Christiano
Finance 520

Notes on Fuster, Hebert and Laibson, “Natural Expectations, Macroeconomic Dynamics, and
Asset Pricing”

The paper by FHL argues that some economic variables over react to shock because people
have ‘natural’ rather than rational expectation.! This note summarizes some of the econometric
results that FHL point to in support for their position. The analysis is an application of the Sims
approximation error formula.?

1. The Setup

Many theories in economics take the following form:
B .
P=Y BBy,

=0

where F; is the linear projection operator on date ¢t information and P; is some endogenous variable.
Also, B is the discount rate, a number that is close to unity. For example, imagine that P; is a
stock price and d; is earnings. An object that is of interest is:

P, —Ei 1P

This is the move in P, that is unexpected as of period ¢t — 1. There is a sense in economics that a
lot of variables, for example, stock prices, over-react to new information. That is, P, — E;_1P; is
somehow ‘too volatile’.

Subtracting,

o0
P —E 1P =Y B [Eydyj — By_1dyy;). (1.1)
§=0
Thus, the unexpected move in the stock price is related to the revision in expectations about future
earnings. Suppose that the time series representation for d; has the following representation:

Ady = &+ Yi€—1 + 1#281572 + ... (1.2)
Y (L) et,
where the 1,’s are additively summable and
0(L)
(L) = —=, 1.3
)= 30 (13)

where the roots of # and of ¢ lie strictly outside the unity circle. As a result, Ad; is covariance
stationary and ; can be recovered from a linear combination of current and past Ad,’s. It follows
that the €;’s are serially uncorrelated and suppose its variance is not a function of ¢ :

Ee? = o2

"http://www.nber.org/confer/2011/Macroll/Fuster Hebert Laibson.pdf
2Sims, Christopher, 1972, ‘The Role of Approximate Prior Restrictions in Distributed Lag Estimation,” Journal
of the American Statistical Association, 67(337), pp. 169-175.



Note:
diyj = Adpyj + Adigj—1 + Adggj—o + ... + Ady + dy—1,

for 7 =0,1,2,.... Then,

Eid; — Ey_1dy = E [Adt + dtfl] —Fi 4 [Adt + dtfl]
= EtAdt — EtflAdt = &¢.

Also,
Eidiy1 — Ey_1dipr = By [Adipr + Ady] — B [Adig1 + Ady]
= [BiAdiyr — B 1Adi] + [EiAdy — By 1 Ady]
= [(V1&t + Voet—1 + ...) — (Yo&r—1 + ...)] + &
= [1+]e
Similarly,
Eydyyj — Byadir = [+ 91 + 0 + 4] & (1.4)

It follows from (1.4) that
]1320 Eidiyj — Ey_1diyj =9 (1) &4

That is, the sum of the moving average coefficients of Ad; determines the impact of £ on the

long-run forecast of d;. It’s not completely surprising that this forecast should involve a sum, since

the level in the distant future is a result of the sum of the increments between now and then.
Substituting (1.4) into (1.1):

P,—E P, = Eid— E_1di+ B [Eidiyr — Er—1di41]
+62 [Bydira — Eyr—1diso) +
= e+ B[L+Ple+ B2L 4+ +o)er+ ..

Collecting terms,

1 1
P —-E 1P = +/3 7/)1+»32

1
15T —pvet
- B[1+6¢1+6w2 e
_ o,
- 1 (1.5)

Note that since f is close to unity, the response of the stock price to a shock, €;, depends (roughly,
because 3 is only ‘close’ to unity, not exactly unity) on the sum of the moving average coefficients
in Ad;. Note too, that this in turn corresponds (roughly) to the spectral density of Ad; at w = 0,
for, recall

Sad (e*i“’) = (e*i‘”) Y (ei‘”) o, (1.6)
and note that e <0 = 1.

FHL posit that people simplify a complex reality, and this results in an overstatement of the
long run impact of shocks, i.e., objects like 9 (1) or ¢ (8). They find support for this idea in their



analysis of data on corporate earnings. They fit a 40 lag univariate autoregressive representation
on the first difference of the log of corporate earnings, Ad; :

Ady = B (L) Ady—1 + &4, (1.7)

where 4 is orthogonal to all past Ad;’s. Evidently,

1

0(L)=1, 6(L)=1-BL)L ¥ (L) = =g

FHL then treat this representation as the ‘true’, complex, reality. The stock market participant,
putting on his/her econometrician hat on, fits a representation,

Ad; = B (L;7y) Ady_q + &,

where v is a set of parameters. The kind of specification FHL have in mind is a low order AR
representation, such as:

B(L;y) = ¢1 + oL + ... + ¢4 L2,

so that /
’Y:(¢1 G9 O3 ¢4)- (1'8)

The agent selects the parameters of B (L; ) to minimize the variance of &; :

& = Ady—B(L;y) Ady_y
= [B (L)- B (LW)} Ady_1 + &,

using (1.7).3 Using the results for a variance developed in class, we obtain Sims’ approximation
formula:

s
Var (&) = 2177/ [B (e_i‘”) -B (e_i”;v)} SAd (e_i“’) [B (ei‘”) - B (eiw;’y)} dw+ 02 (1.9)
—T
where Sag (€7) is the spectral density of Ad; (see (1.6)). The econometrician’s problem is to
choose 7 to minimize Var (&) in (1.9). If there is no specification error, then the problem is solved
by choosing v so that B (e"“) = B (e‘iw;y) for all w. But, if there is specification error then
B (e*iw) =B (e*i‘“; 'y) is not possible for all w. What least squares does, according to (1.9), is to
make B (e*“") close to B (e*i‘“;’y) in frequency bands where Saq (e*"”) is large and let the two
be different otherwise. To get the impact of ¢; on P; right it is crucial that B (e_iw) be close to
B (e‘i‘“; 'y) for w in a neighborhood of w = 0. But, if much of the power of Ad lies in other frequency

bands, then the econometrician is likely to obtain a poor estimate of (e*"w) in a neighborhood
of w=0.

3Imagine that the broader economy is an endowment economy where P; is the price of a Lucas tree and d; is the
fruit falling off the tree. In this way, the actual law of motion of Ad; is exogenous and not influenced by the fact that
agents have a mistaken belief about it.



2. The Computations

Although (1.9) provides insight about the consequences of misspecification in regression, actual
implementation of regression is better done by the Yule Walker equations (with some work, you
can show that these are the first order conditions associated with (1.9)).

It is interesting to have a look at the ‘true’ value of ¢ (L) . For this, fit a 40th order AR fit to 254
first differences of the log of real corporate earnings (including a constant term in the regression,
but then forgetting about that term later). Then,

1
¥ (L) = ,
L= 1L — 95L% — .. — §yo L0
where the ¢;’s are the OLS estimates. Also
254

1
2 _ 22
ot =50 tglst.

It is not necessary to compute the 1;’s to evaluate (1.6). However, it is interesting to look at and
graph the ¢;’s. An easy way to obtain the 1;’s by applying the inverse Fourier transform:

1 0 . .
I A G @
1 " —iw\ iwj w —iwj
= 5 i (¥ (e7™) 7 + ¢ () e ] dw.

Note that in the second equality we have exploited the symmetry in the integrand to shorten the
range of the integral by 1/2. This is useful for computational purposes because ¥ (e_iw) is fairly
non-smooth (it has 40 parameters!) and so many points are required in the Riemann approximation
for the approximation to be accurate. Let

wj:—j, j:(),... -

where N is large and even. Then,

1 N/2

% [w (e—zwj) e’ijT 4 w (ezwj) 6—zwj‘r] (wj _ wj—l)
7=1
N/2

1 —iw;\ LW;T W —iW; T
= D) e () .
j=1

12
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Note that the j = 0 term appears to be left off. In fact we’re measuring the height of each rectangle
by the height of the integrand on the right side of the rectangle. The actual ¢.’s implied by this
formula are discussed below.

To begin the calculations implemented by the econometrician, we require the covariances of
Ad;. Assuming B corresponds to a fourth order AR representation, we require

v, = EAdiAdy—; = ;ﬁ/ 0 (e—iw) " (eiw) 02T duy,

4



for 7 =0,1,...,4. Again, exploit the symmetry in this integral:

L[ ) o () ot
1 " —iw w wT 0 —iw w wT
— o [ e e o [ u e ) v () i
2 ™ . . . .
— ;? |:/0 w(e—zw)w(ezw) (ezw7+€—zw7):| dw
0_2 s

= — [ cos(wr)y (e”™) 1 (") dw.

T Jo
Here, we have made use of the fact that (e_iw) P (ei"’) is real. Then,
o N/2

% Z cos (w;T) (e_iwj) P (eiwj) (wj —wj-1)
j=1

9 N/2

_ 2% Zcos (ij)w (ef’iwj) ¥ (eiwj) ,
j=1
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for 7 =0,1,2,3,4. The following orthogonality conditions are necessary and sufficient to solve the

econometrician’s problem:

E[Ady — ¢1Adi—1 — p9Ady—9 — p3Ady—3 — 94 Ady—4] Ady—j = 0,

for j =1,2,3,4, or,

Y1 = @Y T P21+ P32 + a3
Yo = ¢171 T+ P2v0 + P31+ e
Y3 = O1Y2 T 271+ 370 + Pam1
Yo = G173+ P22 + @371+ Pavo-

This is expressed in matrix form as follows:

d=Xn,
where 7 is given in (1.8) and*
Y1 Yo Y1 V2 73
d=| 72 x= |71 Y 71 72
73 |’ Y271 Y0 N
V4 Y3 Y2 Y1 Yo
Solving for ~:
v=X"1d.

'The matrix X is a Toeplitz matrix obtained in MATLAB with the command, toeplitx(d), where d
i

(% 7 72 )



We also require the econometrician’s estimated innovation variance. We obtain this as follows. The
econometrician’s believed representation is:

Ady = 91Ady 1 + 9o Ady—1 + P3Adi—1 + d4Adi—1 + Uy,
where Eu? = o2. Note
Yo = E(Ad)* = E[¢;Adi_1 + ¢poAdy_o + ¢3Adi_3 + pyAdy_g + ug] Ady
= G171+ P22 + D373 + Pava + 00
because Fu;Ad; = 2. The econometrician then infers the long run effect of a shock using

1
1-B(B,7)p
where the superscript, spec. error, indicates that the estimate is based on a specification error (the

econometrician has falsely simplified a complex reality by misspecifying what is in fact an order 40
ar with an order 4 ar).

wspec. error (6) —

3. The Results

The key results are presented in the following graph. The top panel displays 1; and ¢35 “"", for
j=0,...,30 as ‘actual’ and ‘estimated’, respectively.” The bottom panel displays the corresponding
spectral densities over the frequencies, w € [0, 7] . Note how un-smooth the curves associated with
the 40" order autoregressive representation are. This is to be expected, given the large number of
parameters.

Consider first the bottom panel. The true spectral density is quite wobbly, and it suddenly
takes a plunge towards zero near w = 0.5 The spectral density implied by the econometrician’s
model is smooth because it has few parameters and it does its best to cut a smooth line through
the actual spectral density. That spectral density rises a little in a neighborhood below w = 0.5
and the spectral density of the estimated model faithfully reproduces that. However, the estimated
spectral density does not have the flexibility to then capture the plunge towards zero near w = 0.
Moreover, as we see in (1.9), there is not much penalty for missing the plunge to zero because the
actual spectral density is so small there. This is too bad for our poor econometrician, because the
only thing he really cares about is getting things right in a neighborhood of w = 0.

The error made by the econometrician is to overstate the spectrum at and near w = 0. Equiv-
alently, this means he overstates the long run impact on earnings of a shock to earnings (see the

’In the calculations, I arbitrarily set 6% = 0.012, rather than using the estimated one. This has no effect on the
reported results, as long as o2 is computed as indicated in the text.

%Incidentally, note the spike in the estimated spectral density in a neighborhood of the frequency corresponding
to period 4. There is an important annual component in these quarterly data.



discussion surrounding (1.6) above). We can see this in the top panel of the figure.

< 10" spectral density, actual ar(40) and estimated ar(4)
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The true and estimated values of ¢ () / (1 — ) are 52 and 192, respectively. There are two
notable things about these results. First, the econometrician over estimates the impact of an
earnings shock by a factor of 4. Because the econometrician as trader is the one whose actions
actually move the stock price, that price will move too much. Also, it is interesting how just how
much stock prices move in this model. The variables are to be interpreted as the log of the stock
price and the log of earnings. So a one percent shock to earnings ought to move the stock price
by 52 percent. In reality it will move the stock price by 192 percent, if all traders make the same
specification error when they do their data analysis.



