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Solving Projection Problems Using Spectral Analysis

This note describes the use of the tools of spectral analysis to solve projection problems. The
four tools used are the Wold decomposition theorem, the ‘annihilation operator’, the cross spectrum
and partial fractions expansions.

1. The Problem

The problem is to solve:

P [yt|xt, xt−1, xt−2, ...] =
∞X
j=0

djxt−j , (1.1)

where yt and xt are two purely indeterministic, covariance stationary stochastic processes. The
projection problem in (1.1) can arise in various ways. For example, this is a standard forecasting
problem if yt = xt+k, k > 0. Another example is a classic from the early days of rational expec-
tations, due to Muth (1960). In Muth’s problem an agent is interested in tracking a variable, yt,
given a signal, xt, which is corrupted by measurement error:

xt = yt + εt (1.2)

yt = ρyt−1 + ut. (1.3)

Here, ut is iid and orthogonal to yt−s, s > 0. Also, εt is orthogonal to ut at all leads and lags.
At first glance, the solution to (1.1) seems intractable. The presence of an infinity of right hand

‘explanatory variables’ in (1.1) requires, in effect, inverting an infinite ordered matrix to solve for
the dj ’s. To see this, note that the orthogonality condition associated with the projection problem
requires

cyx (k) =
∞X
j=0

djcxx (k − j) , (1.4)

where
cyx (k) ≡ Eytxt−k, cxx (l) ≡ Extxt−l.

For illustration, suppose that the agent is only interested in using a finite record of past observations
on xt, ..., xt−l to estimate yt. In this case, the ∞ in (1.4) is replaced by l and these equations are
represented in matrix form as follows:⎛⎜⎜⎜⎝

cyx (0)
cyx (1)
...

cyx (l)

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
cxx (0) cxx (−1) · · · cxx (−l)
cxx (1) cxx (0) · · · cxx (1− l)
...

...
. . .

...
cxx (l) cxx (l − 1) · · · cxx (0)

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

d0
d1
...
dl

⎞⎟⎟⎟⎠ .

To solve for the dj ’s evidently requires inverting the l+ 1× l+ 1 matrix in square brackets. When
l → ∞ as in (1.1) and (1.4), this means inverting an infinite dimensional matrix. This definitely
looks difficult!



2. Getting Help from the Wold Decomposition Theorem

The problem with the matrix inversion just described is that autocorrelation among the xt’s ensures
that the matrix to be inverted grows non-trivially larger as l gets large. If, for example, the matrix
were simply diagonal for all l, the inversion would not be a problem, no matter how large l is. The
Wold decomposition theorem in effect allows us to replace the projection (1.1) with a projection on
non-autocorrelated variables and thus solve the matrix inversion problem. In particular, according
to the Wold decomposition theorem any purely indeterministic process can be linearly decomposed
in terms of its history of one-step-ahead forecast errors, which are themselves not autocorrelated
over time. Denoting the one-step-ahead forecast error in xt by wt, it follows that any variable that
can be constructed by some linear function of [xt, xt−1, ...] can also be recovered by a linear function
of [wt, wt−1, ...]. This is because, according to the Wold decomposition theorem, there is a square
summable sequence, {d0, d1, ...} , such that

xt = d (L)wt.

The operator, d (L) , is easy to find for our example. Apply (1− ρL) to both sides of (1.2) and take
into account (1.3) to obtain:

(1− ρL)xt = ut + εt − ρεt−1.

The variance and lag-one autocovariance of the term on the right side of the equality is σ2u +¡
1 + ρ2

¢
σ2ε, and −ρσ2ε, respectively. We obtain the Wold representation for this term by choosing

|λ| ≤ 1 and σ2w to solve
ρσ2ε

σ2u + (1 + ρ2)σ2ε
=

λ

1 + λ2
, σ2w =

ρσ2ε
λ

.

Then,

d (L) =
1− λL

1− ρL
, Ew2t = σ2w.

Note that if the measurement errors, σ2ε, are large compared with σ2u then ρ = λ and σ2w = σ2ε so
that xt = εt, as we would expect. In the other extreme, when σ2ε → 0 we can show that xt = yt
and wt = ut. Note that in our example, wt can be expressed as a square summable sum of current
and past xt’s:

wt =
1− ρL

1− λL
xt =

ut + εt − ρεt−1
1− λL

. (2.1)

The expression on the right of the equality shows how a realization of current and past shocks, ut
and εt, maps into a realization of Wold errors.1

To gain intuition into (2.1), suppose that σ2ε/σ
2
u is large, so that ρ ' λ. In this case, (2.1)

indicates that an εt shock generates virtually no persistence in wt.
2 This is not surprising since in

this case xt basically is εt. It is also not surprising that when σ2ε/σ
2
u is large and there is a positive

shock to ut, this generates a long sequence of positive Wold forecast errors, wt, when ρ is large.
To understand this, note from (1.2) and (1.3) that if xt jumps due to ut when σ2ε/σ

2
u is large, then

the optimal response is to treat this as a jump in εt and not revise up one’s forecast of xt. But,
when ut jumps, yt remains high for a long time when ρ is large, and this translates into a persistent

1 It is a useful exercise to verify that wt is not autocorrelated over time.
2This may not be obvious at first sight, but reflects that 1 − ρL and 1-λL roughly cancel. A simple simulation

will verify that a perturbation in εt generates a virtually completely transitory response in wt when ρ ' λ.
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rise in xt. This persistent rise in xt will at first be assumed to be a persistent sequence of positive
realizations in εt. At some point the improbability of this assumption becomes overwhelming and
it is optimal to start thinking that the observed rise in xt was due to ut and not εt.

It is convenient to consider the moving average representation of the vector process, Xt =
(yt, wt)

0 , as well as its spectral density. Using (1.3) and (2.1):

Xt = C (L)

µ
ut
εt

¶
,µ

yt
wt

¶
=

"
1

1−ρL 0
1

1−λL
1−ρL
1−λL

#µ
ut
εt

¶
The spectral density of Xt is:

SX
¡
e−iω

¢
= C

¡
e−iω

¢
V C

¡
eiω
¢0
, V =

∙
σ2u 0
0 σ2ε

¸
.

As in result #1 in the class handout on spectral analysis, we have

SX
¡
e−iω

¢
= c (0) + c (1) e−iω + c (2) e−i2ω + ...

+c (1)0 eiω + c (2)0 ei2ω + ... ,

where

c (j) = EXtX
0
t−j =

∙
cyy (j) cyw (j)
cwy (j) cww (j)

¸
,

and
cyw(j) = Eytwt−j , cwy (j) = Ewtyt−j , cww (j) = Ewtwt−j .

Similarly,

SX
¡
e−iω

¢
=

∙
Syy

¡
e−iω

¢
Syw

¡
e−iω

¢
Swy

¡
e−iω

¢
Sww

¡
e−iω

¢ ¸ =
⎡⎣ σ2u

(1−ρe−iω)(1−ρeiω)
σ2u

(1−ρe−iω)(1−λeiω)
σ2u

(1−λe−iω)(1−ρeiω)
σ2u

(1−ρe−iω)(1−ρeiω) +
σ2ε

(1−λe−iω)(1−λeiω)

⎤⎦
Consider the following projection:

P [yt|wt, wt−1, ...] =
∞X
j=0

φjwt−j .

The orthogonality condition which is necessary and sufficient to solve the projection problem is:

E

⎡⎣yt − ∞X
j=0

φjwt−j

⎤⎦wt−k = 0, k = 0, 1, ... ,

which is satisfied by setting the φj ’s as follows:

φj =
Eytwt−j

σ2w
, for all j, σ2w ≡ Ew2t .
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The z−transform of the φj ’s is

φ (z) =
∞X
j=0

φjz
j =

P∞
j=0 cyw (j) z

j

σ2w
=
[Syw (z)]+

σ2w
=

1

σ2w

∙
σ2u

(1− ρz) (1− λz−1)

¸
+

.

Here, the ‘+’ subscript indicates the ‘annihilation operator’, which means ‘ignore terms in negative
powers of z’. Our task now is to develop a simple expression for [·]+ .

3. Finishing Off the Problem Using the Annihilation Operator and Partial Frac-
tions Expansions

It is convenient to develop the partial fraction expansion of the term inside the annihilation operator.
This is expressed as follows:

Syw (z) =
σ2u

(1− ρz) (1− λz−1)
=

zσ2u
(1− ρz) (z − λ)

=
A1

1− ρz
+

A2
z − λ

,

where A1 and A2 are constants whose values are to be determined. In the usual undetermined
coefficient style, the values of A1 and A2 are determined by the requirement that the third equality
in the last expression be satisfied. After multiplying both sides of that equality by (1− ρz) (z − λ) ,
we obtain:

zσ2u = A1 (z − λ) +A2 (1− ρz)

= A2 −A1λ+ (A1 − ρA2) z.

For the left and right sides to be equal requires

A2 = A1λ

A1 − ρA2 = σ2u,

or,

A1 =
σ2u

1− ρλ
, A2 =

λσ2u
1− ρλ

.

We write the partial fraction expansion of the cross spectrum as follows:

Syw (z) =
σ2u

(1− ρz) (1− λz−1)
=

σ2u
1− ρλ

1

1− ρz
+

λσ2u
1− ρλ

z−1

1− λz−1
. (3.1)

The two terms in the partial fractions expansion are:

σ2u
1− ρλ

1

1− ρz
=

σ2u
1− ρλ

£
1 + ρz + ρz2 + ...

¤
λσ2u
1− ρλ

z−1

1− λz−1
=

λσ2u
1− ρλ

£
z−1 + λz−2 + λ2z−3 + ...

¤
.

Before continuing, we pause to take a closer look at some steps taken above which may at first
seem arbitrary. For example, we might have considered the following expansion:

σ2u
(1− ρz) (1− λz−1)

=
Ã1

1− ρz
+

Ã2
1− λz−1

.
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It is easy to see that there does not exist an expansion like this, because there do not exist constants,
Ã1 and Ã2, that satisfy this equation. Multiply both sides by (1− ρz)

¡
1− λz−1

¢
to obtain:

σ2u = Ã1
¡
1− λz−1

¢
+ Ã2 (1− ρz) ,

and note that there are no values for Ã1 and Ã2 so that the expression on the right is independent
of z. Another step taken above may also appear arbitrary at first glance. In particular, we could
have adopted the following expansion:

A2
z − λ

=
−λ−1

−λ−1
A2

z − λ
=

A2λ
−1

1− λ−1z
= A2λ

−1 £1 + λ−1z + λ−2z2 + λ−3z3 + ...
¤
. (3.2)

We did not adopt this expansion because, although it is technically valid, it is not relevant for our
purposes. We seek the expansion of Syw (z) , the z−transform of a cross-covariance function, where
the cross-covariances are square summable:

Syw (z) =
∞X

τ=−∞
cyw (τ) z

τ .

Although the polynomial representation of Syw (z) technically has many expansions in powers of
z, only one corresponds to the one we are interested in. The expansion that interests us is the one
whose coefficients on powers of z are square summable. From this perspective, (3.2) is not of interest
because the coefficients on powers of z are exploding. It is our special interest in the expansion that
involves square summable coefficients that drove us to adopt the expansion of A2/ (z − λ) that is
implicit in (3.1).

In sum, we have expressed Syw (z) in the form of (3.1), with the understanding that the first
polynomial represents an expansion in positive powers of z while the second polynomial represents
an expansion in purely negative powers of z. This representation of Syw (z) puts us in a perfect
position to evaluate the annihilation operator. Using the obvious fact that g (z) = a (z) + b (z)
implies

[g (z)]+ = [a (z)]+ + [b (z)]+ ,

we obtain:

[Syw (z)]+ =

∙
σ2u

1− ρλ

1

1− ρz

¸
+

+

∙
λσ2u
1− ρλ

z−1

1− λz−1

¸
+

=
σ2u

1− ρλ

1

1− ρz
.

We conclude that

P [yt|wt, wt−1, ...] =
∞X
j=0

φjwt−j ==
[Syw (z)]+

σ2w
wt

=
σ2u/σ

2
w

1− ρλ

1

1− ρz
wt

=
σ2u/σ

2
w

1− ρλ

1

1− λL
xt,
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where the last term makes use of (2.1). Thus,

P [yt|xt, xt−1, ...] =
σ2u/σ

2
w

1− ρλ

∞X
j=0

λjxt−j .

This is a pretty simple solution to what at first may have appeared to be a formidable projection
problem. The expression says that when data, yt, are corrupted by noise as in (1.2)-(1.3), it makes
sense to ‘smooth’ the observed data when using them to formulate a guess about yt. For a more
complete discussion of the material in this handout, see Sargent (1979, section 17, page 275) and
Whittle (1983, section 3.7, page 42).

4. Discussion

The tools described here are not just useful for solving the projection problem in (1.1). They are also
useful in solving for the equilibrium in certain economic models. In these models, the noise which
corrupts observations is idiosyncratic to individual agents and the way they do their forecasting
helps determine the structure of the stochastic processes driving the variables. Riccardo Masolo
studies a simple example of this in his thesis work. In his problem, there is a process denoted lt,
which is analogous to yt above and which evolves according to an AR(1) :

lt = ρlt−1 + ηt.

Here, lt is an aggregate variable observed with noise by individual agents. The noise is idiosyncratic
across different agents and agent h observes:

sht = lt + εht .

Here, εht is a measurement error, which averages out to zero across the large number of agents in
the economy. Based on observing the history of signals, the hth agent makes a decision, denoted
wh
t according to following rule:

wh
t = α1P

h
wt|sht , sht−1, sht−2, ...

i
+ α2P

h
lt|sht , sht−1, sht−2, ...

i
.

Here, wt is the aggregate of all agent decisions. Agents do not see this aggregate, since they only see
their own history of sht . The actions of individual agents depend on the time series representation
of wt. At the same time, the time series representation of wt is determined by those same actions.
This fixed point problem can easily be solved with an extension of the methods described in this
handout (this is a point that was particularly stressed by Kasa (2000).)
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