a very poor
estimate of the output gap in this model. There is a simple
economic explanation which turns on the nature of poten-
tial output (recall, the output gap is the percent deviation
between actual and potential output.) In the model, poten-
tial or, efficient, output is more volatile than actual. This is
because the dynamics of the model are dominated by a pref-
erence shock whose effects are transitory. Because transitory
disturbances induce people to save, economic activity tends
to under-react relative to the efficient equilibrium. The im-
plicit assumption of the HP filter is that potential output is
a smooth version of actual output. This is why the HP fil-
ter and the optimal filter for extracting the gap in the model
are negatively correlated. The same logic suggests that if ρ
is large and the technology shock dominates the equilibrium
of the model, then the two filters would resemble each other
more closely. It is easily verified that this is indeed the case.

3See King, Robert G. and Sergio Rebelo. 1993. Low Frequency Filtering and Real
Business Cycles. Journal of Economic Dynamics and Control. 17(1-2): 207-231.
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