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Approximating the Normal Density Function Using the Asymptotic
Diagonalization Result

Let fj denote the 1× T row vector:

fj =
1√
T

£
e−iωj−1 e−iωj−12 · · · e−iωj−1T

¤
,

for j = 1, ..., T, where

ωj =
2πj

T
, j = 0, ..., T − 1.

The row vectors, f1, ..., fT , have the following property:

fj f̄
0
k =

½
1 k = j
0 k 6= j

. (1)

Here, a bar over a variable indicates complex conjugation, and a prime denotes
transposition (without conjugation)1. Let the matrix, F, be defined by:

F =

⎡⎢⎢⎢⎣
f1
f2
...
fT

⎤⎥⎥⎥⎦ .
The T × T matrix, F, is called the Fourier matrix. Property (1) of the rows
implies:

FF̄ 0 = I, (2)

where I denotes the T -dimensional identity matrix. A property like (1) also
applies to the columns of F. In particular, let

F =
£
g1 · · · gT

¤
,

where gk is a T × 1 column vector, k = 1, ..., T. Then,

ḡ0jgk =

½
1 k = j
0 k 6= j

. (3)

Property (3) can be written:
F̄ 0F = I. (4)

1Careful, MATLAB defines the prime to mean conjgation and transposition.
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Let

y =

⎛⎜⎝ y1
...
yT

⎞⎟⎠ , V = Eyy0.

Here, yt is a covariance stationary stochastic process. It can be shown that

fjV f̄k →T→∞

½
S (ωj) k = j
0 k 6= j

,

where

S (ωj) =
∞X

l=−∞
γle
−iωjl, γl = Eytyt−l.

Note that

V =

⎡⎢⎢⎢⎣
γ0 γ1 · · · γT−1
γ1 γ0 · · · γT−2
...

...
. . .

...
γT−1 γT−2 · · · γ0

⎤⎥⎥⎥⎦ .
A different way to put the result is as follows:

FV F̄ 0 →T→∞=

⎡⎢⎢⎢⎣
S (ω0) 0 · · · 0
0 S (ω1) · · · 0
...

...
. . . · · ·

0 0 · · · S (ωT−1)

⎤⎥⎥⎥⎦ . (5)

Not surprisingly, this result is referred to as the ‘asymptotic diagonalization’
result. A discussion of this result can be found in Harvey (1989, section 4.3).
The asymptotic diagonalization result delivers an efficient algorithm for eval-

uating the Normal density function when doing maximum likelihood or Bayesian
inference. In addition, the result gives rise to a useful set of diagnostics for model
evaluation. Some of these are discussed in Christiano and Vigfusson (2003).
The multivariate Normal density function is:

L (y;β) = (2π)
−T

2 |V |−
1
2 exp

∙
−1
2
y0V −1y

¸
,

where |A| is the determinant of the matrix, A, and β denotes the parameters of
the model. The parameters, β, determine V , but the dependence is suppressed
to keep from cluttering the notation. Consider the quadratic form:

y0V −1y = y0F̄ 0FV −1F̄ 0Fy = ỹ
0
FV −1F̄ 0ỹ,

where ỹ is a T × 1 column vector defined by:

ỹ = Fy =

⎛⎜⎜⎜⎝
y (ω0)
y (ω1)
...

y (ωT−1)

⎞⎟⎟⎟⎠ ,

2



where

y (ωj) ≡ fjy =
1√
T

TX
t=1

e−iωjtyt, j = 0, ..., T − 1.

Consider the object, FV −1F̄ 0. Note that by the definition of an inverse,¡
FV F̄ 0

¢−1
FV F̄ 0 = I.

Post-multiply both sides of this expression by F and use (4) to obtain:¡
FV F̄ 0

¢−1
FV = F.

Now, post-multiply both sides of the above expression by V −1 :¡
FV F̄ 0

¢−1
F = FV −1.

Finally, post-multiply both sides by F̄ 0 and use (2):¡
FV F̄ 0

¢−1
= FV −1F̄ 0.

Thus, in considering the quadratic form in the Normal density function, we are
led to consider the inverse of FV F̄ 0. By (5), this matrix is (for large enough T )
diagonal. Thus,

y0V −1y (6)

'
¡
y (−ω0) y (−ω1) · · · y (−ωT−1)

¢
⎡⎢⎢⎢⎢⎣

1
S(ω0)

0 · · · 0

0 1
S(ω1)

· · · 0
...

...
. . . · · ·

0 0 · · · 1
S(ωT−1)

⎤⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎝

y (ω0)
y (ω1)
...

y (ωT−1)

⎞⎟⎟⎟⎠
=

T−1X
j=0

I (ωj)

S (ωj)
, I (ωj) ≡ y (−ωj) y (ωj) .

Here, I (ωj) is the sample periodogram. It is an estimator of S (ωj) . The other
term in the likelihood is the determinant:

|V | =
¯̄
F̄ 0FV F̄ 0F

¯̄
=
¯̄
F̄ 0
¯̄ ¯̄
FV F̄ 0

¯̄
|F | .

By a property of determinants,
¯̄
F̄ 0
¯̄
|F | =

¯̄
F̄ 0F

¯̄
. By (4),

¯̄
F̄ 0F

¯̄
= |I| = 1. Thus,

we conclude

|V | =
¯̄
FV F̄ 0

¯̄
' det

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

S (ω0) 0 · · · 0
0 S (ω1) · · · 0
...

...
. . . · · ·

0 0 · · · S (ωT−1)

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ =

T−1Y
j=0

S (ωj) .

(7)
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We conclude that, for sufficiently large T,

L (y;β) = (2π)
−T

2 |V |−
1
2 exp

∙
−1
2
y0V −1y

¸

' (2π)−
T
2

⎡⎣T−1Y
j=0

S (ωj)

⎤⎦− 1
2

exp

⎡⎣−1
2

T−1X
j=0

I (ωj)

S (ωj)

⎤⎦ .
Using the asymptotic diagonalization result, we have converted the problem of
evaluating the Norma density from one that requires inverting a T × T matrix
into a problem of inverting T scalars. Finding the β that maximizes L involves
fairly straightforward calculations. The periodogram, I (ωj) ,must be computed
only once. The object, S (ωj), is also straightforward to evaluate. Suppose, for
example, that we are estimating an ARMA(p,q) model for yt :

φ (L) yt = θ (L) εt,

where εt is a mean zero, non-autocorrelated disturbance that is orthogonal to
yt−s for s > 0. Then,

S (ω) = φ
¡
e−iω

¢−1
θ
¡
e−iω

¢
Ωθ
¡
eiω
¢0 h

φ
¡
eiω
¢−1i0

.

This object has been written for the case in which yt is an n× 1 vector. In this
case the likelihood is written

(2π)
−nT

2

⎡⎣T−1Y
j=0

|S (ωj)|

⎤⎦− 1
2

exp

⎛⎝−1
2

T−1X
j=0

tr
h
S (ωj)

−1
I (ωj)

i⎞⎠ ,

where tr (A) is the sum of the diagonal elements of the matrix, A.
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